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We investigate the interaction induced superfluid to Mott insulator transition in the one-
dimensional (1D) Bose-Hubbard model (BHM) for fillings n = 1, n = 2, and n = 3 by studying
the single-particle gap, the fidelity susceptibility, and the amplitude of Bloch oscillations via density
matrix renormalization group (DMRG) methods. We apply a generic scaling procedure for the gap,
which allows us to determine the critical points with very high accuracy. We also study how the
fidelity susceptibility behaves across the phase transition. Furthermore, we show that in the BHM,
and in a system of spinless fermions, the amplitude of Bloch oscillations after a tilt of the lattice
vanishes at the critical points. This indicates that Bloch oscillations can serve as a tool to detect
the transition point in ongoing experiments with ultracold gases.
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I. INTRODUCTION

Ultracold atomic and molecular gases in optical lattices
provide a unique playground for investigating quantum
many-body phenomena [1, 2]. Since the seminal exper-
iment by Greiner et al. [3], it has become common in
such experiments to study quantum phase transitions in
the presence of strong correlations. In particular, optical
lattice realizations of the BHM
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have been shown to undergo a transition from a super-
fluid to a Mott-insulator as the ratio of U/J is increased
in different dimensions [3–5]. In what follows, we set
J = 1 and ~ = 1, so that U is measured in units of J
and time t is measured in units of ~/J . We also set the
lattice spacing a = 1, thus length is measured in units of
a.

The 1D BHM, the focus of this study, is of particular
interest because of the dominant role played by quantum
fluctuations. From the theoretical side, it is challenging
to accurately determine the critical value Uc at which the
system at constant density undergoes a superfluid–Mott-
insulator transition, something that, due to the lack of
exact solutions for this model, is typically done utiliz-
ing computational approaches [2]. Here, the Berezinskii-
Kosterlitz-Thouless (BKT) universality class of the tran-
sition makes calculations in finite systems susceptible to
large finite-size effects. Insights from Luttinger liquid
theory, combined with DMRG [6–9] calculations of cor-
relation functions and extrapolations to the thermody-
namic limit, have provided some of the most accurate

values of Uc to date [10, 11] (see Ref. [2] for a review).
Due to the large numerical effort needed, alternative and
more accurate scaling approaches to calculate Uc, which
do not rely on computing correlation functions, are highly
desirable. From the experimental point of view, many of
the quantities used in theoretical studies to determine Uc

are either difficult (e.g, the gap [4, 12–14]) or not possi-
ble to measure accurately. The task is complicated even
further by inhomogeneities induced by the unavoidable
confining potentials present [15–17]. Therefore, it is also
highly desirable to find approaches to determine Uc that
could be more easily implemented in experiments.

In this work, we address the two issues mentioned
above, namely, how to accurately determine Uc within
computational approaches and in experimental studies.
First, we apply a recently proposed scaling approach for
the gap [18] to obtain the critical point in the BHM with
high accuracy and at fillings n = 1, 2, 3. Second, we in-
vestigate the behavior of the fidelity susceptibility across
these transitions. The fidelity susceptibility, a quantity
motivated from the field of quantum information, has re-
cently attracted much attention as a means of identifying
the presence of quantum phase transitions even if the na-
ture of the involved phases is not known [19–30]. Finally,
we discuss how to determine Uc by studying the center of
mass motion during Bloch oscillations, which occur after
tilting the lattice [31, 32]. This is something that can be
easily implemented in ultracold gases experiments.

All equilibrium calculations are done utilizing DMRG
and, out-of-equilibrium, the Krylov-variant of the adap-
tive time-dependent DMRG (t-DMRG) [8]. For ground
state calculations, we perform 10 sweeps and keep up to
m = 1000 density matrix eigenstates. In order to ensure
the high accuracy needed for the considerations below, we
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truncate the local Hilbert space at n + 5 bosons (where
n = 1, 2 or 3). The ground state energies obtained are
converged in most cases with an absolute accuracy of
10−7 or better. The computation of the fidelity suscepti-
bility is, however, more demanding, and we are restricted
to smaller systems. In order to reach the necessary accu-
racy in the overlap of the two wave functions involved, we
use m ≤ 4000. To study the out-of-equilibrium dynamics
under a tilt, we truncate the local Hilbert space at n+ 4
bosons and keep up to m = 2500 states in the course of
the time evolution while using a time step of ∆t = 0.01.

II. SCALING ANALYSIS OF THE GAP

The phase transition from a Mott-insulator to a su-
perfluid in the 1D BHM at commensurate fillings is
known to be of BKT type [33]. Hence, it is accompa-
nied by the exponential closing of the single-particle gap
Eg ∼ exp(−b/

√
U − Uc) (b is a parameter which is in-

dependent of U). As a consequence of its exponential
behavior, a direct study of the transition by computing
the single-particle gap for finite systems is plagued by
finite-size effects. This problem can be overcome by a
scaling analysis of the gap, for which we follow the ap-
proach in Ref. [18], briefly described below.

The method is based on the following ansatz for the
scaling of the gap in the vicinity of the phase transition,

LEg (L)×
(

1 +
1

2 lnL+ C

)
= F

(
ξ

L

)
, (2)

where F is a scaling function, C is an unknown con-
stant to be determined, and L is the system size. We
emphasize two aspects of this scaling ansatz: First, it
contains the logarithmic corrections that are typical for
Eg (L) at the BKT transition [34, 35]. Second, it resem-
bles the relation for the resistance (which also vanishes
exponentially) in the charge-unbinding transition of the
two-dimensional classical Coulomb gas, which is also of
BKT type [36]. At the critical point, and in its vicin-
ity within the superfluid region, one expects the values
of F (ξ/L) to be system-size independent because of the
divergence of the correlation length. Hence, the data for
the rescaled gap E∗g (L) = LEg (L) [1 + 1/ (2 lnL+ C)]
for different system sizes L will be independent of L in
this region. Furthermore, the curves E∗g (L) vs ξ/L for
several values of L and U should collapse onto a unique
curve representing F . Equivalently, one can reformulate
the relation in Eq. (2) by taking the logarithm of the ar-
gument of F and considering a different function f with
argument xL = lnL− ln ξ.

We determine the critical point by adjusting the pa-
rameters Uc, b, and C. In the procedure, we look for the
best collapse of the curves E∗g (L) vs xL for different val-
ues of U and L. This is done by representing the function
f with a selected high-degree polynomial (eighth degree
in our case) such that the results are independent of the
degree. Such polynomial is fit on a dense grid of values
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FIG. 1. (Color online) (a) Contour plot of the sum of squared
residuals S(b, Uc) for n = 1. The white arrow signals the
location of the minimum value of S. The white lines are
equally spaced contour lines where S is constant. (b) Best
collapse of the data for E∗

g (L) vs xL corresponding to Uc =
3.279, b = 5.2, and C → ∞. The inset shows the rescaled gap
vs. U . A similar analysis for n = 2 [n = 3] is presented in
panels (c) and (d) [(e) and (f)]. U and E∗

g are presented in

units of J , whereas b and S are shown in units of J1/2 and
J2, respectively.

of Uc, b, and C, to the calculated values of E∗g (L) and
xL. The quality of the fit is assessed by computing the
sum of squared residuals (S), which defines the function
S(Uc, b, C). Uc is then obtained from the set of param-
eters Uc, b, and C which minimizes S(Uc, b, C). The ac-
curacy of this method was tested by locating the critical
interaction strength in a model of spinless fermions with
nearest-neighbor interaction. Such a model exhibits a
BKT transition for which the critical interaction strength
is known analytically [18]. The value of the critical in-
teraction strength obtained utilizing the scaling analysis
of the gap described before deviates only 1% from the
exact value [18], and thus we are confident that a sim-
ilar or better accuracy should be attained for the BKT
transition in the BHM.

We have applied this procedure to integer filled chains
with n = 1, 2 and 3. We find that, in these three cases,
the minimum of S(Uc, b, C) is obtained for arbitrarily
large values of C. This means that logarithmic correc-
tions to the scaling of the gap, in the form (2), do not
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play a role in the determination of the critical point. This
is to be contrasted with the t-V -V ′ model in Ref. [18],
where C was found to be finite in all transitions analyzed.
In Fig. 1(a), we present a density plot corresponding to
S(Uc, b,∞) for n = 1, which exhibits a clear minimum
at Uc = 3.279 ± 0.001, b = 5.2 ± 0.1. The error bars
are estimated by repeating the minimization procedure
adding and subtracting to the gap the error of the en-
ergy (overestimated to be σEg = 10−6). Furthermore,
the sensitivity of the results to the selection of the in-
terval of values of U used in the fit is also included in
the error bars such that our results are independent of
that choice. Corresponding to the set of parameters that
minimizes S(U, b, C), in Fig. 1(b), we plot E∗g (L) vs xL.
The data is clearly seen to collapse to a single curve rep-
resenting the function f . In the inset, the curves for the
rescaled gap corresponding to different system sizes are
seen to merge around the critical value Uc.

Previous calculations have obtained Uc through widely
different techniques, some of which we mention below.
An early quantum Monte Carlo (QMC) study found
Uc = 4.7 ± 0.2 using the closing of the gap at the crit-
ical point [37, 38], while later QMC simulations yielded
a smaller value Uc = 3.33 ± 0.06 [39]. An approxi-
mated calculation using the Bethe ansatz suggested that
Uc = 3.460 [40], and strong coupling expansion calcu-
lations predicted Uc = 3.8 ± 0.1 [41]. Exact diagonal-
ization studies led to Uc = 3.64 ± 0.07 [43], while com-
bining exact diagonalization with renormalization group
insights, a value of Uc = 3.28 ± 0.02 was reported in
Ref. 42. Also, using extrapolated measurements of the
fidelity susceptibility extracted from exact diagonaliza-
tion of small clusters, Uc = 3.89 ± 0.02 was found in
Ref. [20]. In Ref. [44], one of the first DMRG approaches
to tackle this problem using extrapolations of the gap,
a value of Uc = 3.36 was determined. Later DMRG
studies, based on accurate extrapolations of the decay
of correlation functions, reported Uc = 3.6± 0.1 [45] and
Uc = 3.3±0.1 [46], and, more recently, Uc = 3.361±0.006
[47] and Uc = 3.27 ± 0.01 [11]. Computing the Lut-
tinger parameter using bipartite fluctuations, Ref. [48]
reported Uc = 3.345 ± 0.003. Finite-size scaling analy-
ses of the von Neumann entanglement entropy suggested
that Uc lays between U = 3.3 and U = 3.4 [49] and
Uc = 3.27 ± 0.03 [50], while computations of the von
Neumann entropy directly in the thermodynamic limit
(using the infinite time-evolving block decimation algo-
rithm) produced a critical value Uc = 3.3± 0.1 [51]. Our
result for Uc is therefore in good agreement with the low-
est values reported in the most recent studies that use
widely diverse quantities to characterize this transition.

We have also computed the critical values for other
commensurate fillings, and found Uc = 5.587± 0.001 for
n = 2 [Figs. 1(c), and 1(d)], and Uc = 7.876 ± 0.002 for
n = 3 [Figs. 1(e), and 1(f)]. Note that our value of Uc

for n = 2 is in excellent agreement with the large-scale
DMRG study in Ref. [11], further supporting that the
scaling of the gap utilized here is capable of providing

very accurate results at a lower computational cost. In
what follows, we use our results for Uc to benchmark
alternative approaches for locating the transition point.

III. FIDELITY SUSCEPTIBILITY

The fidelity susceptibility (FS) χ for the ground state
of the system |ψ0〉 is defined as

χ(U) =
2 [1− |〈ψ0(U)|ψ0(U + dU)〉|]

LdU2
, (3)

and is also known as the fidelity metric. For generic
second order phase transitions, χ is expected to diverge in
the thermodynamic limit (TL) [19, 21–23, 25], and it has
been found to exhibit clear signatures of such transitions
already for rather small system sizes, where a maximum
of χ was seen near the transition point [26–28, 30].

In Fig. 2, we show the fidelity susceptibility for the
BHM at fillings n = 1, 2, 3, for system with L =
40, 80, 120, and for on-site interactions up to U = 8.
For n = 1 and n = 2, χ exhibits clear maxima for values
of U greater than Uc computed from the scaling of the
gap. Consistent with the results in Ref. [20], the positions
of the maxima are seen to move towards weaker interac-
tions, and their height to increase, with increasing system
size. For n = 3, the maxima are expected to be be-
yond the values of U studied here. Hence, indications for
the existence of a phase transition are obtained already

FIG. 2. (Color online) Fidelity susceptibility for different sys-
tem sizes at integer filling n = 1 (red symbols and dashed
lines), n = 2 (green symbols and solid lines) and n = 3
(blue symbols and dot-dashed lines). The plot shows data
for L = 40 (square), L = 80 (circle) and L = 120 (triangle),
the lines are spline interpolations and serve as a guide to the
eye. The thick solid black lines (diamonds) are the result of
a finite-size extrapolation using a quadratic fit. The verti-
cal dotted lines indicate the position of the quantum critical
points obtained using the scaling analysis of the gap described
in the text. U and χ are presented in units of J and J−2, re-
spectively.
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for small systems. Interestingly, and also of relevance to
the χ’s calculated here, recent works have proposed that
a minimum of the FS may signal the quantum critical
point [29, 52]. This was argued to be possible because,
depending on the scaling dimensions of the system, the
FS can be finite at a critical point [21]. In Fig. 2, one
can indeed see that minima of χ also occurs close to the
critical point.

It is also apparent in our results in Fig. 2 that, between
the maxima and the minima, there is a point at which all
values of χ seem to be independent of L for the system
sizes treated. A similar scenario was observed in the XXZ
chain [24] and for SU(N) Hubbard chains [29]. As seen
in Fig. 2, for n = 1 and n = 2, the “crossing” of the
FS curves for different system sizes occurs at values of U
greater than Uc computed from the scaling of the gap.
We applied different extrapolation schemes for χ and did
not obtain results consistent with those from the scaling
of the gap: For example, in Fig. 2 we show the outcome
of the simplest approach in which the extrapolation to
the thermodynamic limit is attained using a second order
polynomial. Neither the position of the maximum, nor
the one of the minimum or of the crossing point are in
agreement with the values of Uc obtained from the scaling
of the gap.

As pointed out in previous studies (see, e.g., Ref. [25]
for an analysis of the 1D Fermi Hubbard model), the di-
vergence of χ can be extremely slow and very large sys-
tem sizes (as well as a more elaborate finite-size-scaling
ansatz) may be required to resolve the critical point. This
is further supported by the results in Ref. [24], in which
a field theoretical analysis of χ at the BKT transition in
the XXZ chain unveiled a very slow divergence. How-
ever, the numerical findings for the BHM here and the
XXZ chain in Ref. [24] differ in two important aspects: as
opposed to the behavior of the XXZ chain, in this work
we have found that logarithmic corrections are negligible
in the finite size scaling of the gap of the BHM (for the
system sizes analyzed). Also, the crossing point of the
FS in the XXZ chain occurs for a value of the interaction
strength that is smaller than the critical one, which is
the opposite of what we find here for the BHM. Hence,
the numerical data at hand makes it difficult to deter-
mine Uc utilizing the FS, and further studies are needed
to fully understand the behavior of this quantity in the
BHM, and in particular, its contrast to the one observed
for the XXZ chain.

IV. CENTER OF MASS MOTION

In order to determine the critical point in experiments
with ultracold bosons in optical lattices, we propose to
follow a recent proposal that uses Bloch oscillations [31].
The idea is to apply an external field

Vtilt = −Ω

L∑
j

j nj , (4)

at time t ≥ 0, to a system that is initially in its ground
state (Ω = 0 for t < 0). Such a set up can be realized
in optical lattice experiments by, e.g., tilting the lattice.
One can then study the center of mass motion (COM)

xCM(t) =
1

N

L∑
j

j 〈nj〉t, (5)

where N is the total number of particles, at times t ≥ 0.
In previous studies, in a variant of the t-J model at low
filling [31] and in an effective Ising model in a transverse
field [32], it was reported that the amplitude of the COM
exhibited signatures of the quantum phase transition at
the critical point. In the t-J like model [31], because
of the formation of pairs, the transition from a metallic
to a gapped superconducting phase was visible by both
a rapid decrease of the amplitude and by a doubling of
the frequency of the Bloch oscillations. In the Ising like
model [32], the amplitude was found to be maximal at the
transition point. From the experimental point of view,
Bloch oscillations have been, e.g., used to investigate
Dirac points on hexagonal optical lattices [53], as well
as to study low-frequency breathing modes in elongated
Fermi gases [54]. Here, we investigate what happens in
the BHM and, at the same time, analyze the simpler (in-
tegrable) case of spinless fermions with nearest-neighbor
interaction V ,

H = −J
∑
j

(
c†j+1cj + H.c.

)
+ V

∑
j

njnj+1. (6)

As mentioned before, this model is exactly solvable and,
at half filling, exhibits a BKT transition from a Luttinger
liquid (LL) to a charge density wave (CDW) insulator at
V/J = 2 [2, 18]. In what follows, we set J = 1 and ~ = 1,
so that V is given in units of J and time t in units of ~/J .

In Fig. 3(a), we display the COM of a half-filled chain
of spinless fermions with L = 20 and different values of
V on both sides of the LL to CDW transition. It is ap-
parent that the amplitude of the oscillations decreases
and the damping rate increases when increasing V and,
deep in the CDW phase, no oscillations can be resolved.
This is reminiscent of the behavior of a harmonic oscil-
lator which moves freely (V = 0), damped (0 < V . 2)
and overdamped (V & 2). In the LL phase, mass trans-
port is ballistic and, therefore, it is possible for spinless
fermions to freely flow upon the introduction of a small
tilt of the lattice, which gives rise to COM oscillations.
On the other hand, in the CDW phase the system is
gapped and transport under a small tilt is suppressed,
which precludes COM oscillations. A qualitatively simi-
lar behavior is observed in the COM of the BHM at filling
n = 1 and for 1 ≤ U ≤ 5 [Fig. 3(b)]. There, finite val-
ues of U . 3.5 lead to damped oscillations, and only the
first oscillation can be resolved on the time scale of our
simulations. For U ≥ 3.5, overdamped behavior sets in
and no oscillations can be identified.

To gain a better understanding of the evolution of the
Bloch oscillations as interactions are increased, in Fig. 4,
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FIG. 3. (Color online) COM for (a) spinless fermions (L = 20,
Ω = 1) after tilting the lattice for the indicated values of V =
0, . . . , 3. (b) the BHM (L = 14, Ω = 1) after tilting the lattice
for the indicated values of U = 1, . . . , 5. The red stars and
blue circles denote maxima and minima of the oscillations,
respectively. The center of mass is presented in units of the
lattice spacing a, while time t is measured in units of ~/J .

we display the amplitude (defined as the difference be-
tween the first maximum and the first minimum), for
spinless fermions vs V [Fig. 4(a)] and for the BHM vs
U [Fig. 4(b)]. For spinless fermions, it can be seen that
the amplitude of the oscillations at the critical point and
above (V ≥ 2) is very small and decreases with increasing
system size. The results for the BHM are qualitatively
similar. The region of U at which the amplitude of the
Bloch oscillations is seen to vanish, 3.0 < U ≤ 3.5, con-
tains the value obtained from the scaling analysis of the
gap Uc ≈ 3.279.

This behavior of the Bloch oscillations is also reflected
in the Fourier transform (FT) of the time evolution of the
COM, which we present in Fig. 4(c) for spinless fermions
and in Fig. 4(d) for the BHM. In both cases, for weak
interactions, there is a well defined peak around ω ∼ 1,
which reflects the oscillations observed in Fig. 3. As the
interaction strength is increased, the height of that peak
slowly decreases and its position (slightly) changes. This
is accompanied by an increase in the weight of the zero-
frequency mode. For both systems, as the interaction
is increased past the critical value, it is no longer possi-
ble to resolve the finite frequency peak. This is another
indication that the COM oscillations are suppressed for
U ≥ Uc Therefore, for both systems, the BKT transition
leads to comparable behavior, and the study of Bloch os-
cillations in experiments can provide a good estimate of
Uc.

We also studied the COM for n = 2 and n = 3.
Since computations become increasingly demanding
with increasing filling, only smaller lattice sizes could
be studied in those cases. In addition, the numerical
values of the amplitude become significantly smaller.
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FIG. 4. (Color online) Amplitude of the first oscillation of
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and Ω = 1. (d) Same as in (c) but for the BHM at n = 1 with
L = 14 and Ω = 1. The amplitudes of COM oscillations are
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of J/~

We therefore find that theoretical estimates for Uc

from the behavior of the Bloch oscillations become less
accurate with increasing n. In the inset in Fig. 4(b),
we show results for n = 2 and L = 14, where one can
see that the amplitude of the Bloch oscillations vanishes
for 4.5 < U ≤ 5, while the theoretical prediction is
Uc = 5.59. It would be interesting to study Bloch
oscillations in larger lattice sizes in experiments and
see if the worsening of the predictions is due to finite
size effects or due to a worsening of this approach with
increasing filling.

V. CONCLUSIONS AND OUTLOOK

We followed three approaches to study quantum criti-
cal behavior in the one-dimensional BHM at integer fill-
ings. By means of a scaling analysis of the gap, we ob-
tained accurate values of Uc for the superfluid to Mott in-
sulator transition at fillings n = 1, 2, 3. The fidelity sus-
ceptibility was shown to exhibit signatures of the phase
transitions for finite systems, but the results for this
quantity did not allow us to improve on the values of Uc

obtained from the scaling of the gap. Finally, we showed
that the study of Bloch oscillations in experiments can
help locating the critical values for the superfluid to Mott
insulator transition. The latter approach could poten-
tially be used also in experiments in higher dimensions.
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