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Supersymmetry-generated complex optical potentials with real spectra

Mohammad-Ali Miri,∗ Matthias Heinrich, and Demetrios N. Christodoulides
CREOL/College of Optics, University of Central Florida, Orlando, Florida, USA

We show that the formalism of supersymmetry (SUSY), when applied to parity-time (PT ) sym-
metric optical potentials, can give rise to novel refractive index landscapes with altogether non-trivial
properties. In particular, we find that the presence of gain and loss allows for arbitrarily removing
bound states from the spectrum of a structure. This is in stark contrast to the Hermitian case,
where the SUSY formalism can only address the fundamental mode of a potential. Subsequently
we investigate isospectral families of complex potentials that exhibit entirely real spectra, despite
the fact that their shapes violate PT -symmetry. Finally, the role of SUSY transformations in the
regime of spontaneously broken PT symmetry is investigated.

PACS numbers: 42.25.Bs,42.82.Et,11.30.Er

I. INTRODUCTION

Supersymmetry (SUSY) was originally conceived
within the framework of quantum field theories and high-
energy physics [1–5]. Since then, aspects of SUSY have
been systematically employed in many and diverse ar-
eas of physics and mathematics, including nonrelativistic
quantum mechanics [6–12]. In particular, SUSY tech-
niques have been instrumental in identifying analytically
solvable potentials, the investigation of shape invariance
as well as the development of powerful approximation
methods [12]. In the context of nonrelativistic quan-
tum mechanics, SUSY is established by factorizing the
Schrödinger equation in order to construct superpartner
Hamiltonians. The potentials corresponding to this pair
of Hamiltonians then share the same eigenvalue spec-
trum, with the exception of the ground state. If how-
ever this ground state is present in the spectra of both
partner potentials, as indicated by a vanishing Witten
index [6], SUSY is then said to be broken. Along simi-
lar lines, parametric families of Hamiltonians sharing the
exact same eigenvalue spectrum - including the ground
state - can be constructed from a given potential [9, 12].
Quite recently, we have shown that some of the fascinat-
ing applications of SUSY can be explored and utilized
within the field of optics [13]. In particular, it was demon-
strated that supersymmetry can establish perfect phase
matching conditions between a great number of modes,
thus enabling selective mode filtering applications. In
addition, it was shown that optical structures related via
SUSY can exhibit identical reflectivities and transmit-
tivities irrespective of the angle of incidence - even under
strong index contrast conditions.

On the other hand, in the past decade or so, non-
Hermitian systems have been a subject of intense research
[14–16]. Interest in such settings was sparked by the pio-
neering work of Bender and Boettcher, who showed that
a wide range of complex Hamiltonians can exhibit en-
tirely real spectra, provided they are invariant under a
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simultaneous reversal of parity and time - i.e. they obey
PT symmetry [14]. In general, the complex potentials
involved in PT -symmetric Hamiltonians must fulfill the
condition V ∗(X) = V (−X). In the context of quantum
mechanics, efforts were undertaken to extend the stan-
dard intertwining relations of SUSY-QM to the complex
domain of non-Hermitian Hamiltonians [17–24]. Interest-
ingly, it was found that such systems might exhibit a zero
Witten index, even if SUSY is unbroken [20]. Further-
more, Darboux transformations have been utilized for
constructing complex potentials that display real spectra
[17].

Recently it was noted that non-Hermitian, and in par-
ticular PT -symmetric, Hamiltonians can be realized in
optics [25]. To this end, optical gain and loss can be
judiciously incorporated in the refractive index distribu-
tion of a system as a means to construct complex optical
potentials [26–29]. It soon became apparent that PT -
symmetry can enable effects and behavior that would
have been otherwise impossible in conventional optical
structures. These include band merging, double reflec-
tion, breakdown of the left-right symmetry, the abrupt
transition from lasing to absorbing modes, and mode
selection in laser amplifiers, to mention a few [25–44].
Clearly of interest will be to extend the domain of such
complex optical potentials beyond the constraints of PT
symmetry.

In this work we explore the optical ramifications of su-
persymmetry in the context of complex refractive index
landscapes. We show that the SUSY formalism allows for
the construction of partner structures where the funda-
mental mode, or any other higher order guided mode, can
be removed at will. Starting from a PT -symmetric con-
figuration, we then investigate isospectral families of non-
Hermitian index landscapes that share the exact same
eigenvalue spectrum. Through this approach, one can
synthesize optical structures where the guided modes ex-
perience zero net gain and loss despite of the fact that
their shape violates PT symmetry. Finally, refractive
index profiles with spontaneously broken PT symmetry
are investigated. In this case it is shown that removing
the resulting pair of complex conjugate modes by means
of SUSY leads to a PT -symmetric waveguide without a
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spontaneous symmetry breaking.

II. SUSY IN PT -SYMMETRIC OPTICAL
POTENTIALS

Let us first consider how the notion of supersymmetry
can be applied in complex optical potentials. As previ-
ously shown [13], the SUSY formalism can be generally
used in arbitrary one-dimensional refractive index land-
scapes. In fact, this is the case even under high-contrast
conditions where the degeneracy between TE and TM
waves is broken and necessitates the use of the Helmholtz
equation [13, 45]. Here, for brevity, we limit our scope to
one-dimensional weakly guiding settings. In this regime,
the beam dynamics can be described within the paraxial
approximation. In our system, n(x) = n0 + ∆n(x) de-
scribes the refractive index distribution in the transverse
coordinate x, where the index modulation ∆n(x) is as-
sumed to be weak compared to the background index n0,
|∆n(x)| � n0. Under these conditions one finds that the
slowly varying envelope U of the electric field component
E(x, z) = U(x, z)eik0n0z satisfies the following evolution
equation:

i
∂U

∂Z
+
∂2U

∂X2
+ V (X)U = 0. (1)

Here the normalized transverse and longitudinal coor-
dinates are respectively given by X = x/x0 and Z =
z/(2k0n0x

2
0), where x0 is an arbitrary length scale, and

k0 = 2π/λ0 is the wave number corresponding to the
free space wavelength λ0. The optical potential V (x) is
directly proportional to the refractive index variation,

V = 2k20n0x
2
0∆n(x), (2)

and in general is complex, V = VR + VI , where the real
part VR(X) is the outcome of an index modulation, while
the imaginary part VI(X) indicates the presence of gain
or loss.

Looking for stationary (modal) solutions of the form
U(X,Z) = ψ(X)eiµZ , we then obtain the following
Schrödinger eigenvalue problem:

Hψ = −µψ, (3)

where the operator H = −d2/dX2 − V (X) represents
the Hamiltonian of the optical configuration and µ the
respective eigenvalue. We now assume that a given po-
tential V (1) supports at least one guided optical mode

ψ
(1)
1 (X) with a corresponding eigenvalue µ

(1)
1 . Following

the approach detailed in [12], one can then factorize the

Hamiltonian as H(1) + µ
(1)
1 = BA with

A = +
d

dX
+W, (4a)

B = − d

dX
+W. (4b)

Note that, whereas in Hermitian systems described by a
real-valued superpotential W (X) the two operators A,B
form a Hermitian-conjugate pair, this is no longer true
in the general case of a complex W (B 6= A†).

Defining a partner Hamiltonian as H(2) + µ
(1)
1 = AB,

one quickly finds that the optical potentials of the original
and the partner system can both be generated from the
superpotential and its first derivative:

V (1,2)(X) = µ
(1)
1 −W 2 ±W ′. (5)

It readily follows that the two optical potentials V (1,2)

then share a common set of eigenvalues [12]:

µ(1)
m = µ

(2)
m−1 , m > 1. (6)

The only exception is the fundamental mode of V (1),
which lacks a counterpart in V (2). Note that this SUSY
mode partnership is not limited to the discrete sets of
bound states, but rather extends to the continua of ra-
diation modes of both structures. The operators A and
B also provide a link between the wave functions of the
two potentials:

ψ(2)
m = Aψ

(1)
m+1, (7a)

ψ
(1)
m+1 = Bψ(2)

m . (7b)

In order to derive an expression for the superpotential,
we make use of the fact that A should annihilate the fun-
damental mode of the first potential; Aψ

(1)
1 = 0. There-

fore, by using Eq. (4a), W can be written as a logarithmic
derivative of the fundamental mode’s wave function:

W = − d

dX
ln
(
ψ
(1)
1

)
. (8)
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FIG. 1. (Color online). (a) Refractive index profile (real part:
light gray, imaginary part: dark gray area) of a PT -symmetric
multimode waveguide supporting a total of four bound states

(shown absolute values
∣∣∣ψ(1)

m

∣∣∣ at the vertical positions corre-

sponding to their respective eigenvalues Re
(
µ
(1)
m

)
. (b) Corre-

sponding SUSY partner and its three modes. (c) Eigenvalue

spectra of the two structures Re
(
µ
(1,2)
m

)
are shown as full

circles, whereas empty circles denote Im
(
µ
(1,2)
m

)
.
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Similarly, the partner potential V (2) can be expressed in

terms of V (1) and ψ
(1)
1 as follows:

V (2) = V (1) + 2
d2

dX2
ln
(
ψ
(1)
1

)
. (9)

We now apply this formalism when V (1) is PT -

symmetric, i.e. V (1)(−X) =
(
V (1)(X)

)∗
. At this point

we also assume that the PT symmetry of V (1) is not
broken. Under these conditions, the eigenvalue spectrum

is real-valued, i.e. Im
(
µ
(1)
m

)
= 0, and the individual

modes inherit the potential’s symmetry: ψ
(1)
m (−X) =(

ψ
(1)
m (X)

)∗
. Following Eq. (8), one then concludes

that the superpotential should be anti-PT -symmetric:
W ∗(X) = −W (−X). On the other hand, Eq. (9) clearly
shows that V (2) again respects the condition of PT sym-
metry. Since SUSY dictates that its spectrum is also
real-valued, it follows that PT symmetry is unbroken in
the partner potential.

Figure 1 illustrates the implications of supersymmetry
when for example a PT -symmetric multimode waveguide
is considered, that has the refractive index profile

∆n(1)(x) = δ

(
1 + iγ tanh

(
x

wIλ0

))
exp

(
−
(

x

wRλ0

)8
)
.

(10)

Here, the index elevation is δ = 4.2×10−3, the imaginary
(gain-loss) contrast is γ = 0.1, and wR = 2.5, wI =
0.6 are geometry parameters. This waveguide supports a
total of four guided modes at a wavelength of λ0 = 1µm.
The figure shows the real and imaginary parts of the

refractive index profile as well as the absolute value
∣∣∣ψ(1)
m

∣∣∣
of the modal distributions (Fig. 1(a)). The corresponding
superpartner waveguide and its three guided modes are
depicted in Fig. 1(b), and the eigenvalue spectra of both
structures are compared in Fig. 1(c). Note that none
of the PT -symmetric modes exhibit any nodes in their
intensity profile.

III. REMOVAL OF HIGHER ORDER MODES

In Hermitian systems, all modes except for the funda-
mental state exhibit nodes where the absolute value of
the wave function vanishes. Given that the superpoten-
tial W as constructed from Eq. (8) relies on the logarith-

mic derivative of an eigenfunctions ψ
(1)
m , in this case one

can only use the nodeless ground state ψ
(1)
1 . In contrast,

the zeros of the real and imaginary parts of modes asso-
ciated with non-Hermitian systems do not occur at the
same positions. This peculiar behavior now allows one to

use any higher order mode ψ
(1)
m0 (m0 > 1) (see Fig. 2(a))

in constructing a SUSY partner, i.e. by removing the

eigenvalue µ
(1)
m0 from the spectrum. In other words,

V (1,2)(X) = µ(1)
m0
−W 2 ±W ′, (11a)

W = − d

dX
ln
(
ψ(1)
m0

)
, (11b)

V (2) = V (1) + 2
d2

dX2
ln
(
ψ(1)
m0

)
. (11c)

The relations between eigenvalues and wave functions for
these two structures then can be written as

µ
(1)
m = µ

(2)
m ; ψ

(2)
m = Aψ

(1)
m ; ψ

(1)
m = Bψ

(2)
m , m < m0 , (12a)

µ
(1)
m = µ

(2)
m−1;ψ

(2)
m = Aψ

(1)
m+1;ψ

(1)
m+1 = Bψ

(2)
m ,m > m0. (12b)

Figure 2 illustrates the removal of the eigenvalue as-
sociated with the second mode from the spectrum of
the multimode waveguide discussed in Fig. 2(a). Again
the SUSY partner potential (Fig. 2(b)) supports three
modes, which are now matched to the eigenvalues of the
first, third and fourth mode of the original structure.
Note that the partner waveguide has been most strongly
altered in regions where the removed state had an inten-
sity minimum. There, the second derivative of the wave
function’s absolute value is maximal, resulting in a pro-
nounced feature in the SUSY partner. In the Hermitian
limit Im

(
∆n(1)

)
→ 0, this feature is transformed into a

singularity.
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FIG. 2. (Color online). (a) Refractive index profile of a PT -
symmetric multimode waveguide supporting a total of four
bound states, as in Fig. 1. (b) Corresponding SUSY partner
where the second mode has been removed from the original
waveguide. (c) Eigenvalue spectra of the two structures.

IV. REAL SPECTRA WITHOUT PT
SYMMETRY

In this section we explore the possibility of synthesiz-
ing complex potentials, based on SUSY transformations,
that support entirely real spectra despite the fact that
they violate the necessary condition for PT -symmetry.
In the framework of nonrelativistic SUSY quantum me-
chanics, it is known that one can establish whole fami-
lies of isospectral potentials that share the spectrum of
a given “parent” potential. Here we will show that this
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approach can be adapted so as to construct optical sys-
tems that happen to be isospectral to a PT -symmetric
structure.

Consider again a PT -symmetric potential supporting
at least one guided mode in a complex index profile that

satisfies the condition V (1)(−X) =
(
V (1)(X)

)∗
. Accord-

ing to Eq. (11a), the superpotential W satisfies the well-

known Riccati equation V (2)(X) = µ
(1)
m0 −W 2 −W ′. A

general solution of this equation W̃ can be written in
terms of the particular solution W found in Eq. (11b) as

[46] W̃ = W + 1/v, where v satisfies the first order equa-
tion v′ = 1+2Wv. By using W , as given in Eq. (11b), the
solution of this latter equation can be written as v(X) =(
ψ
(1)
m0(X)

)−2(
C +

∫X
−∞

(
ψ
(1)
m0(X ′)

)2
dX ′

)
, where C is

an arbitrary complex constant of integration. This re-
sults in the following parametric family of superpoten-
tials:

W̃ = W +
d

dX
ln

(
C +

∫ X

−∞

(
ψ(1)
m0

(X ′)
)2
dX ′

)
, (13)

and the corresponding isospectral family of complex op-
tical potentials

Ṽ (1) = V (1) + 2
d2

dX2
ln

(
C +

∫ X

−∞

(
ψ(1)

m0
(X ′)

)2
dX ′

)
. (14)

In order to avoid singular behavior, the parameter C
must be appropriately chosen such that the quantity

C +
∫X
−∞

(
ψ
(1)
m0(X ′)

)2
dX ′ is never zero for any −∞ <

X < +∞. Note that all the members Ṽ (1) of this fam-
ily form a valid SUSY pair with the same V (2) and are
isospectral to V (1). Equation (14) indicates that in gen-
eral the members of the isospectral family constructed
from the original PT -symmetric potential do not exhibit

a PT symmetric form, i.e. Ṽ (1)(−X) 6=
(
Ṽ (1)(X)

)∗
(see

Fig. 3(a-c)). Nevertheless, as long as PT symmetry is
not spontaneously broken in the parent potential V (1),
the spectra of all the members of this family will be en-
tirely real-valued (Fig. 3(d)). A closer look at the shape
of the respective optical eigenmodes reveals the mech-
anism behind this unexpected behavior. Even though
the gain-loss is no longer antisymmetrically distributed
across the waveguide’s profile (Fig. 3(f)), the real part
is deformed (Fig. 3(e)) such that the redistributed mode
profiles can maintain a neutral imaginary overlap. To
formally justify this intuitive explanation, consider again
the eigenvalue equation and its complex conjugate asso-

ciated with this problem: d2

dX2 ψ̃
(1)
m + Ṽ (1)ψ̃

(1)
m = µmψ̃

(1)
m ,

d2

dX2

(
ψ̃
(1)
m

)∗
+
(
Ṽ (1)

)∗(
ψ̃
(1)
m

)∗
= µ∗m

(
ψ̃
(1)
m

)∗
. After mul-

tiplying these equations by
(
ψ̃
(1)
m

)∗
and ψ̃

(1)
m respectively,

their difference yields:(
ψ̃(1)

m

)∗ d2

dX2
ψ̃(1)

m − ψ̃(1)
m

d2

dX2

(
ψ̃(1)

m

)∗
+
(
Ṽ (1) −

(
Ṽ (1)

)∗) ∣∣∣ψ̃(1)
m

∣∣∣2 = (µm − µ∗m)
∣∣∣ψ̃(1)

m

∣∣∣2. (15)
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FIG. 3. (Color online). (a) Refractive index profile of a PT -
symmetric multimode waveguide supporting a total of four
bound states. For C → ∞, the parametric family converges
toward this parent potential. (b,c) As C → 0, the potentials
and their guided modes become visibly distorted. (d) Regard-
less, all members of the family share the exact same eigenvalue
spectrum. (e,f) Profile of the real and imaginary components
of the complex potential associated with this isospectral fam-
ily after continuously varying 10−3 < C < 103.

Given that the first term represents a total differential,
and that the eigenvalue is real (µ∗m = µm), we therefore
find

d

dX

((
ψ̃(1)

m

)∗ d

dX
ψ̃(1)

m − ψ̃(1)
m

d

dX

(
ψ̃(1)

m

)∗)
+2
∣∣∣ψ̃(1)

m

∣∣∣2Ṽ (1)
I = 0.

(16)

Taking also into account that bound states decay expo-
nentially outside the guiding region and vanish at infinity,
integration over the entire X axis yields∫ +∞

−∞
Ṽ

(1)
I

∣∣∣ψ̃(1)
m

∣∣∣2dX = 0. (17)

In other words, the overlap integral between the imagi-
nary part of the refractive index profile and the modal
intensity always vanishes in such settings. More-
over, a direct integration over the imaginary part
of the potential shows that a transformation accord-
ing to Eq. (14) does not introduce any changes to
the overall gain-loss of the system. Considering
that the imaginary part of the PT -symmetric par-
ent potential V (1) itself is anti-symmetric and that

2 Im

[
d
dX ln

(
C +

∫X
−∞

(
ψ̃
(1)
m0(X ′)

)2
dX ′

)]+∞
−∞

= 0, one

also finds ∫ +∞

−∞
Ṽ

(1)
I dX = 0. (18)
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V. SUSY IN STRUCTURES WITH
SPONTANEOUSLY BROKEN PT SYMMETRY

In this section we investigate SUSY in systems with
spontaneously broken PT symmetry. When the contrast
between gain and loss exceeds a certain threshold, a given
real refractive index profile can no longer maintain the
symmetry of the bound states. For the waveguide pro-
file of Eq. (10), an imaginary contrast of γ = 0.2 places
the system well inside this broken-symmetry regime (see
Fig. 4(a)). As it is expected for this type of complex po-
tential [44], the eigenvalues of the lowest two modes are
transformed into a complex conjugate pair with identical

real values Re
(
µ
(1)
1

)
= Re

(
µ
(1)
2

)
and opposite imagi-

nary parts Im
(
µ
(1)
1

)
= − Im

(
µ
(1)
2

)
. The correspond-

ing states reside predominantly in the gain (loss) region.
Note that the remaining higher order modes retain their
PT symmetry, and therefore continue to exhibit real
spectra.
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FIG. 4. (Color online). (a) Refractive index profile of a mul-
timode waveguide supporting a total of four bound states.
Here, the imaginary contrast was increased to γ = 0.2 to in-
duce a spontaneous PT symmetry breaking in the two lowest
modes. Sequentially removing the lossy (b) and the amplified
(c) mode by means of SUSY restores PT symmetry in the
resulting structure (d).

Following the formalism outlined above, SUSY now al-
lows one to remove any of the modes with broken PT

symmetry (Fig. 4(b)). As in the case of unbroken PT
symmetry, SUSY preserves the remaining set of eigenval-
ues. In our example, we construct W from the lossy mode

(Im
(
µ
(1)
1

)
> 0) and hence the partner waveguide sup-

ports two neutral modes as well as the remaining mode
that in this case experiences amplification. Alternatively,
one could have maintained the lossy mode of the system

by removing the one subjected to gain (Im
(
µ
(1)
2

)
< 0)

instead. If both broken-symmetry modes are removed via
sequential SUSY transformations (Eqs. (8,9)), the result-
ing complex potential V (3) again exhibits an entirely real
spectrum and the PT symmetry of the original structure
V (1) is restored (Fig. 4(c)). The resulting waveguide re-
mains perfectly phase matched to the two neutral modes
of the original system (Fig. 4(d)).

VI. CONCLUSION

In this work we have shown that the interplay be-
tween supersymmetry and PT symmetry can be fruit-
fully applied to modify the guided-mode spectra of opti-
cal waveguides. In the case of PT -symmetric systems, it
preserves the mutual cancelation of gain and loss while
allowing for the selective removal of arbitrary guided
modes. The SUSY formalism gives rise to isospectral
families of complex refractive index landscapes that ex-
hibit entirely real spectra, despite the fact that their
shapes violate PT symmetry. Finally, we have shown
how SUSY can facilitate the elimination of modes ex-
hibiting complex eigenvalues in order to overcome the
spontaneous breaking of PT symmetry.

ACKNOWLEDGMENTS

We acknowledge financial support from NSF (grant
ECCS-1128520) and AFOSR (grant FA95501210148).
M.H. was supported by the German National Academy
of Sciences Leopoldina (grant LPDS 2012-01).

[1] P. Ramond, Phys. Rev. D 3, 2415 (1971).
[2] A. Neveu and J. H. Schwarz, Nucl. Phys. B 31, 86 (1971).
[3] Y. A. Gel’fand and E. P. Likhtman, JETP Lett 13, 323

(1971).
[4] D. V. Volkov and V. P. Akulov, Phys. Lett. B 46, 109

(1973).
[5] J. Wess and B. Zumino, Nucl. Phys. B 70, 39 (1974).
[6] E. Witten, Nucl. Phys. B 185, 513 (1981).
[7] F. Cooper and B. Freedman, Ann. Phys. 146, 262 (1983).
[8] C. A. Blockley and G. A. Stedman, Eur. J. Phys. 6, 218

(1985); 6, 225 (1985).
[9] A. Khare and U. Sukhatme, J. Phys. A: Math. Gen. 22,

2847 (1989).

[10] L. E. Gendenshtein and I. V. Krive, Usp. Fiz. Nauk 146,
553 (1985).

[11] A. Lahiri, P. Roy, and B. Bagchi, Int. Jour. Mod. Phys.
A 5, 1383 (1990).

[12] F. Cooper, A. Khare, and U. Sukhatme, Phys. Rep. 251,
267 (1995).

[13] M.-A. Miri, M. Heinrich, R. El-Ganainy, and D. N.
Christodoulides, [Submitted to Phys. Rev. Lett].

[14] C. M. Bender and S. Boettcher, Phys. Rev. Lett. 80, 5243
(1998); C. M. Bender, D. C. Brody, and H. F. Jones,
89, 270401 (2002); C. M. Bender, Rep. Prog. Phys. 70,
947 (2007).



6

[15] G. Lvai and M. Znojil, J. Phys. A: Math. Gen. 33,
7165 (2000); Z. Ahmed, Phys. Lett. A 282, 343 (2001);
Z. Ahmed, C. M. Bender, and M. V. Berry, J. Phys. A:
Math. Gen. 38, L627 (2005).

[16] A. Mostafazadeh, J. Math. Phys. 43, 205 (2002); 43,
2814 (2002).

[17] F. Cannata, G. Junker, and J. Trost, Phys. Lett. A. 246,
219 (1998).

[18] A. A. Andrianov, M. V. Ioffe, F. Cannata, and J.-P.
Dedonder, Int. J. Mod. Phys. A 14, 2675 (1999).

[19] B. Bagchi, F. Cannata, and C. Quesne, Phys. Lett. A.
269, 79 (2000).

[20] M. Znojil, F. Cannata, B. Bagchi, and R. Roychoudhury,
Phys. Lett. B 483, 284 (2000).

[21] P. Dorey, C. Dunning, and R. Tateo, J. Phys. A: Math.
Gen. 34, L391 (2001).

[22] F. Cannata, M. Ioffe, R. Roychoudhury, and P. Roy,
Phys. Lett. A 281, 305 (2001).

[23] G. Levai and M. Znojil, J. Phys. A: Math. Gen. 35, 8793
(2002).

[24] D. Bermudez and D. J. Fernndez C., Phys. Lett. A. 375,
2974 (2011).

[25] R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and
Z. H. Musslimani, Opt. Lett. 32, 2632 (2007); K. G.
Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H.
Musslimani, Phys. Rev. Lett. 100, 103904 (2008); Z. H.
Musslimani, K. G. Makris, R. El-Ganainy, and D. N.
Christodoulides, 100, 030402 (2008).

[26] A. Regensburger, C. Bersch, M.-A. Miri, G. On-
ishchukov, D. N. Christodoulides, and U. Peschel, 488,
167 (2012).

[27] C. E. Ruter, K. G. Makris, R. El-Ganainy, D. N.
Christodoulides, M. Segev, and D. Kip, Nature. Phys.
6, 192 (2010).

[28] A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti,
M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N.
Christodoulides, Phys. Rev. Lett. 103, 093902 (2009).

[29] L. Feng, Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B.
Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer,
Nature. Matt. 12, 108 (2013).

[30] S. Klaiman, U. Günther, and N. Moiseyev, Phys. Rev.
Lett. 101, 080402 (2008).

[31] S. Longhi, Phys. Rev. Lett. 103, 123601 (2009); Phys.
Rev. A 82, 031801 (2010).

[32] H. Schomerus, Phys. Rev. Lett. 104, 233601 (2010).
[33] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao,

and D. N. Christodoulides, Phys. Rev. Lett. 106, 213901
(2011); M. Kulishov, J. Laniel, N. Belanger, J. Azana,
and D. Plant, Opt. Express. 13, 3068 (2005).

[34] A. A. Sukhorukov, Z. Xu, and Y. S. Kivshar, Phys.
Rev. A 82, 043818 (2010); A. E. Miroshnichenko, B. A.
Malomed, and Y. S. Kivshar, 84, 012123 (2011).

[35] Y. D. Chong, L. Ge, and A. D. Stone, Phys. Rev. Lett.
106, 093902 (2011); M. Liertzer, L. Ge, A. Cerjan, A. D.
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