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We study an architecture for implementing adiabatic quantum computation with trapped neutral atoms.
Ground-state atoms are dressed by laser fields in a manner conditional on the Rydberg blockade mechanism,
thereby providing the requisite entangling interactions. As a benchmark we study the performance of quantum
annealing to the ground state of an Ising spin-lattice. We model a proof-of-principle experiment in a realistic
architecture, including details of the atomic implementation, with qubits encoded into the clock states of 133Cs.
Numerical simulation yield fidelities >0.98 for up to four qubits, and implementations of 10-20 qubits are within
the range of current technology.

PACS numbers: 34.50.-s,34.10.+x

In this letter, we consider a new platform for adiabatic quan-
tum computation (AQC) [1] based on trapped neutral atoms
whose coupling is mediated by the dipole-dipole interactions
of Rydberg states. An algorithm is implemented by contin-
uous transformation of the Hamiltonian from an initial form
whose ground state is easy to prepare to the final form whose
ground state encodes the output of the algorithm. If the energy
gap between the ground and excited states is sufficiently large,
the transition from initial to final Hamiltonian can be accom-
plished efficiently. AQC is particularly attractive because the
existence of an energy gap can make the system inherently
robust to certain types of errors.

In contrast to quantum circuit implementations where
atoms are excited to the Rydberg state with a resonant π-
pulse [2–4], here we base our proposal on off-resonant Ry-
dberg dressing of the atomic ground state, studied previously
in the context of dipolar gases [5, 6]. This leads to an entan-
gling mechanism that is more compatible with AQC, where
interactions are always on and can be continuously changed
to transfer from the initial to final Hamiltonian. Such adia-
batic evolution has been employed in recent cold atom/ion ex-
periments to study quantum simulations of Ising models [7–
9]. As a specific example, we will show how our architec-
ture can be used to implement “quantum annealing” (QA) in
an Ising spin-lattice [10] to solve an instance of the quadratic
unconstrained binary optimization (QUBO) problem. We will
model the physics of its implementation to benchmark the per-
formance of a proof-of-principle realization for a few qubits
with nearest-neighbor interactions.

The goal of the QUBO problem is to find the N-tuple of bi-
nary variables,~x = (x1,x2, . . . ,xN), xi ∈ {0,1}, that minimizes
the function

f (~x) =
N

∑
i=1

hixi +
N

∑
i, j=1

Ji jxix j. (1)

This is equivalent to solving for the ground state of a
generic Ising model, a problem that is generally NP-hard [11].
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Nonetheless, specific instantiations of this problem map onto
a variety of satisfiability and related algorithms which are
tractable, and thus provide useful testbeds for the AQC ar-
chitecture [12]. Moreover, because the algorithm can be NP-
hard, it is important to have multiple architectures (ion, su-
perconductors, Rydberg atoms, ground-state atoms, etc.) in
which to cross-verify the solution [13].

To map QUBO to a QA algorithm, each binary variable is
replaced by a projector acting on a qubit, xi ⇒ (I+σ

(i)
z )/2,

where the Pauli matrices are defined as usual on the qubit
pseudospin, |0〉= | ↑〉, |1〉= | ↓〉. The solution to QUBO maps
onto finding the ground state of the “problem Hamiltonian,”
HP, in the Ising form

HP =
N

∑
i=1

h̃iσ
(i)
z +

N

∑
i, j=1

J̃i jσ
(i)
z ⊗σ

( j)
z , (2)

where J̃i j = Ji j/4 and h̃i = hi/2+∑ j J̃i j. Since the Hamil-

tonian commutes with all σ
(i)
z , the ground state is one of the

computational basis states, which can be read out directly.
As a benchmark for performance of this architecture,

we will study a class of Ising problems corresponding to
a one-dimensional spin chain with symmetric interactions,
J<i j> = J, where <i j> denotes nearest neighbors. We choose
the values hi to be equally spaced and less than J, hi = iδE
with NδE < J for N qubits. The solution to this problem is
trivial; minimization is achieved with the state |1010 · · ·10〉
for even N or |0101 · · ·10〉 for odd N, i.e., the bits alternate be-
tween 1 and 0 and the final bit is 0. Further, the gap between
the ground and first excited states scales as N−1, so the nec-
essary evolution time to maintain adiabaticity grows linearly.
We consider this example only as a proof-of-principle of the
method that can be modeled numerically for a few qubits and
address the critical issue of decoherence. In practice, we can
accommodate more complex Ising problems on more general
graphs, as we will detail later; in particular, a two-dimensional
lattice would be a straightforward but NP-hard generalization
[11], and would require no qualitative changes in the protocol
described here.

To implement this test-bed algorithm in a neutral-atom sys-
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tem, we consider cesium atoms with qubits encoded in two
hyperfine magnetic sublevels in the ground-electronic state of
alkali-metal atoms, e. g., the “clock states” of 6S1/2

133Cs:
|0〉 = |F = 4,MF = 0〉, |1〉 = |F = 3,MF = 0〉. The atoms
can be trapped in tightly focused optical tweezers with inter-
atomic spacings on the order of 10 µm, thereby allowing in-
dividual addressing of qubits, similar to that already achieved
in other neutral atom [14] and ion trap [15] experiments. Ar-
bitrary single qubit Hamiltonians of the form H = B ·σ can be
achieved with stimulated two-photon Raman transitions in the
standard manner, with negligible photon scattering over the
duration of the evolution for sufficient detuning and intensity
of the lasers. The last critical ingredient is the coupling matrix
of pairwise interactions, Ji j.

To generate interactions between widely separated neutral
atoms, we dress the ground state using the Rydberg blockade
mechanism as discussed by Johnson and Rolston [5]. The key
idea is to induce a light shift (LS) on the atoms that depends
on the dipole blockade. Consider a simple model of two-level
atoms, with ground-state |g〉 and excited Rydberg state |r〉,
and for interatomic separations such that the Rydberg block-
ade is perfect. Double occupation of |rr〉 is suppressed, and
the laser couples the ground |gg〉 state to the excited “bright
state”

(
|rg〉+ ei∆φ|gr〉

)
/
√

2, an entangled state, where ∆φ is
the phase difference of the lasers at the positions of the atoms.
The residual difference between the LS of blockaded and non-
interacting atomic pairs is the desired coupling constant,

J = E(2)
LS −2E(1)

LS ≈
1
2

(
∆r +

√
∆2

r +2Ω2
r −2

√
∆2

r +Ω2
r ,

)
.

(3)
where ∆r = ωL−ωgr is the laser detuning and Ωr is the Rabi
frequency of the laser coupling the ground to Rydberg state.
Here 2E(1)

LS is the noninteracting component of the two-atom
LS, which can be removed via single-atom addressed Raman
lasers. When |Ωr/∆r| � 1, J ≈ −Ω4

r/(8∆3
r ). Note, for a per-

fect blockade, the interaction strength is independent of the
motional phase, ei∆φ, as long as the detuning is large com-
pared to the Doppler width.

For application to quantum computing, we require this
interaction to be conditional on the states of the qubits.
For the Ising problem, we seek to implement the pairwise
coupling J̃i jσ

(i)
z ⊗ σ

( j)
z . For two neighboring atoms, we

can achieve this when the detuning of the Rydberg laser
is small compared with the ground-state hyperfine split-
ting (9.2 GHz for 133Cs) so that the LS is negligible for
all but a given computational state of the targeted qubits,
|x1x2〉, with x ∈ {0,1}. As above, this two-atom ground
state is dressed through off-resonant coupling to the bright
state

(
|rx2〉+ ei∆φ|x1r〉

)
/
√

2, and the effective interaction
Hamiltonian is Hint ≈ J|x̃1x̃2〉〈x̃1x̃2|, where |x̃1x̃2〉 is the
Rydberg-dressed ground state. Up to single qubit terms (that
can be compensated by individually addressed atomic LS),
Hint ⇒±(J/4)σz⊗σz. The positive/antiferromagnetic (nega-
tive/ferromagnetic) sign is achieved when x1 = x2 (x1 6= x2).
The ability to choose the signs of the elements of J̃i j provides
extra flexibility in this platform, even if the sign of the phys-
ical coupling is fixed in the dressing interaction. These con-

cepts are illustrated in Fig. 1.
One fundamental limitation on the fidelity of operation is

the scattering of photons due to excitation of the Rydberg
state at a rate γr = NrΓr, where Nr is the population in the
Rydberg state and Γr/2π is its linewidth. Scattering of trap-
laser photons can be made negligible with blue detuned “bot-
tle traps” [16]. While Γr ∝ n−3 points to larger principal quan-
tum numbers, a variety of practical considerations limits the
value of n, including the linewidth of the Rydberg excitation
laser, the sensitivity of the Rydberg state to ambient fields,
and the sheer size of the Rydberg atom. For example, for the
100P state, the quadratic Stark shift due to the weak DC elec-
tric field is approximately −98 GHz/(V/cm)2, and the radius
of the atom r≈ 0.7 µm. This sets a reasonable operating point
for our architecture. To illustrate our protocol, we consider
here the 100P3/2 state, for which Γr/2π = 530 Hz. By di-
rectly dressing the ground state with the Rydberg state using a
single optical field at λ = 318 nm, we avoid the strong photon
scattering that arises in the conventional two-photon excita-
tion scheme via an intermediate excited state and reduce the
total photon scattering rate by a factor of 10 or more.

A second fundamental limitation is the accuracy with which
we can implement the desired Ising Hamiltonian. Ideally, we
would like to introduce only nearest-neighbor couplings. In
practice there will be additional perturbations due to the long-
range dipole-dipole interaction and the strong blockade mech-
anism. For our geometry, this means that there are residual
next-nearest neighbor couplings and many-body effects (e.g.,
[17]) when more than two atoms are close to the blockade
radius. Both interaction types will add unwanted terms to
our final Hamiltonian, potentially shrinking the minimum gap
or even changing the final ground state if they are too large.
However, as long as these effects can be treated as a pertur-
bation that is sufficiently small compared to the minimum en-
ergy gap, they will not interfere with the adiabaticity of evolu-
tion, and the algorithm will still give the correct answer; this
sets a minimum acceptable energy gap and, by extension, con-
strains the size of problem that can be solved.
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Figure 1. (Color online) (a) Qubits are encoded in the hyperfine
clock states, controlled by stimulated Raman lasers at Rabi frequency
ΩRam. Interactions between qubits are mediated by off-resonant ex-
citation near a highly excited Rydberg state |100PJ′〉, with Rabi fre-
quency Ωr, tuned to dress either |0〉 or |1〉. (b) For two atoms, the
logical state |x1x2〉, x ∈ {0,1}, is dressed into |x̃1x̃2〉 by the bright
state with one atom in the Rydberg level; the doubly excited state is
blockaded by the dipole-dipole shift Vdd . The result is a two-atom
light shift with an entangling component J and bare light shift 2E(1)

LS .
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Figure 2. (Color online) (a) Doubly excited levels as a function
of distance between atoms that asymptote near the atomic pair
|100P3/2,100P3/2〉. (b) Weighting of the levels in (a) by their os-
cillator strengths to dress the two-atom ground states, shown in gray
scale (dark = high oscillator strength). Below r ≈ 7 µm, many levels
come into resonance with |100P3/2,100P3/2〉, but most have little or
no oscillator strength.

We must address further details of the atomic physics in or-
der to understand the exact nature of the coupling J. The qual-
itative discussion above holds only for a simplified model of
participating atomic levels and for a perfect dipole-blockade,
i.e., when the probability of simultaneously exciting two ad-
jacent Rydberg atoms is zero. To obtain a more accurate de-
scription we can find the dressed-state eigenvalues by diago-
nalizing the two-atom system in the presence of the laser field,
yielding a position dependent J(r) [5]. Outside the so-called
blockade radius, the result is J(r) ∝ r−k, where k = 3 for the
Förster regime or k = 6 for the Van der Waals regime. As
we are considering direct excitation to a p-state, there may
be concern that pairs of atoms would couple to noninteracting
“Förster zero states” that evade the Rydberg blockade [18].
Such zeros are avoided, however, in a more complete de-
scription of the electric dipole-dipole interaction (EDDI) since
mixing occurs not only between p- and s-states but also with
nearby d-states and higher angular momentum orbitals.

At small r the situation becomes significantly more com-
plex. Our description has been based on weak EDDI mix-
ing of nearby Rydberg levels. Under this model, inside the
blockade radius, the interaction strength J(r) decreases very
slowly with r, plateauing to the value given in Eq. (3) when
the blockade is considered perfect [5]. For short separation
distances, however, this model breaks down, as the magnitude
of the EDDI grows large relative to the bare atomic level split-
ting. The result is an admixture of many more nearby Rydberg
states with different nl quantum numbers, leading to a split-
ting of the excited states into a large “spaghetti” of energy lev-
els that have more “molecular” than “atomic” character [19].

Figure 2a shows the portion of the doubly-excited spectrum
that asymptotes at large separation near to the energy of two-
atoms in the 100P3/2 state. This spectrum is calculated using
a basis of two-atom Rydberg levels |nAlA jAm jA〉|nBlB jBm jB〉,
with 96≤ n≤ 101, 0≤ l ≤ 6, and including fine structure and
all magnetic sublevels, a total of∼45,000 bare states. Clearly,
without proper care, this dense fan of excited levels can shift
into resonance with the laser field, potentially negating the
blockade effect at the heart of our protocol. The impact of
such resonances on the dressed states will depend on the os-

cillator strengths for the transition that connects the two-atom
ground state to these doubly-exited states via the intermedi-
ate singly-excited bright states. Figure 2b shows a plot of the
spectrum, weighting each level by this oscillator strength. We
see that outside r ≈ 8 µm there is little oscillator strength for
blue detunings on the scale of interest. Inside this radius, the
situation is much less clear. While there may be regions of
small oscillator strength for shorter interatomic distances, our
calculations based on the bare atomic basis fails to converge,
and the results cannot be trusted. We will restrict our attention
here to r > 8 µm, which gives us sufficient coupling.

Given the doubly-excited spectrum, we can calculate the
dressed-ground-state coupling J(r). An important considera-
tion is the choice of detuning of the 318 nm Rydberg laser.
We seek to maximize the figure of merit κ = J/γr so that we
achieve a large gap between the ground state and excited com-
putational states of the problem Hamiltonian, while minimiz-
ing photon scattering over the duration of the evolution. In the
simplified model that leads to Eq. (3), |J| continues to grow
as |∆r| decreases, while γr saturates at half of the spontaneous
emission rate. This suggests that the best operating point is
not one with weak dressing, but with a strong admixture of
Rydberg character in the dressed-electronic-ground states that
arises for small detuning. For such strong dressing, the mini-
mum possible detuning is set by the requirement that the gap
between the dressed-ground-electronic states and the dressed-
excited-Rydberg states, ∆E =

√
2Ω2

r +∆2
r , is sufficient to en-

sure adiabatic evolution.
Including the full doubly-excited spectrum shown in Fig. 2,

the choice of detuning is found empirically. For a Rydberg
laser that achieves a Rabi frequency Ωr = 10 MHz, we find
that a good choice of detuning is ∆r = 8 MHz. Figure 3
shows a calculation of J(r) for these parameters, and its com-
parison to the simplified few-level atomic model. For tightly
trapped separated atoms, J(r = 8 µm)/2π = −470 kHz. At
such a laser power and detuning, there is substantial dress-
ing, with as much as ∼20% of Rydberg character in the
dressed ground states. The maximum photon scattering rate
is γr/2π ≈ 100 Hz, yielding an excellent figure of merit for
AQC. For these parameters, next-nearest-neighbor and three-
body interactions for these parameters are smaller than the
minimum gap for up to five atoms. Increasing ∆r and r in-
creases the maximum problem size that is solvable by this
system at the expense of κ. This requires more runs of the
experiment, but as long as the fidelity is sufficient, the proba-
bility to find the ground state can be amplified.

With these parameters we model the performance of proof-
of-principle experiments to implement a simple example of
QA. The basic protocol is as follows: We optically pump the
atoms into a clock state and initialize the qubits in an eigen-
state of σx through the application of a Raman-resonant π/2-
pulse. We then phase shift the Raman beam by π/2, leav-
ing the atoms in the ground state of the beginning Hamilto-
nian, HB =−Bx ∑i σ

(i)
x , where 2Bx = ΩRam is the Raman-Rabi

frequency. This initializes the quantum register in an equal
superposition of all computational basis states. The transi-
tion from initial to final Ising Hamiltonian is achieved by de-
creasing the Raman laser power while increasing the individ-
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Figure 3. (Color online) Ground-state interaction strength J(r) as a
function of distance between the two cesium atoms in F = 4 clock
states, for Ωr = 10 MHz and ∆r = 8 MHz. Calculated using all l ≤ 6
atomic orbitals (s, p,d, f ,g,h, i; purple solid line) and more approxi-
mately using only the nearest l≤ 2 orbitals (s, p,d; blue dashed line).
As seen in the more exact calculation, below r = 8 µm there are res-
onances whose exact positions cannot be predicted without taking
higher-l states into account.

ual atoms’ Raman detunings that create the local Hamilto-
nians h̃iσ

(i)
z . Simultaneously, we increase the Rydberg laser

power that creates the Ising Hamiltonians Ji jσ
(i)
z ⊗ σ

( j)
z /4,

with Ji j = J ∀i= j±1, achieved when all atoms are arranged
in an evenly spaced lattice, and negligible next-nearest inter-
actions, as discussed above. Note, since in our problem the
coupling parameter J<i j> is positive while the physical J is
negative, we achieve the desired antiferromagnetic Ising cou-
pling by using Rydberg laser fields that individually address
the atoms, alternately dressing nearest neighbors in |0〉 and
|1〉. At the final time, the answer to the algorithm can be read
out using state-dependent resonance fluorescence. We con-
sider here linear ramps. More optimal time-dependent evolu-
tion can improve adiabatic following, but will depend on the
specific problem.

We take as our parameters Bx = J<i j> = 470 kHz, and
hi = (i/N)118.5 kHz for N qubits, achievable with the atom-
laser interactions discussed above. The ramp time is taken to
be 35 µs, sufficiently long to maintain adiabatic evolution, but
sufficiently short compared to the photon scattering time. We
treat spontaneous emission from the Rydberg level as effec-
tively randomizing the magnetic spin state as the population
cascades back to the electronic ground state. For practical rea-
sons, the detection scheme does not distinguish between dif-
ferent magnetic sublevels in the same hyperfine subspace. All
magnetic sublevels in F = 3 are treated as logical-1 and those
in F = 4 as logical-0. Our simulation for two qubits, with
the correct solution to ground state, |10〉, gives a fidelity of
0.997. For larger numbers of qubits, the fidelity scales favor-
ably. For 3 and 4 qubits, scaling up the evolution time linearly
with qubit number, we find fidelities of 0.989 and 0.990.

The performance of the neutral-atom platform for AQC de-
pends on a combination of practical and fundamental ques-
tions. The minimum gap between the ground state and first ex-
cited state determines the time scale for implementing the al-
gorithm and thus the probability of spontaneous emission, the
fundamental source of decoherence. For a given problem size,

the gap is constrained by J arising from the Rydberg dressing,
whose optimal value for a given laser power depends on the
details of the atomic level structure. We found here found that
for reasonable power and detuning, we could achieve J = 470
kHz and a fidelity of ∼0.99 in a proof-of-principle solution to
an Ising model with ∼4 qubits. Modest increases in this cou-
pling would allow us to attain high-fidelty control with larger
numbers of qubits. However, unlike fault-tolerant universal
quantum computation in the quantum circuit model, for the
purpose of solving optimization problems by QA, such high
fidelity is not necessary. One requires instead the the fidelity
of finding the system in the ground state be sufficiently high
that one can amplify the success probability with k indepen-
dent trails. For our current parameters, this should allow us
to explore the regime of 10-20 of qubits, where interesting
physics beyond classical simulation is accessible.

Finally, while this initial proof-of-principle analysis fo-
cused on nearest-neighbor Ising spin lattices, in principle this
atomic architecture should allow us to explore more arbitrary
connected graphs associated with a general QUBO problem.
For example, a complete bipartite graph is isomorphic to a
square crosshatch of intersecting lines, where each line rep-
resents a vertex of the graph and their intersections are the
edges [12]. This could be achieved in our system by encod-
ing logical qubits as Rydberg-coupled one dimensional spin
chains [20]. The proximity of these spin chains to one another
in a designed trapping geometry would determine the edges
of the graph. Such an architecture would give substantial flex-
ibility to explore a wide range of computationally complex
Ising problems and open the door to deeper studies of QA and
general AQC, as we will study in future work.
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