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We introduce a high-fidelity technique for coherent control of three-state quantum systems, which
combines two popular control tools — stimulated Raman adiabatic passage (STIRAP) and compos-
ite pulses. By using composite sequences of pairs of partly delayed pulses with appropriate phases
the nonadiabatic transitions, which prevent STIRAP from reaching unit fidelity, can be canceled to
an arbitrary order by destructive interference, and therefore the technique can be made arbitrarily
accurate. The composite phases are given by simple analytic formulas, and they are universal for
they do not depend on the specific pulse shapes, the pulse delay and the pulse areas.

PACS numbers: 32.80.Xx, 32.80.Qk, 33.80.Be, 82.56.Jn

I. INTRODUCTION

Among the many possibilities for coherent manipula-
tion of quantum systems, stimulated Raman adiabatic
passage (STIRAP) is one of the most widely used and
studied [1]. This technique transfers population adia-
batically between two states |1〉 and |3〉 in a three-state
quantum system, without populating the intermediate
state |2〉 even when the time-delayed driving fields are
on exact resonance with the respective pump and Stokes
transitions. The technique of STIRAP relies on the ex-
istence of a dark state, which is a time-dependent coher-
ent superposition of the initial and target states only, and
which is an eigenstate of the Hamiltonian if states |1〉 and
|3〉 are on two-photon resonance. Because STIRAP is an
adiabatic technique, it is robust to variations in most of
the experimental parameters.

In the early applications of STIRAP in atomic and
molecular physics its efficiency, most often in the range
90-95%, has barely been scrutinized because such an
accuracy suffices for most purposes. Because STIRAP
is resilient to decoherence linked to the intermediate
state (which is often an excited state) this technique has
quickly attracted attention as a promising control tool
for quantum information processing [2]. The latter, how-
ever, demands very high fidelity of operations, with the
admissible error at most 10−4, which is hard to achieve
with the standard STIRAP because, due to its adiabatic
nature, it approaches unit efficiency only asymptotically,
as the temporal pulse areas increase. For usual pulse
shapes, e.g., Gaussian, the necessary area for the 10−4

benchmark is so large that it may break various restric-
tions in a real experiment.

Several scenarios have been proposed to optimize STI-
RAP in order to achieve such an accuracy. Because the
loss of efficiency in STIRAP derives from incomplete adi-
abaticity, Unanyan et al. [3], and later Chen et al. [4],
have proposed to annul the nonadiabatic coupling by
adding a third pulsed field on the transition |1〉 → |3〉.
However, this field must coincide in time with the nonadi-
abatic coupling exactly; its pulse area, in particular, must

equal π, which makes the pump and Stokes fields largely
redundant. An alternative approach to improve adia-
baticity is based on the Dykhne-Davis-Pechukas formula
[6], which dictates that nonadiabatic losses are minimized
when the eigenenergies of the Hamiltonian are parallel.
This approach, however, prescribes a strict time depen-
dences for the pump and Stokes pulse shapes [5], or for
both the pulse shapes and the detunings [8].

Another basic approach to robust population trans-
fer, which is an alternative to adiabatic techniques, is
the technique of composite pulses, which is widely used
in nuclear magnetic resonance (NMR) [9], and more re-
cently, in quantum optics [10, 11]. This technique, imple-
mented mainly in two-state systems, replaces the single
pulse used traditionally for driving a two-state transition
by a sequence of pulses with appropriately chosen phases;
these phases are used as a control tool for shaping the ex-
citation profile in a desired manner, e.g., to make it more
robust to variations in the experimental parameters —
intensities and frequencies. Recently, we have proposed a
hybrid technique — composite adiabatic passage (CAP)
— which combines the techniques of composite pulses
and adiabatic passage via a level crossing in a two-state
system [11]. CAP can deliver extremely high fidelity of
population transfer, far beyond the quantum computing
benchmark, and far beyond what can be achieved with a
single frequency-chirped pulse. Recently, the CAP tech-
nique has been demonstrated experimentally in a doped
solid [12].

In this paper, we combine the two basic techniques
— of composite pulses and STIRAP — into a hybrid
technique, which we name composite STIRAP. This tech-
nique, which represents a sequence of an odd number of
forward and backward ordinary STIRAPs, |1〉 → |3〉 →
|1〉 → |3〉 → · · · → |1〉 → |3〉, adds to STIRAP the very
high fidelity of composite pulses. Each individual STI-
RAP can be very inaccurate, the affordable error being as
much as 20-30%, but all errors interfere destructively and
cancel in the end, thereby producing population transfer
with a cumulative error far below the quantum comput-
ing benchmark of 10−4. We derive an analytical formula
for the composite phases, applicable to an arbitrary odd
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FIG. 1: Composite STIRAP. The population is transferred
from state |1〉 to state |3〉 via a sequence of pump-Stokes pulse
pairs. On one-photon resonance (top), the order of the pump
and Stokes pulses is reversed from pair to pair, while off single-
photon resonance it is the same for all pulse pairs.

number of pulse pairs N ; the phases do not depend on
the shape of the pulses and their mutual delay.
The dynamics of a three-state Λ system (Fig. 1) is

described by the Schrödinger equation,

i~∂tc(t) = H(t)c(t), (1)

where the vector c(t) = [c1(t), c2(t), c3(t)]
T contains the

three probability amplitudes. The Hamiltonian in the
rotating-wave approximation and on two-photon reso-
nance between states |1〉 and |3〉 is

H(t) =
~

2




0 Ωp(t) 0

Ω∗

p(t) 2∆− iγ Ωs(t)
0 Ω∗

s(t) 0



 , (2)

where Ωp(t) and Ωs(t) are the Rabi frequencies of the
pump and Stokes fields, ∆ is the one-photon detuning
between each laser carrier frequency and the Bohr fre-
quency of the corresponding transition, and γ is the
population loss rate from state |2〉; we assume γ = 0.
States |1〉 and |3〉 are coupled by Ωp(t), while states |2〉
and |3〉 are coupled by Ωs(t). The evolution of the sys-
tem is described by the propagator U, which connects
the amplitudes at the initial and final times, ti and tf:
c(tf) = U(tf, ti)c(ti). The mathematics is substantially
different when the pump and Stokes fields are on reso-
nance or far off-resonance with the corresponding transi-
tion: therefore we consider these cases separately.

II. RESONANT STIRAP

First, we will consider the one-photon resonance, ∆ =
0. Then there is a mapping between the three-state prob-
lem and a corresponding two-state problem [13, 14] de-
scribed by the Hamiltonian

H(t) =
~

2

[
−Ωs(t) Ωp(t)
Ωp(t) Ωs(t)

]
. (3)

TABLE I: Pump and Stokes phases for different number of
pulse pairs N for resonant composite STIRAP.

N Phases (α1, β1;α2, β2; . . . ;αN , βN )

3 (0, 1; 3, 3; 1, 0)π/3

5 (0, 4; 5, 8; 3, 3; 8, 5; 4, 0)π/5

7 (0, 9; 7, 1; 5, 8; 12, 12; 8, 5; 1, 7; 9, 0)π/7

9 (0, 16; 9, 6; 7, 15; 16, 3; 12, 12; 3, 16; 15, 7; 6, 9; 16, 0)π/9

(In this correspondence, Ωp(t) and Ωs(t) are assumed
real.) In general, if the two-state propagator is parame-
terized in terms of the complex Cayley-Klein parameters
a and b (|a|2 + |b|2 = 1) as

U =

[
a b

−b∗ a∗

]
, (4)

we can write the propagator of STIRAP as

U =




|a|2 − |b|2 −2i Im (ab∗) 2Re (ab∗)
2i Im (ab) Re

(
a2 + b2

)
−i Im

(
a2 − b2

)

−2Re (ab) −i Im
(
a2 + b2

)
Re

(
a2 − b2

)


 .

(5)
If Ωp(t) and Ωs(t) are reflections of each other, Ωp(t) =
Ωs(τ − t) [e.g., if Ωp(t) and Ωs(t) are identical symmetric
functions of time], where τ is the pulse delay, then it is
easily shown that Ima = − Imb. We use this property to
parameterize the STIRAP propagator (5) as

a = cos θ cosφ+
i√
2
sin θ, (6a)

b = cos θ sinφ− i√
2
sin θ. (6b)

In the adiabatic limit, Re (ab) = 1/2; hence θ = π/2.
For backward STIRAP from state |3〉 to state |1〉,

we need to exchange the order of the pump and Stokes
pulses. The corresponding propagator is

Ũ = RUR, R =



0 0 1

0 1 0

1 0 0


 , (7)

A constant phase shift in the Rabi frequencies, Ωp(t) →
Ωp(t)e

iα and Ωs(t) → Ωs(t)e
iβ , is imprinted into the

propagator as

Uα,β = ΦUΦ∗, Φ =



eiα 0 0

0 1 0

0 0 e−iβ


 . (8)

A sequence of N STIRAPs (where N is an odd number),
each with phases αk and βk, produces the propagator

U
(N) = UαN ,βN

ŨαN−1,βN−1
· · ·Uα3,β3

Ũα2,β2
Uα1,β1

.
(9)
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FIG. 2: Infidelity 1 − P3 as a function of the peak Rabi fre-
quency for a single STIRAP, compared with three and five-
component composite STIRAP. The pulse shapes are given
by Eqs. (11) (left frames) and (12) (right frames). The com-
posite phases are given by Eq. (10) for resonant STIRAP (up-
per frames) and Eq. (13) for far-off-resonant STIRAP (lower
frames). The dashed curve in the upper left frame is the fi-
delity of composite STIRAP when a random error of 1% is
included in the phases.

Next we expand the propagator elements U
(N)
11 and U

(N)
21

around θ = π/2 and find the phases which nullify as many
terms in the expansions as possible. We have thereby
derived the following analytic formula for the composite-
STIRAP phases:

α
(N)
k = π

⌊
k

2

⌋
− π

N

⌊
k − 1

2

⌋(
1 +

⌊
k − 1

2

⌋)
, (10a)

β
(N)
k = α

(N)
N+1−k, (10b)

where k = 1, 2 . . . , N . The first few cases are explicitly
shown in Table I. Since no assumptions are made about
the Cayley-Klein parameters in the derivation, the com-
posite phases (10) do not depend on the pulse shapes,
the pulse delay and the pulse areas. We note here that,
since these phases are solutions of a system of nonlinear
algebraic equations, other solutions also exist; they, how-
ever, produce the same results as the set (10). Moreover,
a common shift in the pump (or/and Stokes) phases does
not change the fidelity but causes only a phase shift in
the probability amplitudes.
In Fig. 2 we compare the efficiency of single STIRAP

with composite STIRAP for N = 3 and 5. We assume
that the pump and Stokes pulses share the same shape,
which we take to be either Gaussian,

Ωp = Ω0e
−(t−τ/2)2/T 2

, Ωs = Ω0e
−(t+τ/2)2/T 2

, (11)

or sine squared,

Ωp = Ω0 sin
2

(
π
t− τ

T

)
, t ∈ [τ, T + τ ] , (12a)

Ωs = Ω0 sin
2

(
π
t

T

)
, t ∈ [0, T ] (12b)
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FIG. 3: Final population P3 as a function of the pulse delay
and the peak Rabi frequency for a single resonant STIRAP
(top) and a sequence of five resonant STIRAPs (bottom), with
phases given by Eq. (10), for sin2 pulse shapes, Eqs. (12).

where T is the pulse width and τ is the delay between
the pulses. We take a delay τ = T for Gaussian shapes
and τ = T/π for sin2 shapes in the simulations. We
see in Fig. 2 that even a sequence of three STIRAPs is
enough to achieve extremely high fidelity with an error
below 10−6, which is impossible with a single STIRAP,
unless we use huge pulse areas, far outside the axis range.
The robustness of the method is seen in Fig. 3, which
compares the fidelity of single STIRAP and composite
STIRAP with N = 5. The high-fidelity region with error
below 10−4 of composite STIRAP is hugely expanded
compared to single STIRAP.

III. NONRESONANT STIRAP

We now focus on the nonresonant case of Hamiltonian
(2), ∆ 6= 0. If the detuning is small, ∆T ≪ 1, than
the composite phases do not deviate much from the res-
onant formulae (10) and we can still use them. However,
if the detuning gets larger, then the composite phases
depend on ∆; an exact formula for the phases does not
appear to exist and their values are to be calculated nu-
merically. When the detuning is very large, we can elim-
inate adiabatically state |2〉 and we are left with an ef-
fective (symmetric) coupling Ωeff = −ΩpΩs/2∆ between
states |1〉 and |3〉 and an effective (antisymmetric) detun-
ing ∆eff = (|Ωp|2 − |Ωs|2)/2∆. This effective two-state
problem reduces to the already studied CAP technique
[11], where the phases are known and an analytical for-
mula also exists,

α
(N)
k − β

(N)
k =

(
N + 1− 2

⌊
k + 1

2

⌋)⌊
k

2

⌋
π

N
. (13)

The values for the first few cases are given in Table II.
The fidelity of the nonresonant composite STIRAP is

illustrated in Fig. 2 (bottom frames) and Fig. 4. Again,
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TABLE II: Phases for different number N of pulse pairs for
off-resonant composite STIRAP. Because only the phase dif-
ference αk − βk between the pump and Stokes phases is im-
portant, we set all Stokes phases βk = 0 and show the pump
phases αk only (k = 1, 2, . . . , N).

N Phases (α1, α2, . . . αN )

3 (0, 1, 0)2π/3

5 (0, 2, 1, 2, 0)2π/5

7 (0, 3, 2, 4, 2, 3, 0)2π/7

9 (0, 4, 3, 6, 4, 6, 3, 4, 0)2π/9
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FIG. 4: Final population P3 as a function of the pulse delay
and the peak Rabi frequency for a single off-resonant STI-
RAP (top) and a sequence of five STIRAPs (bottom), with
phases given by Eq. (13), for sin2 pulse shapes, Eqs. (12). The
detuning is ∆ = 100/T .

composite STIRAP greatly outperforms single STIRAP
in terms of fidelity and robustness.

IV. DISCUSSION

Composite STIRAP may be affected by several sources
of errors. In the first place, errors in the composite phases
should be held low in order to keep the high fidelity. We
found that an error below 1% in the phases, which is rela-
tively easy to achieve in the lab, can be tolerated. In Fig.
2 we have added a curve, which demonstrates the fidelity
of composite STIRAP for N = 3 and a standard devia-
tion of 0.01 radians in the composite phases [17]; despite
this error, the technique still has ultrahigh fidelity, with
an error below 10−4.
STIRAP owes much of its great popularity to the fact

that it can operate, unlike other techniques, in the pres-
ence of population losses from the middle state |2〉. How-
ever, when ultrahigh fidelity is aimed the presence of
such losses can reduce the fidelity and they cannot be
very large. (The decay can be harmful only in the reso-
nant case, while off-resonant composite STIRAP is much
more resilient to them.) We have found that in the res-
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FIG. 5: Infidelity versus decay rate. We assume sin2 pulse
shapes with Ω0 = 30/T and ∆ = 0.

onant case, if the decay rate is sufficiently low, or if the
pulse duration is sufficiently short (γT . 1), compos-
ite STIRAP still maintains high fidelity and outperforms
the standard STIRAP, as seen in Fig. 5. As γ increases
above 1/T , STIRAP behaves better but the fidelities of
both STIRAP and composite STIRAP drop rapidly and
are inadequate for quantum computing purposes. The
presence of losses can be compensated with higher Rabi
frequency; as a rough estimate the scaling law Ω0 ∝ √

γ
applies. It is also important to note that in the presence
of decay the pulse pairs should be as close to each other as
possible, as in the inset of Fig. 5. This is readily achieved
with microsecond and nanosecond pulses, e.g., produced
by acoustooptic modulators, as has been demonstrated
recently in a doped-solid experiment [15].

Because composite STIRAP involves N pulse pairs, its
duration is longer than STIRAP by the same factor, given
that there are no gaps between the pulse pairs, as shown
in the inset of Fig. 5. In return, composite STIRAP
gives a fidelity which cannot be achieved with ordinary
STIRAP, even with the much higher pulse areas. Thus
the main advantage of composite STIRAP over ordinary
STIRAP is the ultrahigh fidelity. The main advantage
of composite STIRAP over other variations of STIRAP,
which provide “shortcuts” to adiabaticity by eliminating
or reducing the nonadiabatic coupling [3–5, 7, 8] is the
simplicity of implementation, which requires just the con-
trol of the relative phases between the pulse pairs, and
the preserved robustness of STIRAP with respect to vari-
ations in the interaction parameters. The “shortcuts”
techniques use less pulse area, and therefore are faster
than composite STIRAP (although still slower than res-

onant techniques which use areas of just π
√
2 [16]), but

they give away most of the robustness of STIRAP by im-
posing strict restrictions on the pulse shapes, and some of
them on the detunings too; some of them even place con-
siderable transient population in the intermediate state.
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V. CONCLUSION

The hybrid technique proposed here combines two pop-
ular methods for manipulation of quantum systems —
STIRAP and composite pulses. It greatly outperforms
the standard STIRAP in terms of fidelity due to can-
celation of the nonadiabatic errors by destructive inter-
ference. The greatly enhanced fidelity, well beyond the
quantum computing benchmark, while preserving STI-
RAP’s robustness against variations in the interaction

parameters, makes composite STIRAP a promising tech-
nique for quantum information processing.
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