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Nonadiabatic unitary evolution with tailored time-depentl Hamiltonians can prepare systems of cold
atomic gases with various desired properties such as loessx@nergies. For a system of two one-dimensional
quasicondensates coupled with a time-varying tunnelinglitude, we show that the optimal protocol, for max-
imizing any figure of merit in a given time, is bang-bang,, the coupling alternates between only two values
through a sequence of sudden quenches. Minimizing the yiérgne of the quasicondensates with such a
nonadiabatic protocol, and then decoupling it at the endh@fprocess, can result ififective cooling beyond
the current state of the art. Our cooling method can be patBnapplied to arbitrary systems through an
integration of the experiment with simulated annealing potations.

PACS numbers: 37.10.De, 37.10.Jk, 03.75.Kk, 71.10.Pm

I. INTRODUCTION

optical potenti% ée&\sme
Recent advances in the physics of ultracold atoms, brought <>\ Geo®
\\D Q\)‘Z\

about by cooling techniques such as evaporative and laser H, H,
cooling, have stirred up great interest in the nonequilitori V(A®)
dynamics of many-body quantum systems [1-5]. Creating the H = H; + Hy + V(A1) tunable tunneling
ground states of important model Hamiltonians, such as the e
two-dimensi_onal fermionic Hubbard model, hO\{veve_r, rersain FIG. 1: Two coupled one-dimensional condensates. The limgne
an outstandlng Challenge..AIthOL.Jgh such Hamiltonians €n bamplitudeA(t) can be tuned by raising or lowering the potential bar-
created with cold atoms with a high degree of control over in+jq.
teractions and disorder and in relative thermal isolatibe,
effective temperatures one can reach with the current cooling
techniques are still too high. Thus, expanding the bouedari
of atomic cooling could open the door to the quantum sim- 3. Number squeezing: by minimizing the particle number
ulation of unsolved condensed-matter models. In addition t fluctuations of a system [11-13], which is important,
cooling, preparing systems with other desired charadiesis e.g., in precision measurements [14].
such as, e.g., number-squeezed ones, is of consideradate int
est due to the potential applications to quantum metrologly a
precision measurements.

Focusing on a a pair of two coupled elongated (assume
one-dimensional) quasicondensates (hereafter referssoht

Focusing on fective cooling, we show in this paper that (at
i?ast) one of the condensates in the system of Fig. 1 can be
cooled down by a factor of 5 with our proposed method under

ply as condensates despite lack of true long-range order) as reasonable experimental (_:onditions. Thisis notafundmen _
pound, however, and cooling by several orders of magnitide i

explicit exactly solvable example, we propose a scheme fo. S . . .
preparing cold atomic systems with custom-ordered figures a" prlnC|_pIe possible for highly asymmetric systems. Tolcoo
merit through optimal control of their nonequilibrium quan a generic quantum system, we propose a scheme based on the

tum dynamics. As we will show, the large degree of dynami_integration of experimental measurements of excess energy

cal control over these systems provides, among others, a ne@\i‘d Monte-Carlo simulations.

means of bringing them even closer to zero temperature. The outline of this paper is as follows. In Sec. II, we formu-
Let us begin by giving a few examples of experimental|y|ate our proposal generically, and briefly discuss our niimer
relevant quantities one can optimize in cold atom systems: cal simulated-annealing method. In Sec. IIl, we introdunee t
specific model of two coupled elongated condensates, and an-
1. Effective cooling: by minimizing quantities such as the alyze its nonequilibrium quantum dynamics. Sec. IV present
excess energy, number of quasiparticle excitations, onumerical results on the optimal cooling protocols as well
the trace distance between the density matrix of the sysas the connection with the Pontryagin’s maximum principle.
tem and its zero-temperature density matrix. We conclude the paper in Sec. V with discussing a possi-
ble universal approach to cooling based on optimal control.
2. Phase coherence: by minimizing the fluctuations of thén Appendix. A, we review the implications of the second
relative phase between two condensates (with spatialjaw of thermodynamics for our cooling scheme. Finally, the
fluctuating phases), which is important for matter-waveequations of motion for our model system are derived in Ap-
interferometry [6—10]. pendix. B.



Il. GENERAL FORMULATION standard optimization method is often used in classicéibsta
tical mechanics. In this case, however, sidér) depends

Let us formulate our proposal generically. Consider a quan?" the entire protocdli(t)}, we have very nonlocal “interac-
tum system with Hamiltoniafi, which is comprised of two tions” between the degrees of freedom, i.e., the discrdte va

coupled subsystemsd = H; + H, + V, whereH; is the  U€S of a piece-wise constapl(t)}. In such simulations, we
Hamiltonian of subsysterhandV is the coupling Hamilto- N€ed to choose a large enough number of pieces (in the piece-
nian. GenericallyV is a sum of certain local terms, with WIS€ constant protocol) so there is convergence in the @btim

some coupling constantgl}. We assume that i) we have &()-
time-dependent control over the coupling constaids}, i.e.,
within a range determined by the experimental constraives,
can tune them to any value as a function of time, ii) for all
initial {1}, we can prepare the system at inverse temperature
Bo with the current state-of-the-art cooling methods, ariyl, ii  Letus now discuss the specific system studied in this paper,
we have a fixed time to carry out a dynamical process (by i-€., @ pair of coupled one-dimensional condensates of-inte
tuning the Hamiltonian), during which the system undergoe@cting atoms with Hamiltoniall = Hy + Hz + V, where
guantum coherent unitary evolution.

Our scheme allows us to cool down at least one of the sub- Hi = Vi fdx[ﬁl'[iz(x) n 9 (OxDi()?]. 1)
systemsH; beyond the state-of-the-art temperatuygslby 2 9 0
performing unitary evolution on the thermally isolated com . oy . .
pound system. Using two coupled subsystems is essential f rolrdI =12, r([jl()g is the Igonjugatehmomentum todbos?nlc
our scheme because according to Kelvin's statement of th eld @;(x), and the coupling term has a sine-Gordon form

— _9oA _ i ,
second law of thermodynamics, the energy of a thermally isoi_[’_ 23 fd)i.co‘? [01(x) (th()t?]] [1631' Physm(:jaltlr)]/,(l).d(x) art1d f
lated system, which is initially in thermal equilibrium rcaot '(X.) respectively represent the phase an € density Tiuc-
%uatlons (with respect to a constant background density) of

1. DYNAMICSOF COUPLED CONDENSATES

decrease by any cyclic dynamical process (see Appendix. A ondensate at positionx, and,v; andg; are respectively the

However in the absence of many-body localization, energ ound velocity and the Luttinger parameter. As seen in Kig. 1
can “flow” from one part of the system to another so it may’, is an éfecti)\//e tunnelin ar% Ii?ude or Ién thisa mi’-g.
be possible to devise dynamical processes which decrease th g amp P g

energy in one part of the system, sey. At the end of the croscopic length scale), which can be tuned by changing the

. : height of the optical potential barrier [4, 10, 17] (see also
process we set the couplizgto zero and end up with a sys- o .
tem described by Hamiltoniald,, which has a lower excess Refs. [18, 19]). This S|mp_le exactly solvable, and expenme
oo . tally relevant, model provides a concrete demonstratiauof
energy than at thermal equilibrium at inverse temperaipire

. . . method.
Our goal is then to find an optimal protocpl(t)} such - - - ;
that, at the end of the process 7), the energy of subsys- A comment on the dimensions of the quantities above is

72 in order. We have set to unity, and identified the units
tem 1, or some other custom-ordered cost function, is min-

S . : . of time and inverse energy. Representing length and ener
imized. For a given protocol, the density matrix evolves a gy b g leng 9y

Sby ¢ and ¢ respectively, the fieldd(x) is dimensionless, its
o) = i[H{A®)}), p(t)], with initial conditions determined by . ' . c '
the thermal state at= 0. Thus,o(z), and, consequently, cost conjugate momenturfi(x) has dimensiorf~', and,v.anda

. . respectively have dimensiofz ande. Let us now use the
functions such a&,(r) = tr[Hup(v)] are functionals of A(O)},  parmonic approximation (i.e., expand the cosine term atoun
0 <t < 7. Notice that if we decouple the two subsystems at '

. D;(X) — @2(X) = 0 and keep the leading quadratic term). This
gg‘:ﬂ?titr?:zsenergy of subsystem 1 does not change for SUbS‘f’;fpproximation is justified (at least for the initial equiiilbm

he k . qd din thi is h ._state of two coupled condensates) in the limit of large Lut-

. T € Key queguon addressed in ,t IS paper IS how to m'”finger parameters where the cosine term is relevant. As we
imize this functional ofA(t)}. We find that i) the Pontrya- . checka posteriori, although the dferences; (x)— »(x)

gin's maximum principle provides a deep understanding Oﬁ’;l/pically increase by an optimal evolution designed to cool
the structure of such protocols, and ii) the simulated ahnea ;g of the condensates, for some range of parameters, one can

ing method used in Ref. [15] gives a simple and generic wayqe them reasonably small during the evolution so that the
for performing such optimization. In simulated annealiwg, - onic approximation remains valid at all times.

discretize time, approximate an arbitrary protocol by &ei€ - \yg can then write the Hamiltonian in momentum space as
wise constant one, and perform direct (classical) MontdeCa , q|iection of harmonic oscillators:

(MC) simulations with kinetic moves consisting of small ran

dom displacements of randomly chosen pieces of the proto- vim N2 Vig; 2
col [15]. Such MC simulations explore the space of permis- H = Z Z [4_9I (Hq%) = (CD?I)
sible protocols in an unbiased manner. At every step of the
simulations, one needs to find the variati@ (7) of the cost + Z 2A ((Dgu - q;?Z)Z +R o T,

function&;(r) due to a small random variation of the piece- 0

wise constant protocol and accept the variation with a proba

bility proportional to exp£6&1(7)/Tuc], whereTyc is a fic-  where the superscrifR (J) indicates the real (imaginary)
titious temperature, which is gradually reduced to zerdis Th part. Note thatbq andIl, respectively have dimensiaft/2

)

i o0



and¢~Y2. We have not included in Hamiltonian (2) the= 0
termHo = 2 % ¥ (N' - N(i))2 + A (0f - <I>(2))2, which is re-
sponsible for changing the particle numbérof condensate
i = 1,2 (@} is conjugate toN' and % is the background
density with L representing the system size) [20]. Evolu-
tion with Hy does not change the expectation valueNgf
but can change their fluctuations, which are neglected & thi
work. Note that to prepare number-squeezed states with op
mal control, we need to work only with a single-mode Hamil-
tonianHg [12].

For a given protoco(t), each modeg in the Hamilto-

nian (2) evolves independently. Although the modes do not

interact in Eq. (2), they all evolve with the same protot(i),

hich induces correlations between them. Therefore, we ha . )
waIen Ay I W w (\j/[node problem [Eqg. (2)]. In this case, we have to multiply the

a fundamentally many-mode problem even without (sublea

ing) mode-coupling terms, which we have neglected. The first

step, however, is to analyze the dynamics of a single ngpde
consisting of just two coupled harmonic oscillators, namel
H = Hy + Hz + Hap, whereH; = 1(p?/m +k?) = wia'a and
Hqo = %(Xl - X2)2 with

4A
A= —.
a

2g

m = TV k| (3)

2
Vg,
T

Let us assume the initial thermal state is prepareld=atlo.

We then evolve the system with a time-dependent protocol

A(t) (with the constraint 0< A(t) < Amax = 4Amax/@). For any
A, we can write the single-mode Hamiltoniantds= %PTP +

%X;K(/l)x, wherePT = (%=, %), XT = (VMixe, yTexXz)
an

(ki + 2)/my -2/ /MM,

KA = 20 ymme (ke + 4)/m;

tl

3

is to minimize an appropriate cost function, such as the ex-
cess energy of oscillator 1, over all permissible contagts

For a single oscillator, the excess energy is proportiomal t
the average number of excitations, which can be written as
(m(t)) = tr[al(hau(t) po|, where the initial density matrix
po factorizes in terms of the normal-mode operators (see Ap-
pendix. B). In terms of the dynamical variablgé) andv;(t),

the trace above then simplifies to

(M(®) = )" WOPA) + MOP(L+[(0)),

(4)

wheren;(0) = tr [55 (A0) & (o) po] = (e"f’&i“f’) - 1)_1.

Note that exactly the same formulation describes the many-

umber of dynamical variables by the number of modes. The
equations of motion still hold for each mode, with parame-
ters depending oq as in Eq. (3). Appropriate many-mode
cost functions can be constructed from cost functions fer in
dividual modes. For example, we can simply ado[taﬂ(t)) to
obtain the total number of excitatiofs/;(t)) in condensate 1,

or weight them by the mode frequency to find the total excess
energy(&4(t)) in the condensate:

My =2 > ), E@=2n Y qnlw). ©6)

O0<g<A 0<g<A

where the factor of two accounts for real and imaginary com-
ponents of Hamiltonian (2) antl is a momentum cuté. Ad-
ditionally, we may also consid€C1(t)) = Zo<q<,\<ni(t))/q,
which is relevant for enhancing the fringe contrast of nratte
wave interferometry experiments [21].

IV. COOLING THROUGH OPTIMAL CONTROL

We can then diagonalize the above symmetric matrix as

K(2) = Q1) Q1) QT (1), whereQ(1) is an orthonormal matrix
of eigenvectors anf = diag?, w3), with @; a normal-mode
frequency.

For a system evolving with(t), we can write the Heisen-
berg annihilation operator of oscillator 1 (or 2) in termgloé
initial normal-mode operators as

au) = ) [u& (o) + Vi) (1o)|,

wherey; andv; are some complex cfiecients, with initial
conditions simply determined by (see Appendix. B for de-
tails). We can find the value of these €ibgents at = 7 by in-
tegrating simple equations of motion (derived in AppenBix.
fromt = O tot = . Itis helpful to definel(t) = A(r—t), which

The problem formulated thus far is a typical problem in op-
timal control theory applied to quantum dynamics [15, 22—
28]: we have a set of dynamical variables with given initial
conditions ( andv; in our case), which evolve with given
equations of motion [Egs. (B3) and (B4)] that depend on some
admissible control parameter(s) €0A(t) < Amax). The chal-
lenge is to find an admissible optimal control such that argive
cost function of the dynamical variables [Eq. (5) in our ¢ase
is minimized at a given time.

Let us now turn to the main questions of this work: What
do the optimali(t) protocols look like? How can we find
them? How much can they cool a system? Using Pontryagin’s
maximum principle, we argue that optimal protocolsizaeg-
bang, i.e.,A(t) is either zero or equal tdax at any given time.

makes the equations of motion local in time. Finding the op-As mentioned earlier, we demonstrate that a direct simddate

timal 1 immediately yields the optimal. It is important for

annealing calculation can yield these optimal protocole W

our discussion to emphasize that these equations of mation aalso find that, depending on the parameters of the problem, it

linear in A.

The equations of motion fon andv, together with their
initial conditions, uniquely determine;(r) as a functional
of A(t). (Notice that the same equations withHfdient ini-
tial conditions can be used to fir@(r) as well.) Our goal

is possible to significantly cool down one of the condensates
Let us now briefly review Pontryagin's maximum princi-

ple. Consider a set of dynamical variablet)} that satisfy

the equations of motiow; = fj({x, a}), with x;(0) = x? for

a set of admissible controla(t)}. The goal is to maximize a



paydf functiong({x(r)}) over all sucha(t)}. The key to Pon-
tryagin’s maximum principle is the followingptimal-control
Hamiltonian:

4

protocols (here we show the protocol obtained by minimizing
N1).
To further check the consistency with the Pontryagin’s theo

rem, we also computed the derivatiyg#, the sign of which
determinesl(t) through Eq. (7), for cost functiofiVi(7)). To
constructsZ, we need to treat the real and imaginary parts of
¢;j andé; as separate dynamical variables with their own con-
jugate momenta. We can then construct a complex variable
n‘;’, whose real (imaginary) part is the conjugate momentum
to the real (imaginary) part af;, and similarly for6;. For

A% p,e)) = Y py(t) filix ), (6)
i

where p;j(t) is a “momentum” conjugate ta&;(t). The Pon-
tryagin’s theorem states that for the optimal contii(t)},
and the corresponding’, p*}, we have

0 = (X, p',a*}) = maxsZ({X, p*, a)), (7)  eachq, we then havér?) = —ijz?) and|z?) = —iK(d)x?).
@ The boundary conditions at= r depend on the cost func-
wherex andpS(,msfyx-]f _ aj;j* and p']-‘ _ _a;g* with bound-  tion [see the boundary conditions below Eq. (7)] and, for
J )

(N1(7)), can be written as!(r) = 6(7) - (2M(O) + 1) 715
andn!(r) = ¢i(r) - (2Mi(0)) + 1) wi(0) 6(z). Given a pro-
tocol A(t), we can solve fo and ¢ forward in time, con-

ary conditionsx*j‘(O) = x? and p*j‘(r) = aixjg({x*(r)}). Itis
now easy to observe that since, for all modethe equations

of motion foru andy; are linear inA(t), the optimal-control  gi,ct 74(r) and () from the boundary conditions above,
Hamiltonian [Eq. (6)] is also a linear function aft) in our  g4ye forz? andx® backward in time and finally construct
case. We then immediately deduce from Eq. (7) that, unles A = 2q<n3|6;Kq(i)|9q>, which immediately yields,.7.

ﬁ |dent|c?ll¥ vkant|shes c|>veraf|n|te |t|me interval, t:\_ﬁlco_htro The results are shown in Fig. 2a, and show excellent agree-
(t) can only take two values, namely, zero aygdy This is ment with the simulations.

a generic feature of a Hamiltonian that is linear in the tu@ab In Fig. 2b, we show how the cost functigns(f)) changes

coupling constants. . ) . : .
The Pontryagin equations are not easy to solve numericall\?’/\/hen fvr? ving ;N't_h the Or? tlr;r)v?(lt)?rotoocgl. AS Tterestmgfs a
for many modes. We thus use our direct MC method, with-Ur€ of the evolution is t a7 # 0 just before quench-

out utilizing any assumptions regarding the bang-bangraatu Ing to ’l(t.) - .O‘ Keeplng the subsystems .coupled would do
of the protocol. The simulations consist of varying a ran-2 better job in reducmg/_\(l(t_)) Ic_>ca||y (|r} time) but would
domly chosen; (of the discretized protocol) by a small ran- not lead to global_opt|m|za§|on In total time We can 3'50
dom amount, and accepting or rejecting the variation base@heCk the harmonic ag’prox'ma"arPOS‘ef'or' by computing
on the change in the cost function. As found in Ref. [15],C f(jX([_tl)l(x).—.(D_Z(x)] ). We f'nd. that as long as the. approx-
such simulations converge very well in the number of dis-mation is valid initially, andima is large enou_gh, this quan-
cretization points. For the exactly solvable model studied!®y "émains smaller than one and the harmonic approximatio
here, the cost function for an arbitrary protocol can be de- olds throughout the evolution (if the system is not too long

. . 2
termined very #iciently: we define new dynamical variables the spatial fluctuations oftfy(x) — ®2(x)]” are small). Also

_ - - o — . as the number of excitations in both condensates decreases
9 - V.‘”'(’lO).@Jf Vl) andé; = .(UJ ._VJ)/ \ “’J(’l‘))’. Wh'ch monotonically, the Luttinger description remains valididine
satisfy|g) = —iK(1)|0) and|0) = —i|¢) in matrix notation (this

: ! ’ \ results do not depend on the cfito
change of variables allows us to diagonalize& 2 matrices | erestingly, the optimal protocol designed for reducing
instead of 4x 4 ones). By solving the above equations in e energy of condensates 1 turns out to also cool down con-
terms of the eigenvalues and eigenvectors of the22matrix  gensate 2. This is not a violation of the second law of thermo-
K(4m) = K(An-m:1), we can then write simple recursion rela- qynamics as our process is not cyclic: we start from two cou-
tion for |¢) and|@), which yield their values at time aftern pled condensates witH = Hi + H, + V, and end up with two

iterations. decoupled ones withl = Hy + H,. The process only reduces

OneT comment is in order before proceeding. In additionq expectation valugH; + Hy), while (H; + H, + V, which
to optimizing overA(t), we have the freedom to choose the ¢, regponds to the initial Hamiltonian, actually increase
initial 1o anywhere between zero angax There is a rig-

orous lower bound onrny) [Eq. (4)]: (1)) > Nmin =
min((n(0)), (nx(0))). We can show that,, is a decreasing
function of 2p. This suggests that it may be advantageous to
setdp = Amax- Although the actual cost functions we are able
to reach by our minimization procedure are typically much The dfective cooling described here is an out-of-
larger than this lower bound, by trying several valueggin equilibrium reduction of the excess energy, and does not im-
our numerics, we have found that the best cooling is in facply thermal equilibrium. If the low-energy system equitibes
achieved forlyp = Amax- In Fig. 2a, we show a typical pro- afterwards, however, it will have a lower temperature. To di
tocol obtained by MC simulations. We converge to a bang+ectly bring the system close to thermal equilibrium, one ca
bang protocol by an unbiased simulation, which samples alihstead minimize the trace distance between the density ma-
the intermediate values of and,a priori, does not assume trix and thermal density matrices at varying target tempera
anything about the shape of the protocol. Surprisingly,imin tures, and find a balance between a small trace distance and
mizing N1, &1, orC1 leads to very similar, albeit nonidentical, a low target temperature. We do not pursue this approach

V. DISCUSSION AND CONCLUSIONS
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Lja=32,for = 1.5, AmuxT =5 tions [30], and more recently to some aspects of cold atom

1k ' i ' experiments [31]. In the absence of many-body localization
=6 - A(t)//lmax ] H i
| 81 I_ i the energy can generically flow in quantum systems and we
0  s2=11 e SgO [0 (1)) | expect our scheme for cooling through optimal control, Wwhic
vitja =20 we have explicitly demonstrated for a solvable model, tokwor
i wrla=15 T for arbitrary clean systems.
-1 ; : : ] In summary, we demonstrated that nonadiabatic optimal
""""""""" control of quantum evolution can be used to push the bound-
3t ] aries of atomic cooling. Contrary to the conventional asso-
2l B y ciation of nonadiabaticfBects with heating, we showed that
— M0 . ; R
. breaking away from the adiabatic limit, in a controlled way,
) L1 J—— 1 [dx([@1(x) - 20 T can in fact help cool down quantum systems by directing the
5 e = ARG : flow of energy. We applied this idea to a system of two cou-
‘ tr ‘ pled elongated condensates. Through simple and direct MC

simulations, we found optimal protocols which agree with
FIG. 2: a) Typical protocols obtained with unbiased simetaan-  theoretical predictions based on Pontryagin’s maximum-pri
nealing, and the derivative of the optimal control Hamileanwith ~ ciple, and are fective in reducing the excess energy. Such
respect to contral, whose sign determines the protocol. The simu-MC simulations can be potentially performed by the system
lations converge to bang-bang protocols in excellent agee¢ with  jtself giving access to a universal cooling scheme.
sgn p,27]. b) Reduction of(N;(t)) due to evolution with the two
optimal protocols above. Cooling condensate 1, may alsbdmen
the other condensate for free. For large Luttinger parametiee ar-
gument of the cosine term remains much smaller than oneglthen
evolution, i.e., the harmonic approximation remains valid

Appendix A: Unitary evolution and the second law

In this appendix we review a modern quantum derivation
of the Kelvin's statement of the second law of thermodynam-

here because, under realistic circumstances, each decbupl€S [32]. Explicitly, we show that the expectation value of
energy of a thermally isolated quantum system, which is

condensate is expected to eventually decohere, and reach Eﬁ}‘? ) o - )
effective temperature determined by its excess energy [29]. |n|t|_aIIy n thermal eqU|I|t_)r|um, cannot _decrea}se i its i

The performance of our optimal protocols depends on sevonian changes ina cyclic (but other_vv_lse arbltrary) manner
eral (dimensionless) parameters, including the two Lgé&mn Denoting the e|g_envalues of the |n|_t|al Ham|I§o.n_|an by .
parametersior, vit/a, andL/a. HoweverAnaxr and the ratio and _the elemenfg €|n the-e.r!ergy basis of the mma] density
V»/V1 seem to have the most pronouncéiet on the perfor- Matrix by pi o €709, the initial average energy is given by
mance (measured by the ratio of the achieved energy to equff’-(o) - .Zi &pi- If the_ system underg_oes unitary evolution with
librium energy apy). Typically, the energy can be reduced by an arbitrary evolution op_eratdui (\.N'th matrix eIementsU_ij
a factor of 3 to 5 wherw,/v; is of order unity. For a highly n thq same energy basis), the final energy forT a cyclic pro-
asymmetric system witl/v; = 100, we achieved an energy C€SS iS given b(r) = 3 Wijp;j, whereW; = Uj;Uji. The
reduction by a factor of 40 with a system sizeL.gh = 64 and ~ Matrix W is doubly stochastic (i.e., X W = X; W = 1).
other dimensionless parameters of order unity. Now according to von Neumann-Birkfidheorem (see, e.g., -

Let us now comment on a possible extension of our schemBef- [33]), any such matrix can be written as a convex combi-
to arbitrary systems. To perform our MC simulations, we need@tion of permutation matrices, i.aN = 3, ckPx, whereP
to be able to Biciently compute desired cost functions for any S @ Permutation matrix aﬂx@k ¢ = 1 for positive scalacy.
allowed protocol (which is the case for our system in the har-' herefores(z) = ¥ ckeiPyjpj. In the initial thermal matrix
monic approximation). Cooling down more complicated sys-é > € impliesp; < pj, so for any permutation of the weights
tems such as the two-dimensional fermionic Hubbard modeti, Xij &Pjjej > Xi€pi. SinceX cc = 1, we immediately
(or even our system in regimes where the full sine-Gordorpbtain&(r) > &(0).
term is needed) is of considerable interest for quantum sim-
ulations. The generality of our MC method, however, raises
an intriguing possibility for auniversal approach: if one can Appendix B: Equations of motion
automate the processes of system initialization (init@dle
ing), unitary evolution (with a tailored protocol), and rmea  Here we present some details regarding the initial condi-
surement of the figure of merit (e.g., energy), thengyseem  tions and the equations of motion of our system. In terms of
itself can be used to perform such MC simulations. The costv1 2(1o), the initial density matrix of a system of two coupled
function can be measured (instead of computed), and then fegkcillators is given by
into the MC algorithm. This would provide a powerful means 1 B S
of preparing desired states in arbitrary systems, and mey op 00 = — e Po1(10)3 (10)a(10) goi(10)3(0)az(do)
the door to the quantum simulation of unsolved condensed- <
matter models. Such integration of experiment and simulawhere a;j(1o) is the annihilation operator for normal-mode
tion has in fact been applied to the control of chemical reac§ = 1,2, which can be written in terms of the annihilation



operatorsy; of oscillatorsi = 1,2 as equations of motion fromh= 0 tot = 7:
_ 1 :
8 = 5;% (Fikac+ G ), (B1) TR [Z(u N = v +(u,»+v,-)<zj}, (B3)
| WjWk
Wi Wk Wi Wk
Fro= D4 [% gu= J9- [% @ . JKir-9
ik o VG Gik= o 5 (B2) Vo= 5 Z(u \/_k — (uj + V)|, (B4)
The initial conditions (att = 0 ) for the codicients o
u andv; are obtained by inverting Eq. (B1), i.ea; = where all normal-mode frequenciesre calculated at = Ao.

1 ) 2 — G a). Note that these cdigcients must Notice that the equations above depend on the final time
2 2k ij(ﬂj % = G ak) and should not be used for computingndy; att # 7. When

H H 2 2 2 2 _ Z
satisfy the constraint|” + |uz| — [V1|* — [v2I* = 1 to preserve qing at fixedr, it is helpful to definei(t) = A( —t), which

the commutation relations. . . . makes the equations local in time.
To computeu;(r) andvi(z), it is convenient to consider a

piece-wise constant protocol determined by a sequehde (

fori =1...n, sothat
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