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We show that unconventional spin order arises naturally in two-component dipolar Fermi gases
of atoms or molecules, which recently became accessible experimentally, in optical lattices. Using
an unbiased functional renormalization group analysis, we find that dipolar interactions lead to an
instability of the gas towards an ℓ = 1 spin-density-wave state. This phase is the particle-hole
analogue of spin-triplet, p-wave Cooper pairs. The order parameter for such spin density waves of
p-wave orbital symmetry is a vector in spin space and, moreover, is defined on lattice bonds rather
than on lattice sites. We determine the rich quantum phase diagram of dipolar fermions at half-
filling on the square lattice as a function of the dipolar orientation, and discuss how these exotic
spin density waves emerge amidst competition with superfluid and charge density wave phases.

PACS numbers: 67.85.-d, 75.30.Fv, 71.10.Fd

I. INTRODUCTION

Experiments on ultra-cold atomic and molecular gases
have opened new avenues to study many-body physics.
One of the central subjects of condensed matter physics
is quantum magnetism. A quintessential example is
the square-lattice Fermi-Hubbard model at half-filling,
which, even at weak coupling, exhibits a spin density
wave (SDW) ground state with the well-known checker-
board pattern of spin orientations depicted in Fig. 1(a).
Interestingly, the theory of such antiferromagnetic order
can be cast analogous to the Bardeen-Cooper-Schrieffer
(BCS) theory of s-wave superconductivity – with con-
densation of particle-hole pairs corresponding to conden-
sation of Cooper pairs in BCS theory [1]. This analogy
is quite general and extends to particle-hole condensates
with higher angular momenta, predicting the existence
of a whole array of SDW states, SDWν , where the label
ν = s, p, d, .. indicates angular momentum ℓ = 0, 1, 2, ..
respectively [1]. The familiar antiferromagnetic order
of Fig. 1(a) constitutes SDWs, whereas SDWp is the
particle-hole analogue of the spin-triplet p-wave super-
conductors and superfluid 3He [2]. Since superconduc-
tors of p, d, ... wave symmetry are commonly referred to
as unconventional superconductors, we shall call SDWs
with p, d, ... wave symmetry unconventional spin density
waves. In the charge sector, a similar analogy predicts
the existence of generalized ν-wave charge density waves
(CDWν) [1].

While several candidate systems have been discussed
for spin-singlet charge density waves (CDWν 6=s) [1, 3],
up to now the realization of spin-triplet SDWν 6=s has re-
mained elusive. The key insight of this paper is that
fermions in a 2D lattice with dominant dipole-dipole in-
teraction have the right ingredients to stabilize p- and d-
wave SDWs. Before presenting our theoretical evidence
for their existence, here we first outline the main features
of these unconventional SDWs. These exotic states dis-

play a modulation of spin vector SSS defined on the bonds
of the lattice, such as the checkerboard pattern of red
arrows depicted in Figs. 1(c) and 1(d), as opposed to
modulation of on-site spin density in conventional SDWs

shown in Figs. 1(a). Specifically, the order parameter of
SDWp, featuring particle-hole pairs with py-orbital sym-

metry, is related to Sη =
∑

α,β〈â
†
i,ασ̂

η
αβ âj,β〉 for rela-

tive coordinate ri − rj = ŷ (all distances are in units
of the lattice constant throughout this paper). Here σ̂η

with η ∈ {x, y, z} are the Pauli matrices, and â
(†)
i,α is

the fermionic annihilation (creation) operator for pseudo-
spin α ∈ {↑, ↓} at site i. The SDWs+d shown in Fig. 1(d)
contains an extended s-wave and a dxy wave compo-
nent, and its order parameter is defined similarly with
(i, j) corresponding to diagonally opposite sites, e.g.,
ri − rj = x̂ + ŷ. In contrast, the conventional SDWs

and CDWs are described by on-site order parameters
∑

α,β〈â
†
i,ασ̂

η
αβ âi,β〉 and 〈n̂i〉 =

∑

α〈n̂i,α〉 =
∑

α〈â
†
i,αâi,α〉

respectively.
The main purpose of this paper is to demonstrate that

SDWp and SDWs+d emerge between two familiar phases
of matter, CDW and the BCS superfluid, in the phase
diagram of dipolar fermions on a square lattice as the
direction of the dipoles is continuously tuned. This re-
sults from the competition among the short-ranged on-
site interaction and the anisotropic long-ranged dipolar
interactions.

II. DIPOLAR FERMIONS IN A LATTICE

In a new generation of experiments, ultra-cold gases of
dipolar fermions have become accessible in the quantum
degenerate limit. Fermionic atoms of dysprosium 161,
with a large magnetic moment of 10 Bohr magneton, have
been successfully trapped and cooled well below quantum
degeneracy [4]. The fermionic polar molecule 40K87Rb
has been cooled near quantum degeneracy [5] and loaded
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FIG. 1: Schematic spin and charge order for pseudo-spin 1/2 dipolar fermions in two dimensions. The central image illustrates
the onsite interaction U between opposite spins (red arrows) and the dipolar interaction Vr, here assumed to be spin-independent.
The characteristic scale for Vr is Vd = d2/a3, with a the lattice spacing. Vr depends also sensitively on the orientation of the
dipoles labelled by angles (θ, φ). (a) The conventional antiferromagnetic spin density wave (SDWs). (b) Checkerboard charge
density wave (CDWs), where “charge” is defined as the total density. (c) An example of p-wave spin density waves (SDWp)
with modulation of y bond variables. (d) An example of mixed (extended) s- and d-wave spin density waves (SDWs+d). Red
arrows in (c) and (d) indicate the direction of the spin vector SSS defined on the bonds (yellow ellipsoids).

into optical lattices [6]. Recently, the formation of ultra-
cold fermionic Feshbach molecules of 23Na40K has been
achieved [7]. On the theory side, many body physics of
single-species (spinless) dipolar Fermi gases have been
explored by many groups. Numerous quantum phases
are predicted: charge density wave [8–11], p-wave super-
fluid [12–16], liquid crystalline [17–19], supersolid [22],
and bond-order solid [3].
Here we consider a two-component (pseudo-spin 1/2)

dipolar Fermi gas [23–25] in an optical square lattice at
half filling. The two pseudo-spin states can be two hy-
perfine states of Dy atoms, or two rovibrational states
of KRb molecules. This provides a tunable platform for
quantum simulation of interacting fermions with long-
range interactions [20, 21], beyond the Fermi-Hubbard
model. The system is described by the Hamiltonian

Ĥ = −
∑

〈i,j〉,σ

tâ†j,σâi,σ+
U

2

∑

i,σ

n̂i,σn̂i,−σ+
∑

i6=j

Vij n̂in̂j . (1)

The lattice is aligned along the x- and y-directions, with
nearest neighbor hopping t and on-site interaction U . U
contains contributions from the bare short range inter-
action, and the on-site dipolar interaction V ⊥

ii , defined
below. We assume that all dipoles are aligned in the

same direction d = dd̂ = (d, θ, φ) by an external mag-
netic (or electric) field. In general, the off-site dipole-
dipole interaction can be decomposed into equal- and

unequal-spin components, labeled by ‖ and ⊥, respec-

tively, V
‖
ij n̂iσn̂j,σ + V ⊥

ij n̂iσn̂j,−σ, and depends on d̂ and

r = ri− rj via V
‖(⊥)
r (d̂) ≡ V

‖(⊥)
ij (d̂) = 〈ij|V

‖(⊥)
dd (d̂)|ij〉 =

V
‖(⊥)
d [1− 3(r̂ · d̂)2]/r3. We will mostly assume V ⊥

d (d̂) =

V
‖
d (d̂) ≡ Vd(d̂), as in Eq. 1, which arises naturally when

the two states are associated with the same hyperfine

manifold. The V ⊥
d (d̂) 6= V

‖
d (d̂) case will be discussed

briefly in Section III.C.

To give a heuristic argument about possible orders of
the system, we first consider a simplified version of model
(1) retaining only the nearest and next-nearest neigh-
bor dipolar interactions, denoted Vx̂(ŷ) and Vx̂+ŷ respec-

tively, see Fig. 1. First, for d̂ = ẑ, dipolar interactions are
purely repulsive. For U ≫ Vd, the Hamiltonian reduces
to the Fermi-Hubbard model, implying a ground state
with SDWs order at half-filling, Fig. 1(a). For U ≪ Vd,
the dipolar energy is reduced by placing same-spins on
diagonally opposite sites, while opposite spins share the
same site with only a small energy cost U . This implies a
checkerboard modulation of the total density ni = 〈n̂i〉,
i.e. CDWs, shown in Fig. 1(b).

As d̂ is tilted away from ẑ towards the x̂-direction,
there exists a region of tilting direction for which the
nearest neighbor interaction Vx̂ becomes attractive while
Vŷ and Vx̂+ŷ remain repulsive. For instance, for φ = 0,
this region is bounded by two critical values of θ: ϑc1 =
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FIG. 2: Phase diagram of dipolar fermions on a square lattice at half filling obtained from FRG. It is shown on the surface of a
sphere as a function of the dipole orientation angle θ and φ for fixed interactions (a) Vd = 0.5, U = 0.1; and (b) Vd = 0.5, U = 0.5
in units of t. Unconventional SDWs (SDWp and SDWs+d) are sandwiched between the CDW and BCS superfluid phase. The
FRG eigenwavefunction corresponding to a representative point (marked by “∗”) in each phase is shown in the kx − ky polar
plots with matching colors. Note that FRG predicts a mixed s + d-wave (rather than pure d-wave) SDW. As the on-site
interaction is increased from U = 0.1 in (a) to U = 0.5 in (b), the SDWs+d phase expands and squeezes out the neighboring
phases. The s-wave component of SDWs+d increases with U , while the d-wave component diminishes.

cos−1(
√

2/3) ≈ 35◦ and ϑc2 = sin−1(
√

2/3) ≈ 54◦. In
the simpler case of spinless dipolar fermions, a checker-
board bond order solid is formed in this region [3]. Then
it is plausible that for the spin 1/2 case, unconventional
SDWs of non-s wave symmetry may be stabilized by
interaction-induced correlated hopping either along the
x̂, ŷ, or the diagonal x̂ + ŷ direction. The spatial sym-
metry of these SDWs depends on the value of φ. This
scenario is illustrated in Figs. 1(c) and 1(d).
Finally, for large dipole tilting angles, e.g., θ > ϑc2

for φ = 0, the dominant dipolar interaction is attractive.
The leading instability is towards formation of Cooper
pairs. Again, the precise orbital symmetry of the BCS
phase is determined by the value of φ.

III. PHASE DIAGRAM

A. Functional Renormalization Group analysis

We now determine the phase diagram in the weak cou-
pling limit, {U, Vd} < t. In particular, we prove the ex-
istence of unconventional SDW phases for intermediate
tilting angles. We use the full interaction, as written
in Eq. (1). To deal with the intricate competing orders
mentioned in the previous section, we use the functional
renormalization group (FRG) technique, which takes an
unbiased approach (without any a priori guess) to iden-
tify the most dominant instability among all possible or-
ders [3, 26–29]. The technical and implementation details

of FRG for spin 1/2 fermions on lattice, such as for the
Fermi-Hubbard model, have been extensively discussed
in the literature (see for example Ref. 30 and refer-
ences therein) and will not be repeated here. The key
ingredients of the FRG calculation are: (1) Derive and
solve the renormalization group flows for the generalized
four-point vertex between unequal spins, U⊥

l (k1,k2,k3),
where k1,2(k3,4) are incoming (outgoing) momenta in the
vicinity of the non-interacting Fermi surface, satisfying
momentum conservation k1 + k2 = k3 + k4, and l is the
renormalization group flow parameter. The flow of equal

spin vertex, U
‖
l , is related to that of U⊥

l via the spin-

rotation symmetry of Ĥ [27]. (2) For our problem at
half filling and with a square Fermi surface, we particu-
larly pay attention to the following interaction channels
at each RG step,

UCDW
l (k1,k2) = (2− X̂)U⊥

l (k1,k2,k1 +Q),

USDW
l (k1,k2) = −X̂U⊥

l (k1,k2,k1 +Q),

UBCS
l (k1,k2) = U⊥

l (k1,−k1,k2,−k2),

where the exchange operator X̂ interchanges the incom-
ing momenta [27]. (3) Finally we identify the most dom-
inant instability of the Fermi surface from the most di-
vergent eigenvalue of the interaction matrix. The corre-
sponding eigenvector provides information about the or-
bital symmetry of the incipient order parameter. We note
that the Hamiltonian, Eq. (1), is symmetric under lattice
inversion. Furthermore, for specific values of φ, addi-
tional symmetries are realized. For example, for θ 6= 0
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and φ = 0, the system has a mirror symmetry with a
mirror plane along the x-direction. The order parame-
ters that we discuss in this paper are either even or odd
under these symmetries. However, this property alone
does not fully characterize the order parameter, two or-
ders of the same parity can be physically distinct, as we
will see below.

FIG. 3: Mean field results for the SDWp phase. (a) Preferred
direction of the spin polarization vector SSS as a function of the

ratio V
‖
d /V ⊥

d . It is along the z-direction for V ⊥
d < V

‖
d and

lies in the x-y plane for V ⊥
d > V

‖
d . (b) The energy difference

between the mean field states with S
z and S

x order. The inset
shows the magnitude of the corresponding order parameter.

The parameters are U = 0.1, V
‖
d = 1.0, θ = 47◦, φ = 0. All

energies are in units of t. (c) The mean field energy gap of the
SDWp phase, in units of the Fermi energy, as a function of
the inter-spin long-range dipolar interaction V ⊥

d for θ = 47◦

and φ = 0. For the SU(2) symmetric case plotted in (c), the
energy gaps for different vector polarizations are degenerate.

B. The phase diagram from FRG

The phase diagram summarizing our FRG analysis is
shown in Fig. 2. It displays three types of phases: CDW,
SDW, and BCS superfluid. We first focus on the case

U < Vd in the vicinity of φ = 0 as shown in Fig. 2(a).
Consistent with our heuristic argument above, FRG con-
firms a checkerboard CDW (CDWs) for small θ, and a
spin-triplet, p-wave BCS (BCSp) superfluid at large θ.
For the intermediate regime, roughly between ϑc1 and
ϑc2, the flow for the SDW channel diverges rapidly, domi-
nating over the CDW and BCS instabilities on either side.
The SDW phase shows p-wave orbital symmetry, i.e. the
eigenvector of the SDWp phase (shown in Fig. 2) is essen-
tially of the form sin ky. This admits an interpretation of
SDWp as a particle-hole analog of triplet superconduc-
tivity/superfluidity within Nayak’s classification [1] for
generalized SDWν . The SDWp phase found here corre-
sponds to the class with 〈â†α(k+Q)âβ(k)〉 = S(k) ·σαβ ,
by identifying S(k) ∝ ŝ sin ky where Q = (±π,±π). The
position space representation implies the checkerboard

pattern of hopping amplitudes, 〈â†i,αâj,β〉; rj − ri = ŷ,

depicted in the schematic of Fig. 1(c).

Additional unconventional orders with ℓ 6= 0 occur in
the vicinity of φ = 45◦, where the nearest-neighbor inter-
action along the lattice vectors x̂ and ŷ is nearly equal.
FRG predicts three more phases, CDWs+d, SDWs+d,
and BCSs+d, all of which contain a dxy-wave as well as
s-wave components. The contributions of the isotropic
s-wave, extended s-wave, and d-wave components are
inferred by fitting the FRG wavefunctions using func-
tion c0+ c1 cos kx cos ky + c2 sin kx sin ky, with {c0, c1, c2}
as fitting parameters. As a general trend, for increas-
ing θ, the magnitude of isotropic s-wave c0 reduces,
while the magnitudes of c1 and c2 are comparable and
increase. The CDWs+d phase can be viewed as the
natural continuation of the CDWs as c1 and c2 be-
come appreciable. The two representative points shown
in Fig. 2(a) for the SDWs+d and BCSs+d are fit by
0.05 − 0.16 coskx cos ky − 0.18 sinkx sinky and 0.01 +
0.23 coskx cos ky − 0.19 sinkx sin ky, respectively. Since
c0 is small, the real space modulation pattern for such
SDWs+d takes the form of Fig 1(d): atoms delocalize
across a plaquette, in the diagonal direction perpendicu-
lar to the dipole tilting direction. We note that CDWs

and CDWs+d describe two distinct thermal phases. This
is apparent from the low-temperature behavior: The
CDWs phase is fully gapped, whereas the order parame-
ter of the CDWs+d phase has nodal points. This results
in a qualitatively different thermal behavior, and there-
fore these are two distinct phases, even though they have
the same parity under the lattice symmetries. In contrast
to the triplet BCSp phase at small φ, the BCSs+d phase
is a superfluid of singlet Cooper pairs with mixed orbital
symmetry, ℓ = 0, 2.

Next we illustrate how the phase diagram changes
as the model approaches the repulsive Fermi-Hubbard
model (U > 0, Vd = 0). We calculate the FRG flows
for increased on-site interaction, U = 0.5, while keep-
ing Vd fixed at 0.5. The phase diagram is shown in
Fig. 2(b). Since the on-site interaction U favors an-
tiferromagnetism, the SDWp phase shrinks, while the
SDWs+d phase extends to cover a broader region, in-
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cluding that previously occupied by BCSs+d. Note that
the d-wave component of SDW, even though diminished,
is always present since the dipole interaction is kept fi-
nite. When U is further increased such that U ≫ Vd,
only the isotropic component (c0) will survive, indicat-
ing the SDWs+d crosses over to SDWs, the conventional
antiferromagnetic ordering of spins in Fig. 1(a).

C. Self-consistent mean field analysis

To corroborate the FRG prediction of the unconven-
tional spin density waves, we use self-consistent mean
field theory. For a square lattice of finite size N × N ,
we impose periodic boundary conditions and retain the
dipole interactions up to a distance of 12 lattice con-
stants. We define the various normal and anomalous
averages [31], ρi,σ,j,σ′ = 〈â†j,σ′ âi,σ〉 and mi,σ,j,σ′ =

〈âi,σâj,σ′〉. The corresponding mean field Hamiltonian is
solved self-consistently by starting from an initial guess
of the generalized density matrix, and iterating until de-
sired convergence is reached. At each step the chemical
potential is tuned to maintain half filling. The results
are checked to be size-independent by varying N > 24.
In Fig. 3, N is set to 28. Although mean field results
are only suggestive, they provide an independent con-
firmation of the FRG results and unveil the real space
patterns of SSS directly in the SDWν phases. They can
also be used to investigate the direction of SSS for the gen-

eralized model with V ⊥
d (d̂) 6= V

‖
d (d̂). We search for un-

conventional SDW phases with homogeneous spin den-
sity, ni,σ = 1/2. In and around the SDWp region pre-
dicted by FRG, we indeed find solutions with order pa-

rameter Sη =
∑

αβ〈â
†
i,ασ̂

η
αβ âj,β〉, rj − ri = ŷ. Further,

the mean field energy for Sx order is identical to that
for Sy and Sz, due to the SU(2) symmetry of Ĥ im-

posed by V ⊥
d (d̂) = V

‖
d (d̂). This degeneracy is lifted for

V ⊥
d (d̂) 6= V

‖
d (d̂). In Fig. 3, we compare the mean-field

energies of the SDWp solution with order parameter Sz

and Sx. The z(x)- polarized order Sz (Sx) is energet-

ically favored for V
‖
d > V ⊥

d (V
‖
d < V ⊥

d ). However, the
degeneracy between Sx and Sy remains. The mean field
results support our interpretation of the SDWp order as
schematically shown in Fig. 1(c). A similar analysis can
be performed for the SDWs+d phase.

IV. CONCLUSION

In conclusion, we provided theoretical evidence for the
emergence of unconventional spin density wave orders,
SDWp and SDWs+d, along with other exotic phases with
non-zero angular momentum, within ultra-cold spin-1/2
dipolar fermions on the square lattice. These phases oc-
cupy a sizable region of the phase diagram mapped out
via the functional renormalization group approach. Fur-
thermore, the self-consistent mean field estimation for
the energy gaps of SDWp, shown in Fig. 3(c), indicates a
critical temperature Tc ∼ 0.08TF for Vd/t = 1.5. Consid-
ering the currently reported temperature of degenerate
dysprosium T ≈ 0.2TF [4], this suggests experimental
accessibility of these emergent phases in the near future.
Our study shows that the dipolar Fermi system is an
intriguing test bed for exotic many-body effects.
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