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We explore the escape geometry of four electrons a few eV above threshold following single-photon
absorption from the ground state of Be. We find that the four electrons leave the atom on the vertices
of a triangular pyramid instead of a previously-predicted regular tetrahedron. To illustrate the
physical mechanisms of quadruple ionization we use a momentum transferring attosecond collision

scheme which we show to be in accord with the triangular pyramid break-up pattern.
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Exploring the correlated electronic motion during ion-
ization of multi-electron atoms and molecules, for ener-
gies close to the ionization threshold, is a fundamental
and challenging task in physics. This electronic corre-
lation has been a topic of intense interest, for most re-
cent see ref. [1, 2], since Wannier’s pioneering work [3].
According to Wannier’s law σ ∝ Eβ for excess energies
E → 0, where σ is the cross-section of the process in-
volved and β depends on the number and type of par-
ticles involved in the break-up process. Using classical
mechanics, Wannier also showed that two electrons mov-
ing in the Coulomb field of an ion escape back-to-back for
energies E → 0. Extending Wannier’s work, later studies
predicted a three-electron break-up on the vertices of an
equilateral triangle [4, 5] and a four-electron break-up on
the vertices of a regular tetrahedron [5, 6]. While these
highest-symmetry break-up patterns were predicted for
E → 0 it is generally expected that they also prevail
for excess energies a few eV above threshold where the
threshold Wannier exponent β is still retrieved. In this
work we show that this is not true.
We show that for single-photon quadruple ionization

(QI) from the ground state of Be the prevailing break-up
pattern a few eV above threshold is different than the one
predicted for E → 0. For single-photon triple ionization
from the ground state of Li we have already shown that
the break-up pattern is not the expected “triangle” but a
T-shape a few eV above threshold [7]. In the T-shape two
electrons escape back-to-back while the third electron es-
capes at 90◦ with respect to the other two electrons. Very
recently, further evidence for the T-shape was provided
by fully quantum mechanical calculations for energies 5
eV above the triple ionization threshold of the ground
state of Li [8]. The previously predicted “triangle” pat-
tern was, however, observed in recent (e, 3e) coincidence
measurements for electron-impact on the ground state of
He [9]. The above reinforce a prediction we made in [10]
that the three-electron break-up pattern depends on the
initial state and can be either a T-shape or a “triangle”.
In the current work, we present evidence that for

single-photon QI from the ground state of Be, a few eV
above threshold, the prevailing break-up pattern is a tri-

angular pyramid. That is, the three electrons escape on
the vertices of an equilateral triangle at 120◦ from each
other and the other electron escapes perpendicular to the
plane of the three electrons. Our prediction differs from
the symmetric four-electron escape on the vertices of a
regular tetrahedron predicted in the limit E → 0 [5, 6].
However, for four-electron escape we find that two more
break-up patterns of higher symmetry a regular tetrahe-
dron and a square, previously predicted in [5], are also
present. Thus, the deviation from the Wannier break-
up patterns is larger for three electrons. This suggests
the possibility that as the number of electrons increases
the prevailing break-up patterns are more consistent with
those predicted by Wannier. Moreover, uncovering the
physical mechanisms of QI, we express the multi-electron
escape dynamics in terms of momentum transferring at-

tosecond collision sequences. Thus, besides addressing
a fundamental law of physics, we also elucidate corre-
lated electronic motion in multi-electron escape. This
is of high interest since the advent of ultrashort and in-
tense laser pulses has brought time-resolving correlated
electron dynamics in intra-atomic ionization processes at
the forefront of attosecond science [11–15].

Given computational capabilities, addressing four-
electron escape with quantum mechanical techniques is
currently out of reach [16]. Classical mechanics is jus-
tified for excess energies close to threshold as detailed
in the original work of Wannier [3] and in subsequent
work on two [17] and three-electron atoms. Specifically,
for three-electron escape by single photon absorption in
Li, using the quasi-classical technique we use in the cur-
rent work, we computed the total differential cross sec-
tion in [7] which is in very good agreement with the
experimental results in [18]. We also found the Wan-
nier exponent in [19] equal to 2.15 in very good agree-
ment with the theoretical value of 2.16 [4] and we com-
puted the differential cross sections in energy [20] which
agree very well with the quantum results in [21]. We
tackle quadruple photoionization using the quasiclassi-
cal technique—quasi due to the choice of initial state—
detailed in [22]. Briefly, using the Classical Trajectory
Monte Carlo method [23, 24], we propagate in time the
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full five-body Hamiltonian accounting for all interactions
to all orders. In addition, we use a Wigner [25] distribu-
tion for setting-up the initial phase space of the bound
electrons [26]. We note that the quasi-classical technique
we use for QI has produced a number of results for three-
electron atoms in very good agreement with either exper-
imental or quantum mechanical results. We compute the
probability for QI, P4+, for excess energies ranging from
3 eV to 10 eV. 3 eV is close to threshold (399 eV) and
the computational time involved is not prohibitive for
obtaining good statistics. 10 eV is an upper bound es-
timate of excess energies where the Wannier exponent β
can still be retrieved. Using our data for P4+ from 3 eV
to 10 eV in steps of 1 eV we find β equal to 94% of the
theoretically predicted value of 3.288 [5]. In the frame-
work of Wannier’s theory, in what follows we discuss our
results for 3 eV and 10 eV.

To identify the four-electron escape pattern we focus
on an observable that naturally encompasses electronic
correlation. Such an observable is the probability for two
electrons to escape with an inter-electronic angle θ—we
refer to it as angular correlation probability C(θ). In
Fig. 1, we plot C(θ) for 3 eV and 10 eV excess energies.
Given that P4+ is 1.8×10−10 for 3 eV and 7.3×10−9 for
10 eV the computational task involved is immense. Nev-
ertheless, to provide good accuracy, for each excess en-
ergy we consider, our results involve roughly 104 quadru-
ple ionization events. In Fig. 1, we see that for 10 eV C(θ)
has two peaks: one around 74◦ and a second one around
100◦-125◦. However, for 3 eV it is not clear whether
only one or two less pronounced peaks—compared to 10
eV—are present in the range 80◦-112◦. In Fig. 1, C(θ)
is plotted using 28 bins for θ. We choose the bin size so
that the double peak structure in C(θ) is best resolved
given the limitations imposed by our statistics.

To what four-electron escape geometry does the shape
of C(θ) correspond to? A regular tetrahedron pattern
with all electrons escaping at 109.5◦ from each other
would result in a single peak in C(θ). A square pattern
with two inter-electronic angles being 180◦ and four inter-
electronic angles being 90◦ would result in two peaks in
C(θ) with the peak at 90◦ twice as high as the peak at
180◦. A triangular pyramid pattern with three electrons
escaping at 120◦ from each other and the other electron
escaping at 90◦ from the three electrons would result in
two peaks in C(θ) of equal height. Hence, the double
peak in C(θ) (Fig. 1) for 10 eV is consistent with a tri-
angular pyramid-shape. For 3 eV the shape of C(θ) does
not provide conclusive evidence for the prevailing escape
geometry.

We next elucidate the physical mechanisms of QI and
provide conclusive evidence for the break-up patterns the
four electrons follow. How does the photo-electron redis-
tribute the energy it gains from the photon to the re-
maining three electrons? This is a natural question in
the framework of classical mechanics where the electrons
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FIG. 1. Probability for two electrons to escape with an inter-
electronic angle θ for excess energies 3 eV (black dots with
solid line) and 10 eV (blue squares with dashed line). To
guide the eye, for each excess energy, we connect the symbols
representing our data with a line.

undergo soft collisions mediated by Coulomb forces. To
answer this question, we use a classification scheme simi-
lar to the one we first introduced in the context of three-
electron escape following single-photon absorption from
the ground state of Li [7]. That is, we define a collision

between electrons i and j—labeling it as îj—through the
momentum transfer

Dij =

∫ t2

t1

∇V(rij)dt (1)

under the condition that V(rij(tk)) are local min-
ima in time with t2 > t1 while rij = |ri − rj| and
V(rij) = 1/|ri − rj|. During the time interval t1 < t < t2
all five particles interact with each other. Hence, the
above definition is meaningful if the collision redistributes
energy primarily within the three-body subsystem that
includes the nucleus and the electrons i and j. For
automated identification of the collisions, we need sen-
sitivity thresholds to register only the important col-
lisions for the quadruple events. Due to the signifi-
cantly higher complexity of the four-electron problem
we introduce two sensitivity thresholds instead of one
for three-electrons [7, 27]. We do so for each individual
QI trajectory by forming the maximum D = maxi 6=j|Dij|
and registering only collisions with |Dij|/D > δ where
i, j = 1, 2, 3, 4. We introduce another sensitivity thresh-
old for how “sharp” a collision is. Namely, if elec-
tron i gains energy through more than one collisions, we
find the maximum ∆Vi = maxi 6=j(V(rij)

max −V(rij)
min),

with V(rij)
max/min the max/min value of V(rij(t))

for t1 < t < t2, and register only collisions satisfying
(V(rij)

max −V(rij)
min)/∆Vi > δ1. We have checked that

our results and conclusions do not change for different
values of δ and δ1; we choose δ = 1/12 and δ1 = 1/8.
According to this classification scheme we find that

electrons 2, 3 and 4 gain sufficient energy to leave the
atom through two prevailing ionization routes. We de-
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FIG. 2. Same as Fig. 1 but for each inter-electronic pair θij for the ionization routes s1 (top row) and s2 (bottom row).

note by electron 1 the photo-electron (from an 1s orbital),
by 2 the other 1s electron and by 3 and 4 the two 2s elec-
trons. In the first route the photo-electron 1 knocks-out
first electron 2 and then proceeds to knock-out electrons
3 and 4. That is, first a collision 1̂2 takes place very
early in time and roughly 24 attoseconds later collisions
1̂3 and 1̂4 occur. With collisions 1̂3 and 1̂4 taking place
close in time we find that a fourth collision 3̂4 can oc-
cur in addition to the previous 3 collisions. We refer to
this ionization route where the photo-electron transfers
energy to both electrons 3 and 4 as s1 = {1̂2, 1̂3, 1̂4}. In
the second route, the photo-electron 1 first knocks-out
electron 2 through the collision 1̂2. Then, electron 2 be-
comes the new impacting electron knocking-out, roughly
24 attoseconds later, electrons 3 and 4 through the colli-
sions 2̂3 and 2̂4. With collisions 2̂3 and 2̂4 taking place
close in time a fourth collision 3̂4 can occur in addition to
the previous 3 collisions. We refer to this ionization route
where electron 2 transfers energy to both electrons 3 and
4 as s2 = {1̂2, 2̂3, 2̂4}. s1 accounts for 41% and s2 for
24/26% of all QI events for 3/10 eV. Using this scheme
of momentum transferring attosecond collision sequences
we have thus obtained a physical picture of the correlated
electronic motion in an intra-atomic ionization process.
Further, this scheme offers insight in choosing the ap-
propriate asymptotic observables for inferring the tem-
poral profile of electron-electron collision dynamics [28].
This is important since developing pump-probe schemes
to time-resolve correlated multi-electron escape is one of
the current challenges facing attoscience [29].

In what direction do the four electrons escape in path-
ways s1 and s2? For s1, at the time when all electrons to
be ionized have received enough energy to leave the atom
the spatial electron distribution, we refer to it as transient
threshold configuration TTC [10], is r1 ≈ r3 ≈ r4 6= r2.
That is, the last colliding electrons 1, 3 and 4 have
r1 ≈ r3 ≈ r4 which is close to the fixed point (see below)
of the four-body Coulomb problem—three electrons and
the nucleus. Thus, one expects that electrons 1, 3 and 4

will escape symmetrically on a plane at 120◦ from each
other. In Fig. 2 (top row) we plot C(θ) for each of the six
inter-electronic angles of escape using only the QI events
that correspond to the s1 pathway, i.e, we plot Cs1(θ). In-
deed, we see that Cs1(θ) for θ13, θ14 and θ34 peak around
115◦, both for 3 eV and 10 eV, corresponding to electrons
1, 3 and 4 escaping on the vertices of a “triangle”. (We
note that the distributions in Fig. 1 and Fig. 2 are con-
voluted by the polar angle volume element sin θ resulting
in a peak at 120◦ being shifted to slightly smaller angles
while a peak at 90◦ is not affected). In addition, we see
that Cs1(θ) for θ12, θ23 and θ24 peak around 65◦-75◦ and
75◦-85◦ for 10 eV and 3 eV, respectively. Note that the
shifting of the peak at smaller angles from 65◦-75◦ for
10 eV to 75◦-85◦ for 3 eV shows a tendency towards the
triangular pyramid-consistent angle of 90◦. Thus, the dis-
tributions in Fig. 2 (top row) for the s1 ionization route
are consistent with the triangular pyramid-shape shown
in Fig. 3 (a). Similarly for the ionization route s2, Cs2(θ)
for θ23, θ24 and θ34 peak around 115◦ while Cs2(θ) for
θ12, θ13 and θ14 peak around 65◦-75◦ and 85◦ for 10 eV
and 3 eV, respectively (Fig. 2 bottom row). These distri-
butions are consistent with the triangular pyramid-shape
shown in Fig. 3 (b). Therefore, for the majority (65%)
of QI events the four electrons escape on the vertices of
a triangular pyramid.

(a) (b)

FIG. 3. The triangular pyramid escape geometry for four
electrons corresponding to collision sequences s1 (a) and s2
(b).
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We now provide further evidence that if the three elec-
trons escape on a plane at 120◦ from each other then the
preferred escape geometry of the other electron is perpen-
dicular to this plane. We do so analytically by expressing
the five-body Hamiltonian in hyperspherical coordinates

H =
p2r
2

+
Λ2

2R2
+

C(Ω)

R
(2)

where Ω = (α1, α2, α3, θ1, θ2, θ3, θ4, χ1, χ2, χ3, χ4) con-
tains all angular variables describing the positions of the
electrons and Λ is a function of Ω and all conjugate mo-
menta. The total Coulomb interaction V = C/R acquires
in this form simply an angular dependent charge C(Ω).
The hyperspherical coordinates are given by

R =
√
r21 + r22 + r23 + r24 χ1 = φ3 − φ1

α1 = arctan( r1r3 ) χ2 = φ4 − φ1

α2 = arctan(

√
r2
1
+r2

3

r4
) χ3 = φ2 − φ1

α3 = arctan(

√
r2
1
+r2

3
+r2

4

r2
) χ4 = φ1 + φ2 + φ3 + φ4

(3)
where φi, θi are the azimuthal and polar angles of the ith
electron. Focusing on s1, the TTC is r1 ≈ r3 ≈ r4 6= r2.
For simplicity we assume r1 ≈ r3 ≈ r4 << r2 resulting in
α3 ≈ 0 (the opposite case would lead to the same result).
We then expand C(Ω) in powers of α3.

C(Ω) ≈ α−1
3

3∑

i=1

cnα
n
3 . (4)

The lowest order term in α3, is the potential
term of the four-body Coulomb problem with Z = 4.
Thus, the problem of finding a stable configuration is
that of the three-electron problem with the solution
α∗
1 = π/4, α∗

2 = arctan(
√
2), χ∗

1 = 2π/3, χ∗
2 = 4π/3 and

θ1 = θ3 = θ4 = 90◦ [10]. These values minimize c2 for
any value θ2. Minimizing c3 with respect to θ2 we find
the stable solution θ2 = 0◦ which indeed corresponds to a
triangular pyramid break-up geometry, which is of lower
symmetry than a regular tetrahedron.
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FIG. 4. C(θ) for the ionization routes s3 (a), s1 + s2 (b) and
s4 (c). The lower statistics in (a) and (c) compared to (b)
dictate using 18 (a) and (c) instead of 28 (b) bins.

It is now clear that for the s1 + s2 labeled QI events the
four electrons escape on the vertices of a triangular pyra-
mid, see Fig. 2. Since these events account for roughly

65% of all QI events the triangular pyramid-shape pre-
vails for 3 eV and 10 eV excess energy. Why then is the
double peak in C(θ) more pronounced for 10 eV than for
3 eV in Fig. 1? One reason is the following: an analysis
of Cs1(θ) and Cs2(θ) ( Fig. 2) shows that for Cs1+s2(θ)
(Fig. 4 (b)) the two peaks are closer for 3 eV (at 85◦

and 115◦) than for 10 eV (at 65◦-75◦ and 115◦) result-
ing in a stronger overlap and a less pronounced double
peak for 3 eV. The same effect is also present when all
QI events are considered in C(θ) in Fig. 1. Another rea-
son is an ionization route which involves at least four
distinct collisions: one collision is 1̂2 while two of them
involve electron 3 and/or 4 each gaining energy by both
electrons 1 and 2—we label this route as s3. For s3 TTC
is r1 ≈ r3 ≈ r4 ≈ r2. This spatial distribution is close to
the fixed point of the five-body Coulomb problem cor-
responding to all four electrons escaping on the vertices
of a regular tetrahedron at 109.5◦ from each other. In-
deed, in Fig. 4 (a) we find that Cs3(θ) has a single peak
consistent with a regular tetrahedron geometry. As ex-
pected this single peak becomes sharper with decreasing
excess energy; compare Cs3(θ) for 10 eV and 3eV in Fig. 4
(a). Thus, when all ionization routes are considered the
contribution of Cs3(θ) for 10 eV does not smear out the
double peak of Cs1+s2(θ), see Fig. 4 (b), while it does
so for 3 eV. Further contributing to the difference in the
shape of C(θ) between 3 eV and 10 eV is that the % con-
tribution of s3 to all QI events increases with decreasing
excess energy from 7% for 10 eV to 11% for 3 eV. Note
that while the regular tetrahedron does not prevail in the
break-up geometry, as generally expected, it is neverthe-
less present. The same is true for another high symmetry
break-up pattern which results from yet another ioniza-
tion route that involves mainly three distinct collisions.
One collision is 1̂2 while the other two collisions involve
electron 3 and 4 each gaining energy by different elec-
trons, i.e., if electron 3 gains energy from electron 1 then
electron 4 gains energy from electron 2. This route which
we label as s4 accounts for roughly 10 % of all QI events
for 3 eV and 10 eV excess energies. We find that for 3
eV Cs4(θ) in Fig. 4 (c) has two peaks at 90◦ and 150◦

with the peak at 90◦ almost twice as high as the peak at
150◦. This is consistent with the four electrons escaping
on the apexes of a square [30] with four inter-electronic
angles being 90◦ and two being 180◦ (the peak at 180◦

is shifted at 150◦ in Fig. 4 (c) since the distribution is
convoluted by sinθ). This planar break-up geometry was
previously predicted in [5].

In conclusion, we have shown that a triangular pyramid

is the prevailing break-up pattern for QI by single-photon
absorption from the ground state of Be for excess ener-
gies as low as 3 eV above threshold. This pattern can
be verified by future quantum mechanical and experi-
mental studies of differential cross sections. Such studies
have already been performed for three-electron atoms,
see for example [8, 9, 16]. From our previous results on
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triple ionization [10] and our current on QI we conjec-
ture that the four-electron break-up pattern is also initial
state dependent. That is, a regular tetrahedron will be
the break-up pattern for initial states where 3 electrons
occupy orbitals with similar spatial distribution. How-
ever, while we find that for the ground state of Be the
triangular pyramid break-up pattern prevails we also find
two more break-up patterns of higher symmetry, namely,
a regular tetrahedron and a square previously predicted
in [5]. This suggests the possibility that as the number of
electrons increases the prevailing break-up patterns are
more consistent with those predicted by Wannier. More
theoretical work is needed to explore whether this is in-
deed the case.
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[6] P. Grujić, Phys. Lett. A 96, 233 (1983).
[7] A. Emmanouilidou and J. M. Rost, J. Phys. B 39, 4037

(2006).
[8] J. Colgan, A. Emmanouilidou and M. S. Pindzola, Phys.

Rev. Lett 110, 063001 (2013).
[9] X. Ren, A. Dorn, and J. Ullrich, Phys. Rev. Lett. 101,

093201 (2008).
[10] A. Emmanouilidou, P. Wang, and J. M. Rost, Phys. Rev.

Lett. 100, 063002 (2008).
[11] K. Klünder, J. M. Dahiström, M. Gisselbrecht, T.
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