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Abstract

We present various differential cross sections for the single ionization of Li by O8+ ions. We use

a time-dependent close-coupling approach to model the evolution of a one-active-electron wave-

function in the field of the incoming projectile for a range of impact parameters. In addition a

Fourier transform approach is used to extract differential cross sections for a specific projectile

momentum transfer value. This scheme allows us to incorporate information about the interaction

of the two heavy nuclei (the so-called NN interaction) and to assess its influence in the differential

cross sections. We find noticeable differences in the shape of the differential cross sections when

we include (neglect) the NN interaction. Our single differential cross section calculation shows

excellent agreement with experimental data. In addition recent measured double differential cross

sections as a function of electron energy and transverse momentum transfer are reasonably well

reproduced by our theoretical calculations.

PACS numbers: 34.50.Fa
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I. INTRODUCTION

The single ionization of light atoms by fast bare ions provides an interesting probe of the

few-body break up processes. Theoretically speaking, the single and double ionization of

atoms by highly charged ions is one of the most challenging many-body quantal problems.

It is well known that when we use photons as projectiles, the electrons are promoted to the

continuum via a dipolar interaction. On the other hand, when a fast bare ion impinges on

an atom, the electron-projectile interaction must include multipolar terms.

The nonperturbative time-dependent close-coupling (TDCC) method was applied both

to ion-atom and ion-molecule single and double ionization processes (for a recent review

see [1]). On one hand, the TDCC method based on an expansion of a one-electron three-

dimensional wave function was used in single ionization processes in single electron systems,

namely H [2] and H+
2 [3], and in the single active electron approximation in He [2], Li [2] and

H2 [4]. On the other hand, the TDCC method based on an expansion of a two-electron six-

dimensional wave function was applied to single and double ionization ionization processes

in He [2, 5–9] and H2 [3, 4, 10]. The TDCC method based on an expansion of a two-electron

six-dimensional wave function scheme represents a challenge from a computational viewpoint

and massive parallel computers are employed to obtain the theoretical quantities needed to

compare with the experimental measurements. The latter range from fully differential cross

sections (FDCS) [11] to total cross sections and for all the cases the TDCC outcomes are

found to be in very good agreement with experimental data.

Before the advent of experiments that were able to measure fully differential cross sec-

tions, such as COLTRIMS [12] techniques, the nuclear-nuclear (NN) interaction was often

neglected in calculations of single ionization of atoms by ion-impact. This is because many

less differential cross sections, such as single and double differential cross sections as well as

the total cross section, are not sensitive to the NN interaction. On the other hand, the incor-

poration of the NN interaction on the FDCS appears to be mandatory in order to reproduce

satisfactorily the COLTRIMS experimental data that are differential in projectile scatter-

ing angle (or equivalently, in projectile momentum transfer) both in perturbative [13] and

nonperturbative approaches [9]. It is worth mentioning, however, that there is not a unique

consensus about the most adequate model to be incorporated in to the NN-free FDCS. An

exhaustive study about this issue using helium as a target was shown in [14] where a detailed
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explanation of several models and numerical calculations of differential cross sections as a

function of the projectile momentum transfer were presented.

In this contribution, we use the TDCC method to calculate the differential cross sections

for single ionization in O8++ Li collisions at 1.5 MeV/amu to compare with the inaugural

MOTReMi experiment of Fischer et al. [15]. The MOTReMi implementation appears to

be an interesting framework to study alkali atoms and several lines of action are planned.

For instance, single ionization differential cross sections starting from Li atoms in the 1s22s

ground state and 1s22p excited configuration can be directly obtained. In this direction,

recent measurements of double differential cross sections as a function of electron energy

and transverse momentum transfer for Li(2s) and Li(2p) atoms were presented [16]. Since

the two remaining electrons in the residual Li ion form a closed shell, we apply a TDCC

method based on an expansion of a one-electron three-dimensional wave function in the

field of Li+ to calculate differential cross sections for single ionization at various projectile

impact parameters. The TDCC method based on an expansion of a one-electron three-

dimensional wave function was used to calculate the single ionization cross section of Li

by antiproton impact showing excellent agreement with other non-perturbative calculations

(see e.g. [2] for details). Starting from the differential cross sections as a function of the

impact parameter, and employing a Fourier transform approach, we then compute FDCS as

a function of the projectile momentum transfer including (neglecting) the NN interaction.

The FDCS represents the most detailed measurement of any few-body breakup problem and

it presents a challenge for any theory as was shown for the case of single ionization of He by

bare C atoms [9].

The rest of the article is organized as follows. In Sec. II we briefly summarize the TDCC

method based on an expansion of a one-electron three-dimensional wave function method

for calculating fully differential cross sections for the single ionization of atoms with one

active electron, including the procedure to extract FDCS as function of the projectile mo-

mentum transfer starting with the ones based on the impact parameter. In Sec. III we

apply the TDCC method based on an expansion of a one-electron three-dimensional wave

function approach to calculate fully differential cross sections (FDCS) for single ionization

in O8++Li collisions at 1.5 MeV/amu. We present FDCS both as a function of individual

impact parameters and the projectile momentum transfer. Furthermore, double differential

cross sections as a function of electron energy and transverse momentum transfer and a
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single differential cross section in electron energy are calculated and compared with recent

experimental data. In Sec. IV, we finish our contribution with a summary and an outlook

for future work. Unless otherwise stated, all quantities are given in atomic units.

II. THEORY

The time-dependent Schrödinger equation for a bare ion projectile colliding with a one

active electron atom is given by:

i
∂Ψ(~r, t)

∂t
=

(

−1

2
∇2 − Zt

r
+ V (r) +

Zp

|~r − ~R(t)|

)

Ψ(~r, t), (1)

where Zt is the target charge, V (r) is a core potential, and Zp is the projectile charge. For

straight-line motion, the time-dependent projectile position is given by:

R(t) =
√

b2 + (d0 + vt)2 , (2)

where b is an impact parameter, d0 is a starting position, and v is the projectile speed.

If we expand Ψ(~r, t) in spherical harmonics, the time-dependent close-coupled equations

for the Plm(r, t) radial expansion coefficients are given by:

i
∂Plm(r, t)

∂t
=

(

−1

2

∂2

∂r2
+

l(l + 1)

2r2
− Zt

r
+ Vl(r)

)

Plm(r, t)

+
∑

l′,m′

Wlm,l′m′(r, R(t))Pl′m′(r, t) . (3)

The electron-projectile coupling operator is given by:

Wlm,l′m′(r, R(t)) = −Zp(−1)m
√

(2l + 1)(2l′ + 1)
∑

λ

(r, R(t))λ<
(r, R(t))λ+1

>

∑

q

Cλ∗
q (θp, φp) (4)





l λ l′

0 0 0









l λ l′

−m q m



 ,

where (r1, , r2)< = min(r1, r2), (r1, , r2)> = max(r1, r2) and λ, q are multipole expansion

parameters. For projectile motion in the xz plane, the spherical tensor can be written as:

Cλ
q (θp, φp) =

√

4π

2λ+ 1
Yλq(θp, 0) , (5)
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where Ylm(θ, φ) is a spherical harmonic, sin θp = b/R(t), and cos θp = (d0 + vt)/R(t).

The initial condition for the solution of the time-dependent close-coupled equations for

single ionization of the ground state of Li (1s22s) is given by:

Plm(r, t = 0) = P2s(r)δl,0δm,0 , (6)

where P2s(r) is a bound radial orbital obtained by diagonalization of the one-electron Hamil-

tonian:

H(r) = −1

2

∂2

∂r2
− 3

r
+

l(l + 1)

2r2
+ Vl(r) (7)

for l = 0 where V0(r) is a pseudopotential. Following time propagation of the time-dependent

close-coupled equation, electron momentum space wavefunctions are calculated by:

P̄lm(k, b) =

∫

∞

0

drPkl(r)Plm(r, t → ∞)

− P2s(r)

∫

∞

0

dr′P2s(r
′)P00(r

′, t → ∞)δl,0δm,0, (8)

where Pkl(r) is a continuum distorted-wave. The above mentioned procedure can be also

employed to calculate single ionization of Li from its excited states, e.g (1s22p), changing

the P2s(r) bound radial orbital to the corresponding P2p(r). This allows us to compare our

theoretical calculations with recent experimental measurements [16].

The fully differential scattering amplitude for the single ionization of Li is given by:

S(k, b, θe, φe) =
∑

l,m

(−i)lei(σl+δl)P̄lm(k, b)Ylm(θe, φe) , (9)

where σl and δl are Coulomb and distorted-wave phase shifts. The fully differential cross

section for individual values of the impact parameter b (FDCS-b) is given by:

d4σ

dk db dθe dφe

= |S(k, b, θe, φe)|2 . (10)

An alternative expression can be written in terms of the transverse component of the projec-

tile momentum transfer η employing a two-dimensional Fourier transform [17]. Consequently

a fully differential scattering amplitude for the single ionization of Li is also given by:

S(k, η, θe, φe) =
1

2π

∑

n

in
∫ 2π

0

dφbe
−inφb (11)

∫

∞

0

bdb S(k, b, θe, φe − φb)e
i∆(b)Jn(ηb),
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where φb is the azimuthal angle of the impact parameter, Jn(ηb) is a Bessel function of nth

order, and the internuclear interaction phase factor is given by:

∆(b) =
2ZeffZp

v
ln vb, (12)

where one choice for the charge of the target ion, i.e. the charge of the residual Li+,

is Zeff = 1. This approximation appears to be adequate considering the two remaining

electrons form a closed shell, but other options are possible (see e.g. [13]). A more extensive

discussion about the characteristic and behaviour of similar transition amplitudes in the

framework of perturbative approaches has been given in Ref. [14]. In all the calculations

presented in this work, we found that inclusion of terms up to |n| ≤ 10 in the Bessel function

expansion appears to be sufficient to obtain converged results. The fully differential cross

section as a function of the projectile momentum transfer η (FDCS-η) is given by:

d4σ

dk dη dθe dφe

= |S(k, η, θe, φe)|2 . (13)

If we integrate the last equation over the electron angles θe and φe and use that the electron

energy is ǫ = k2

2
we find

d2σ

dηdǫ
=

2π

k

∫ π

0

sin θedθe

∫ 2π

0

dφe

d4σ

dk db dθe dφe

, (14)

which is a double differential cross section as a function of electron energy and projectile

momentum transfer and was experimentally measured recently for different values of ǫ and

η [16].

An electron energy single differential cross section is most easily obtained from:

dσ

dǫ
=

2π

k

∫

∞

0

bdb (15)

∫ π

0

sin θedθe

∫ 2π

0

dφe

d4σ

dk db dθe dφe

and the total cross section σ is computed by a multidimensional integration over the electron

scattering angles θe and φe, the electron momentum k and the projectile impact parameter

b, i.e.:

σ = 2π

∫

∞

0

bdb

∫

∞

0

dk

∫ π

0

sin θedθe

∫ 2π

0

dφe

d4σ

dk db dθe dφe

. (16)

For all fully differential cross sections in both formulations the units are area divided by

the units of all the differential quantities. The fully differential cross section of Eq. (10) has
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the units of area divided by length squared for 2πbdb times momentum for dk times solid

angle for sin θedθedφe. The fully differential cross section of Eq. (11) has the units of area

divided by 2πηdη times momentum for dk times solid angle for sin θedθedφe. In order to

have the total cross sections in barns (1.0×10−24 cm2) we multiply all FDCS-b and FDCS-η

by 2.8× 107.

We employ the TDCC method based on an expansion of a one-electron three-dimensional

wave function method to calculate various (multiple) differential single-ionization cross sec-

tions in O8++Li collisions at 1.5 MeV/amu. Our first step is to diagonalize the radial

Hamiltonian of Eq. (7), where our choice for the Hartree-local exchange potential is given

by

Vl(r) =

∫

dr′

r>
2P 2

1s(r
′)− αl

2

(

24ρ(r)

π

)
1

3

, (17)

where ρ(r) =
2P 2

1s
(r)

4πr2
and the P1s(r) bound radial orbital is found from an atomic structure

calculation [18] for Li+(1s2). Diagonalization of the l = 0 Hamiltonian of Eq. (7) with

α0 = 0.58 in Eq. (17), on a 768-point radial mesh with ∆r = 0.10 a.u., yields an ionization

potential for the 2s subshell of Li(1s22s) of 5.3880 eV, in excellent agreement with exper-

imental results [19]. In order to prevent collapse of the Plm(r, t) radial wavefunctions into

the closed 1s2 inner subshell, we replaced the l = 0 Hartree with local exchange potential

with a pseudopotential following standard procedures [20]. Diagonalization of the l = 1

Hamiltonian of Eq. (7) with α1 = 0.20 yields an ionization potential for the 2p subshell of

Li(1s22p) of 3.5306 eV, again in agreement with experimental results. For l ≥ 2, the Hamil-

tonian of Eq. (7) is diagonalized with αl = 0.0. Differential ionization cross sections were

obtained by propagating the Plm(r, t) radial wavefunctions using Eq. (3) on the 768-point

radial mesh with 16 lm (l = 0 − 3) coupled channels. Continuum orbitals are obtained by

direct integration of the radial Schrödinger equation given by

H(r)Pkl(r) = ǫPkl(r) (18)

for 300 box-normalized functions with a uniform spacing of ∆k = 0.05 a.u. to span an

electron energy, ǫ = k2

2
, up to 3 keV. The Pkl(r) continuum orbitals are used to obtain

momentum-space wave functions in Eq. (8).

The multiple differential cross-sections computed from the TDCC method based on an

expansion of a one-electron three-dimensional wave function approach are obtained by time
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propagating Eq. (3) from d0 = −50 a.u. to dfinal = +106 a.u. at 250 different impact

parameters with ∆b = 0.2 a.u. reaching a maximum value bmax = 50 a.u.

III. RESULTS

We first start analyzing the fully differential cross section for individual values of the

impact parameter b (FDCS-b) of Eq. (10). In Fig. 1 we present FDCS-b for an electron

energy ε = 1.5 eV, as a function of the electron angle θe and for different values of the

electron azimuthal angle φe. φe = 0◦ corresponds to the so-called scattering plane, while

φe = 90◦ sets the perpendicular plane (for details of the collision geometry see Ref. [21]).

Angles different from the two already mentioned define intermediate planes and we have

chosen two of them, namely φe = 30◦ and φe = 60◦, in order to study the behaviour of the

FDCS-b as a function of φe.

The FDCS-b for b = 0.4 a.u. (solid lines) has large peaks for θ = 0◦ and θ = 180◦ along

the direction of the projectile motion and for all the azimuthal cases studies. Comparing this

behaviour with the case of C6+He collisions (for details see [8]) we observe that the FDCS-b

look quite similar. Since the mean electron radius of of the Li 1s orbital is < r >1s= 0.57

a.u. we see that a projectile with b = 0.4 a.u. penetrates deep enough to feel the full charge

of the bare ion as in the case of helium (with now a charge of Z = 3) and consequently

comparable features should be observed. In addition, compared with the case of C6+He

collisions, a larger momentum transfer (∆p = 5.08 a.u.) is also found.

On the other hand, for larger impact parameters, the projectile would feel a more complex

atomic structure. Since the mean electron radius of the Li 2s orbital is < r >2s= 3.87 a.u.,

the FDCS-b for 0.5 . b . 4 corresponds to the case where the projectile will interact with an

electron cloud that is quite different than in the case of a He target, which may significantly

modify the FCDS-b distribution.

The FDCS-η are the quantities experimentally measured in COLTRIMS and MOTReMi

experiments. Such measurements are differential in all the parameters, namely η, k (or

energy ǫ via ǫ = k2

2
), θe and φe. In Fig. 2 we show the FDCS-η as a function of the electron

angle θe and for different values of the electron azimuthal angle φe. The electron energy was

chosen as ǫ = 1.5 eV and the value of the projectile momentum transfer is η = 1.0 a.u. The

two latter values could be considered typical and experimentally accessible [22]. In Fig. 2
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the FDCS-η are calculated including (full lines) and neglecting (dotted lines) the interaction

between the two heavy nuclei, i.e. the NN interaction. The latter was included using the

phase factor of Eq. (12) in Eq. (11). We should note, however, the choice of the NN model

is not unique [9, 13, 14].

In some sense, the FDCS-η represents a weighted collection of the FDCS-b for different

values of the impact parameter b. Incidentally, FDCS-b for precise values of b resembles in

shape the FDCS-η in particular collision planes (this behaviour was also observed using He

targets [8]). In the perpendicular plane (φe = 90◦), for instance, the FDCS-b for b = 2.0

a.u. (dotted line in Fig. 1) appears to be similar in shape to the corresponding FDCS-η

counterpart of Fig. 2. On the other hand, for the other planes it appears the complex

shape observed in FDCS-η (both including and neglecting the NN interaction) is not closely

reproduced by FDCS-b for particular values of b.

From a close inspection both in shape and magnitude of Fig. 2 we can conclude the FDCS-

η depends strongly on the NN interaction. For instance, when this interaction is included,

the FDCS-η for φe = 0◦ (scattering plane) presents a double-peak shaped structure in the

range 0◦ < θe < 180◦, meanwhile when the NN interaction is neglected only one peak appears

to dominate in the same θe range. In the perpendicular plane, i.e. φe = 90◦, the FDCS-η

including the NN interaction shows a symmetric structure with a large peak at θe = 0◦ and

other small peaks at θe ≈ 90◦ (θe ≈ 270◦) and θe = 180◦. On the other hand, the FDCS-η

neglecting the NN interaction peaks at θe = 180◦ and the difference between the value of

this peak and the one at θe = 0◦ is less pronounced.

One major difference, both in the FDCS-b and the FDCS-η, between the case of single

ionization of He and Li by ion impact should be pointed out. By comparing the single

ionization of He and Li for similar projectile parameters [13, 23] we can conclude the FDCS

are very sensitive to the initial state. For single ionization of He by relatively high speed

projectiles the FDCS-η shows the usual binary and recoil peaks at the direction of ≈ η and

≈ −η, respectively. Certainly the actual position will depend on the projectile velocity and

charge, but in a large range of projectile parameters the FDCS exhibits these two peaks at

θe ≈ 90◦ (binary peak) and θe ≈ 270◦ (recoil peak) [9, 21, 23].

In Fig. 3 we present double differential cross sections (DDCS) as a function of electron

energy and momentum transfer for single ionization of Li(2s) and Li(2p) by 1.5 MeV/amu

O8+ impact (d2σ/dηdǫ). The latter was obtained by integration of the FDCS-η over the
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electron angles θe and φe (see Eq. (14)). Our theoretical results are compared with the

experimental measurements of Ref. [16]. We have normalized the experimental data to

our theoretical cross sections for η = 0.65 a.u. (see. [16] for more details). From the

figure we can observe the very good agreement between theory and experiment for all the

Li(2p) cases (panels (b), (d) and (f)) and fair agreement for the Li(2s) cases (panels (a),

(c) and (e)). In the latter, major deviations can be seen for values of η & 1 a.u. We can

consider our model accounts for the NN interaction in a similar way to the CDW-EISNN

of Ref. [16] (dashed lines of Fig. 2), i.e. a quantum mechanical model based on the eikonal

approximation. Consequently comparable predictions would be expected. This is true for all

the Li(2p) cases (see below) and the Li(2s) case with Ee = 2 eV, but discrepancies appear

for the other two energies studied, i.e. Ee = 10 eV and Ee = 20 eV, with η & 1.5 a.u.

The reason for this discrepancy could be traced back to the way each individual FDCS-b

is weighted by the Fourier transform formalism and indicates that the contribution of the

small impact parameters, the so called ’close collisions’ (corresponding to the larger values

of η) is overestimated. The excellent agreement between a perturbative theory joint with a

classical model for the NN interaction (CDW-EISCLNN, i.e. solid lines of Fig. 2 of Ref. [16]),

demonstrate, however, that our model for the NN interaction could be also responsible for

the differences.

On the other hand, for the Li(2p) DDCS, our theoretical model is able to reproduce

reasonably well the experimental data. As a consequence, the Fourier transform approach

seems to weight adequately the individual FDCS-b for this case. We note Zeff in Eq. (12)

is a parameter one could vary in order to obtain a possibly better description of the NN

interaction, including, for instance, the screening of the passive remaining electrons of the

Li residual ion. One simple choice for Zeff can be obtained from Zeff =
√
−2n2εi where

n is the principal quantum number and εi < 0 the energy of the ground or excited initial

state [13]. For the cases studied in this article, however, there is no major improvements

compared with the choice of an unscreened charge, i.e. Zeff = 1.

In Fig. 4 we present single differential cross sections for the single ionization of Li(2s)

by 1.5 MeV/amu O8+ projectiles in the electron energy (dσ/dǫ). The latter was obtained

from multiple integrations (see Sec. II) of the time-propagated electron momentum space

wavefunctions. Our theoretical results are compared with experimental data obtained in

MOTReMi experiments [15]. The measured experimental data were normalized to the theo-
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retical differential cross sections at the smallest electron energy. From the figure we observe

the excellent agreement of the TDCC method based on an expansion of a one-electron

three-dimensional wave function results with the experimental data for almost all the range

of ejected electron energies. Consequently, our scheme appears to be adequate to model

differential cross sections in such an energy range. Performing the integration in energy the

total cross section was found to be 1.12× 10−15cm2 using Eq. (16).

Finally in Fig. 5 we show the weighted ionization probability in logarithmic scale for the

single ionization of Li(2s) by 1.5 MeV/amu O8+ projectiles in comparison with the case of

single ionization of He by by 100 MeV/amu C6+ projectiles [9]. From the figure we could

argue that now the probability distribution peaks around b = 4 a.u. (b = 1 a.u. for the

case of helium) and it is much broader. In addition, a large range of the impact parameters

(b = 50 a.u. was our maximum value used in our calculations) is required in order to obtain

converged cross sections.

IV. SUMMARY AND CONCLUSIONS

We have shown in this paper how the TDCC approach may be used to calculate fully

differential cross sections for single ionization of Li by fast projectile impact. We have em-

ployed a 3D treatment of one active electron interacting with the projectile. This approach

could be considered adequate considering the remaining two electrons of the Li ion form

a closed shell. The 3D approach can also be straightforwardly modified to calculate fully

differential cross sections both as a function of the impact parameter and the projectile

momentum transfer. The latter are the quantities obtained in COLTRIMS/MOTReMi ex-

periments and consequently our predictions could be confirmed by future measurements.

The interaction between the two heavy nuclei, the so-called NN interaction, can be directly

incorporated in our numerical scheme and we have observed substantial differences, both

in shape and magnitude, between the calculated quantities when we include (neglect) this

interaction. This behavior confirms FDCS as the most sensitive quantity in the few-body

breakup processes. Furthermore, our single differential cross section calculations are in ex-

cellent agreement with experimental data over the whole range of electron energy. Finally,

we have also incorporated in our scheme calculations for the single ionization of Li in its

excited states in order to compare our results with double differential cross sections as a
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function of the electron energy and transverse momentum transfer. Reasonable agreement,

especially for the Li(2p) cases, is observed.
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Figure captions

FIG. 1: Fully differential cross sections (FDCS-b) for single ionization in O8++Li collisions at a

projectile energy of 1.5 MeV/amu, an ejected-electron energy of ε = 1.5 eV, θe = 0◦ − 360◦ and

for various values of the azimuthal angle φe. Solid curve, TDCC method based on an expansion

of a one-electron three-dimensional wave function calculation at b = 0.4 a.u.; dashed curve, TDCC

method based on an expansion of a one-electron three-dimensional wave function calculation at b =

1.0 a.u.; dotted curve, TDCC method based on an expansion of a one-electron three-dimensional

wave function calculation at b = 2.0 a.u.; dot-dashed curve, TDCC method based on an expansion

of a one-electron three-dimensional wave function calculation at b = 5.0 a.u. (m.a.u. = modified

atomic units equal to 2.8 × 107 times atomic units such that the total cross section is in units of

1.0× 10−24 cm2).
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FIG. 2: Fully differential cross sections (FDCS-η) for single ionization of Li(2s) by 1.5 MeV/amu

O8+ ions using the TDCC method based on an expansion of a one-electron three-dimensional wave

function approach for various values of the ejected electron azimuthal angle φe, for a momentum

transfer of η = 1.0 a.u., and an ejected electron energy ǫ = 1.5 eV. Full line: calculations including

the nuclear-nuclear interaction, dotted line: calculations neglecting the nuclear-nuclear interaction,

i.e. with ∆(b) = 0 in Eq. (12). (m.a.u. = modified atomic units equal to 2.8 × 107 times atomic

units such that the total cross section is in units of 1.0 × 10−24 cm2).
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FIG. 3: (Color online) Double differential cross sections as a function of electron energy and

transverse momentum transfer (d2σ/dηdǫ) of single ionization of Li(2s) and Li(2p) by 1.5 MeV/amu

O8+ impact. Panels (a), (c) and (e) are for Li(2s) and electron energies of 2 eV, 10 eV and 20 eV,

respectively and panels (b), (d) and (f) are for Li(2p) and electron energies of 2 eV, 10 eV and

20 eV, respectively. Solid lines are the TDCC method based on an expansion of a one-electron

three-dimensional wave function results with a target effective charge in the NN model of Zeff = 1;

dashed lines are the TDCC method based on an expansion of a one-electron three-dimensional wave

function results with a target effective charge in the NN model of Zeff = 1.26; solid circles are the

experimental data of Ref. [16].
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FIG. 4: Single differential cross section in energy (dσ/dǫ) for single ionization of Li(2s) by 1.5

MeV/amu O8+ ions. The solid line is the TDCC method based on an expansion of a one-electron

three-dimensional wave function results and the solid circles are the experimental data of Ref. [15].
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FIG. 5: TDCC method based on an expansion of a one-electron three-dimensional wave function

calculations of the weighted ionization probability (log-scale) for single ionization of Li(2s) by 1.5

MeV/amu O8+ ions and single ionization of He by 100 MeV/amu C6+ ions, as a function of the

impact parameter.
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