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We numerically simulate strongly correlated ultracold bosons coupled to a high-finesse cavity field,
pumped by a laser beam in the transverse direction. Assuming a weak classical optical lattice added
in the cavity direction, we model this system by a generalized Bose-Hubbard model, which is solved
by means of Bosonic Dynamical Mean Field Theory. The complete phase diagram is established,
which contains two novel self-organized quantum phases, lattice supersolid and checkerboard solid,
in addition to conventional phases such as superfluid and Mott insulator. At finite but low tem-
perature, thermal fluctuations are found to enhance the buildup of the self-organized phases. We
demonstrate that cavity-mediated long-range interactions can give rise to stable lattice supersolid
and checkerboard solid phases even in the regime of strong s-wave scattering. In the presence of a
harmonic trap, we discuss coexistence of these self-organized phases, as relevant to experiments.
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Experimental realizations of atomic many-body sys-
tems coupled to a high-finesse cavity have recently at-
tracted a large amount of attention [1]. In particular,
the self-organized phase of atoms induced by coherent
scattering between pump laser and cavity mode has been
predicted theoretically [2], and confirmed experimentally
for laser-cooled atoms in a transversally pumped cav-
ity [3]. However, only recently it has become possible
to combine a high-finesse cavity with an ultracold quan-
tum gas in the strong-coupling regime and to experimen-
tally investigate properties of a Bose-Einstein conden-
sate (BEC) in an optical cavity [4–7]. A phase transition
from a normal to self-organized phase in an open system
has been realized [8], and a lifetime up to 10ms of the
self-organized phase has been achieved which indicates a
steady state. Up to now, these experiments have, how-
ever, focused only on weakly interacting condensates. On
the theory side, there is a lack of quantitative predictions
for strongly-correlated bosons coupled to an optical cav-
ity, even though an extended Bose-Hubbard model has
been derived [9, 10] which describes the ultracold gas
trapped in a periodic optical potential generated by the
high-finesse cavity. Recently, theoretical studies of the
BEC-cavity system have predicted that the ground state
can be Mott-insulating with finite photon-excitations of
the cavity mode [11, 12]. However, the robustness of this
self-organized phase against strong contact interactions,
finite temperature and the inhomogeneity induced by an
external trap remains an important open issue.

To bridge this gap, here we numerically investigate
the buildup of self-organized phases in ultracold bosonic
gases coupled to a single-mode cavity field, pumped by
a laser beam in the transverse direction. This setup is
similar to a two-dimensional (2D) classical optical lat-
tice but with a quantized field in the cavity direction.
Since the cavity field mediates long-range interactions be-

tween atoms [13–15], we investigate the system by means
of real-space bosonic dynamical mean field theory (RB-
DMFT) which captures both strong correlations and spa-
tial inhomogeneity as well as arbitrary long-range order
in a unified framework [16].

Motivated by the recent experiment [8], we consider
a system of ultracold 87Rb atoms with natural s-wave
scattering length ãs = 5.77 nm and atomic transition
wavelength λ = 780.2 nm, which is driven by a linearly
polarized standing-wave laser with a red-detuned wave
length λp = 784.5 nm in the direction perpendicular to
the cavity axis. The setup of our simulation consists of
the optical cavity in the x-direction, driven by a pump
laser in the z-direction, and a strong confinement freezing
the motional degree of freedom of the atoms in the third
direction [17]. We choose the cavity decay rate as κ =
300ωR which is close to the experimental value of κ =
2π×1.3 MHz [8], where ωR is the frequency corresponding
to the recoil energy, ER = ~ωR = h2/(2mλ2

p)(≈ 2π ×
3.8 kHz). We choose the light shift as U0 = g2

0/∆a =
−0.1ωR, which leads to an atom-cavity coupling strength
g0 two orders of magnitude larger than the cavity decay
rate κ and thus implies that the system is in the strong-
coupling regime of cavity QED [7], where ∆a denotes the
atom-pump detuning.

This system can be described by an extended Bose-
Hubbard model [9, 10], where, for generality, a weak clas-
sical optical lattice is added in the cavity direction. We
further assume the cavity mode to be in a coherent state
to simplify the atom-cavity coupling, which is in good
agreement with experimental results [8]. Within this ap-
proximation, the cavity mode is described by a complex
amplitude α, and the parameters of the extended Bose-
Hubbard model only depend on the average photon num-
bers. We thus finally obtain the lowest-band effective



2

Hamiltonian employed in the following calculations:

Ĥ = −
∑

〈i,j〉

J̃x(z)b̂
†
i b̂j +

1

2
U

∑

i

b̂†
i b̂

†
i b̂ib̂i

+2Re[α]ηeffJ ′
0

∑

i

(−1)ib̂†
i b̂i

+
∑

i

(Vi − µ̃)b̂†
i b̂i (1)

where b̂†
i (b̂i) denotes the bosonic creation (annihilation)

operator for a Wannier state at site i. Here J̃x (J̃z) is
the effective nearest-neighbor hopping amplitude in the
x- (z-) direction, with the hopping in x-direction de-
termined by the cavity mode, µ̃ is the effective chem-
ical potential, Vi = Vtrap i2 with the strength Vtrap of
the external harmonic trap, and U = 4πas~

2/m is the
Hubbard interaction strength. The cavity mode ampli-
tude α = ηeffJ ′

0

∑

i(−1)i〈b̂†
i b̂i〉/(∆′

c + iκ) [18] with ∆′
c =

∆c−U0(Jc
0

∑

i〈b̂
†
i b̂i〉+Jc

1

∑

〈i,j〉〈b̂
†
i b̂j〉), is determined self-

consistently by the density distribution of the atoms. Jc
0 ,

J ′
0 and Jc

1 denote the onsite single-particle matrix ele-
ments of the potential generated by the cavity mode, by
scattering between pump laser and cavity mode via single
atoms, and the first-order tunneling matrix element be-
tween nearest-neighbor sites of the cavity mode standing
wave, respectively. ηeff = −

√

|VpU0| denotes the effec-
tive pump strength into the cavity through atomic scat-
tering, ∆c the cavity-pump detuning, and Vp (Vp = Vz)
the depth of the standing-wave potential created by the
pump laser in the z direction. The hopping amplitudes
in x- and z-direction for nearest neighbors are given
by J̃x,z/ER = (4/

√
π)(Vx,z/ER)(3/4) exp(−2

√

Vx,z/ER)
and the Hubbard interaction parameter by U/ER =
4
√

2π(as/λp)(VxVzVy/E3
R)(1/4) [19], where Vx (Vy, Vz) is

the optical lattice depth in the x- (y-,z-) direction and Vx

is self-consistently determined by the cavity mode. For
the onsite coupling matrix elements we use a Gaussian
approximation of the Wannier states. To ensure that the
tight-binding approximation is valid, we assume an ex-
ternal optical lattice in the cavity direction with a depth
of Vext = 5ER.

The main challenge now is to determine the steady
state of the BEC-cavity system described by the Hamil-
tonian (1) in the Wannier basis. Here we apply real-
space bosonic dynamical mean-field theory (RBDMFT)
[16] which provides a non-perturbative description of the
many-body system both in three and two spatial dimen-
sions (considered here) [20]. RBDMFT, which is capable
of including the inhomogeneity of a trapped system as
well as strong correlations between the atoms, assumes
the self energy to be local but site-dependent. In our
calculations, we choose the recoil energy ER (ωR) as the
unit of energy, and set ~ = 1.

We first investigate the robustness of the super-
solid phase against interactions for experimentally rel-
evant parameters. The supersolid is characterized by

coexistence of the staggered order parameter Φ =
〈
∑

i(−1)ib†
ibi〉/〈

∑

i b†
i bi〉 and superfluid order φ = 〈b〉.

There are two possible signs of Φ, i.e. the majority of
the atoms occupy even sites for Φ > 0 or odd sites for
Φ < 0 [7]. Intuitively, if the pump laser is strong enough
to stabilize a larger atom density at the even sites, and
at the same time we choose a negative shifted cavity de-
tuning ∆′

c < 0, this implies that the coherent scattering
between the pump laser and the cavity mode generates a
potential with minima at the even sites, as indicated by
the staggered term of equation (1). As a result, the corre-
sponding potential will attract more atoms toward even
sites and the system self-organizes into a steady state. In
the following, we will confirm this heuristic argument via
numerical simulations based on RBDMFT.
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FIG. 1. (Color online) Zero-temperature phase diagram at
filling n = 1.98 in terms of cavity-pump detuning ∆c and
rescaled pump-laser power NtotVp for two different scatter-
ing lengths as = ãs (red (lower) line), 1.25ãs (blue (upper)
line) (ãs = 5.77 nm). There are two phases in the diagram:
superfluid (SF) and supersolid (SS). Different markers cor-
respond to different sizes of the system in our calculations
(Nlat = 12×12 (+), Nlat = 16×16 (⊡), Nlat = 20×20 (⊙), and
Nlat = 24×24 (×)). The cavity decay rate is set to κ = 300ER

and the light shift is U0 = −0.1ER. Inset: Rescaled critical
strength NtotV

c
p of the standing-wave pump laser vs. temper-

ature at fixed cavity detuning ∆c = −1000ER obtained from
calculations on a 16 × 16 lattice.

Fig. 1 shows a zero-temperature phase diagram at fill-
ing n = 1.98 in terms of cavity-pump detuning ∆c and
rescaled pump-laser power NtotVp for two different scat-
tering lengths as = ãs, 1.25ãs (ãs = 5.77 nm). One
reason for using the rescaled pump-laser power NtotVp in
the phase diagram is that the system has a physical fi-
nite size effect, meaning that in general, at a given filling,
the phase boundary in terms of ∆c and Vp depends on
the system size. The physical origin of this effect is that
the pump laser globally couples to all atoms in the cavity,
thus the strength of the coherently scattered light field in
the cavity direction is proportional to the atom number,
which in turn shifts the transition boundary. This moti-
vates us to rescale Vp by the total atom number. For a
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sufficiently large total particle number (according to our
calculations Ntot & 500), we indeed observe a nearly uni-
versal phase boundary regardless of the system size. For
a weak pump laser, the system is superfluid with homo-
geneous density distribution and Φ = 0. In this case, the
mean photon number in the cavity is zero. On the other
hand, if the pump laser is strong enough, more photons
are scattered into the cavity mode and the atoms orga-
nize themselves into a checkerboard pattern with |Φ| > 0.
Our simulations thus clearly confirm the existence of the
supersolid phase for single-component Bose gases in the
cavity in the presence of strong onsite interactions. In
Fig. 1 we observe that the trend of the phase boundary
from superfluid to supersolid as a function of Vp at fixed
scattering length as is consistent with experiment [8].
The phase boundary is considerably shifted upwards for
larger scattering length, which indicates that more pump
laser power is needed to drive the system into the self-
organized phase. We also observe that onsite interactions
have a more pronounced effect on the buildup of the su-
persolid phase for a stronger pump laser field. Generally,
there exists also an unstable state for positive shifted cav-
ity detuning ∆′

c > 0 [8, 21], which is beyond the scope of
this work.

We also investigate the effect of finite temperature on
the critical pump strength, as shown in Fig. 1(a). We
observe a minimum of V c

p at low but finite tempera-
ture, since thermal fluctuations excite the atoms from
the ground state and thus reduce the energy gap between
the homogeneous and the self-organized state. As a re-
sult, less power of the pump laser is needed to stabilize
the supersolid. On the other hand, at high temperature,
thermal fluctuations tend to smear out the self-organized
density pattern, and as a result, more power is needed
to stabilize it. Interestingly, the maximum of checker-
board order occurs when the superfluid order vanishes.
A similar effect in a different model has been observed in
Ref. [22]. Note that the long-range order φ 6= 0 at T > 0
in two dimensions is a mean-field artefact in the thermo-
dynamical limit, while in reality, the system exhibits a
Kosterlitz-Thouless transition [23].

From the previous discussion, we conclude that onsite
interactions strongly shift the phase boundary between
superfluid and supersolid. The sensitivity to onsite inter-
actions has been also observed experimentally in Ref. [8].
We now investigate this effect in detail at different fillings
on a square (Nlat = 16 × 16) lattice. We choose a cavity
detuning ∆c = −500ωR, a scattering length of 2.5ãs and
a lattice depth Vp = 15ER of the standing-wave pump
laser, motivated by the recent experiment [8]. Fig. 2 dis-
plays the resulting checkerboard order Φ (blue line) as a
function of filling, where four possible phases of the BEC-
cavity system are observed. Panels (a)-(d) in Fig. 2 show
the density distribution in real space (left) and in quasi-
momentum space (right): a) superfluid phase (φ 6= 0
and Φ = 0) with off-diagonal long-range order (phase
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FIG. 2. (Color online) Properties of the self-organized phases
of strongly interacting bosons on a square (Nlat = 16×16) lat-
tice. The blue curve corresponds to the filling dependence of
checkerboard order Φ at zero temperature, the green (lower)
and the red (upper) triangles denote where the system is in
the Mott insulator and checkerboard solid, respectively. (a)-
(d): density distribution of superfluid, supersolid, Mott insu-
lator and checkerboard solid, respectively in real space (left)
and in quasi-momentum space (right), corresponding to the
densities marked by the red arrows in the main figure. Other
parameters are ∆c = −500ER, κ = 300ER, U0 = −0.1ER and
Vp = 15ER. Inset: Melting of the supersolid phase with in-
creasing temperature at fixed filling Ntot/Nlat = 0.68, where
the green (circle symbols) and red (star symbols) curves in-
dicate the temperature dependence of the superfluid order φ
and checkerboard order Φ.

coherence), b) supersolid (φ 6= 0 and Φ 6= 0) with coex-
isting diagonal long-range order (periodic density mod-
ulation) and phase coherence, c) Mott insulator (φ = 0
and Φ = 0) with zero mean-photon number in the cav-
ity mode, and d) checkerboard solid (φ = 0 and Φ 6= 0)
with diagonal long-range order and finite mean-photon
number in the cavity mode. Let us now discuss the un-
derlying mechanism for the buildup of the self-organized
phases. The excitation of the cavity mode is a collective
effect due to all the atoms in the cavity and depends on
the total particle number, i.e. the more atoms are in the
cavity, the more photons will be coherently scattered into
the cavity mode, and the easier the checkerboard pattern
of the density distribution can be formed. In the absence
of induced long-range interactions, there are two possi-
ble phases for strongly interacting bosonic gases in an
optical lattice: superfluid and Mott insulator. The low-
lying excitations of the superfluid phase are gapless sound
modes which can be easily excited [24], while the lowest
excitations of the Mott insulator are gapped particle-hole
pairs with an energy gap of order U [25]. These different
excitation properties, which can be detected via Bragg
spectroscopy [15, 24], strongly influence the buildup of
the self-organized phases. As can be seen from the blue
curve in Fig. 2, the order parameter Φ becomes finite
with increasing total particle number, and decreases to
zero again in the vicinity of the Mott insulator. With
further increase of the filling n > 1, the checkerboard su-



4

persolid phase appears again. Interestingly, there is also
a checkerboard solid phase emerging at n = 1.5, since for
larger particle number more photons are scattered into
the cavity mode, and the resulting standing wave in the
cavity direction suppresses tunneling of atoms and there-
fore superfluidity. Interestingly, we observe a maximum
of the order parameter Φ at finite temperature due to the
competition between superfluid and checkerboard order.
All four phases can be detected experimentally by com-
bining time-of-flight measurements and the detection of
photons leaking from the cavity [8].

We have so far studied the homogeneous case, but in
real experiments the external trap induces inhomogene-
ity and a resulting coexistence of superfluid, Mott insu-
lator, supersolid and checkerboard solid. We will now
investigate the effect of inhomogeneity on the buildup
of self-organized phases of the BEC-cavity system, and
answer the question how the different phases shown in
Fig. 2 will manifest themselves in the experiment. In
contrast to the situation with pure contact interactions,
we find that the properties of the BEC in the optical cav-
ity are strongly influenced by the trapping potential, due
to cavity-mediated long-range interactions which are self-
consistently determined by the density distribution of the
whole system. Here we consider a Nlat = 32 × 32 lattice
with harmonic trap strength Vtrap = 0.003ER. All other
parameters are chosen as in Fig. 2. In Fig. 3 we show
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FIG. 3. (Color online) Density distribution n and superfluid
order parameter φ versus position on a square (32×32) lattice
for different atom numbers Ntot = 139, 167, 184 and 220 in
panels (a), (b), (c) and (d), respectively. Other parameters
are ∆c = −500ER, κ = 300ER, U0 = −0.1ER, Vp = 15ER,
with a harmonic trap Vtrap = 0.003ER.

the resulting density (upper panels) and superfluid order
parameter distributions (lower panels) in real space for
different total particle numbers. In general, the larger
the total particle number, the more photons are scat-
tered into the cavity mode, and thus the easier the sys-
tem can form the self-organized phase. We observe that
at Ntot = 139, there is almost no checkerboard phase re-
gion, as visible in panel (a). At Ntot = 167, the supersolid
phase can be clearly observed in the center of the trap,
since with increasing Ntot the superfluid core expands at
the trap center and hence more photons are scattered into

the cavity mode. From Fig. 2, we expect that the self-
organized phase will disappear again when the number of
particles increases to a value at which a Mott gap arises
in the center of the trap, which is clearly visible in panel
(c) at Ntot = 184. After further increase of the particle
number to Ntot = 220, the checkerboard order reappears
again. Moreover, we observe that a checkerboard solid
core with average filling n = 0.5 building up, indicat-
ing that the interplay between the trap inhomogeneity
and cavity-mediated long-range interaction can give rise
to new phases. Observation of these different phases is
possible by using singe-site addressing techniques in an
optical lattice based on optical or electron microscopy
[26–28].

In conclusion, we have investigated self-organized
phases (supersolid and checkerboard solid) of both ho-
mogeneous and trapped ultracold Bose gases coupled to
a high-finesse optical cavity. We have found that these
phases are robust against strong onsite interactions at
zero temperature, where the self-organization phase tran-
sition is solely driven by quantum fluctuations. We ob-
serve that thermal fluctuations can enhance the buildup
of self-organized phases at finite but low temperature.
In the presence of an external harmonic trap, the co-
existence of superfluid, Mott-insulating, supersolid and
checkerboard solid domains is observed. We find the
buildup of these self-organized phases to be strongly in-
fluenced by an external trap, due to the density depen-
dence of scattering between pump laser and cavity mode
by atoms in the cavity. Self-organized phases can be de-
tected by combining time-of-flight measurements and the
detection of photons leaking from the cavity [8], while the
coexistence of different phases in the presence of an ex-
ternal trap could be directly observed by quantum gas
microscopy with single-site resolution [26–28].
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