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We present a new technique based upon two-pathway coherent control for the measurement of
a weak transition moment. In our approach, we use two coherent optical beams, one the second
harmonic of the other, to drive a transition by means of three distinct optical interactions. The
interference between these interactions allows a determination of one moment relative to another.
In this work, we demonstrate the approach by applying it to an experimental determination of
the magnetic dipole moment for the 6s 2S1/2 → 7s 2S1/2 transition in atomic cesium. Our results
are in excellent agreement with previous single-beam measurements. We also discuss prospects for
extending this measurement technique to a new determination of the weak-force induced parity-
nonconserving moment on this same transition.

PACS numbers: 32.70.Cs, 32.80.Qk

Exchange of the weak neutral Z0 boson between the
nucleons and electrons in atomic systems can induce a
very weak parity nonconserving (PNC) transition mo-
ment between atomic eigenstates [1, 2]. Precise mea-
surements of these moments can then provide a sensi-
tive means of investigating the weak force at low mo-
mentum exchanges. Atomic cesium has played a central
role in these measurements [3–6], including the most pre-
cise measurement of the weak-charge induced transition
moment EPNC [6]. PNC moments have also been mea-
sured in thallium [7–10], ytterbium [11, 12], lead [13, 14],
and bismuth [15], and several groups are actively pursu-
ing PNC measurements in various atomic systems. To
date, however, the precision of neither the measurements
nor of the atomic structure calculations in any of these
other systems have reached the level of those of cesium.

Motivated by the need to resolve long-standing ques-
tions regarding the large nuclear spin dependence of
EPNC reported in Ref. [6], and also by recent improve-
ments of the atomic structure calculations in cesium [16–
18], we have recently begun development of a new tech-
nique, based upon two-pathway coherent control, for the
measurement of extremely weak optical transitions in
atomic systems. In the present study, we demonstrate
this technique with a new determination of the magnetic
dipole moment of the 6s 2S1/2 → 7s 2S1/2 transition in
cesium.

We previously observed [19, 20] an interference be-
tween two-photon absorption and a Stark-induced transi-
tion on the 6s 2S1/2 → 8s 2S1/2 transition in cesium. We
now show how this interference can be used to measure
the ratio of one weak moment relative to another. We
note that most previous determinations of weak transi-
tion moments also use the interference between the weak
transition and a much stronger interaction on the same
transition. Our technique differs, however, in that we ap-
ply not one, but two, coherent laser fields to the atoms.
The first field component ε

ω1 , at a wavelength of λ =
540 nm, is resonant with the transition directly, and
drives the interaction through linear interactions (mag-

netic dipole (M1) and Stark-induced electric dipole (St)).
A critical requirement for the measurement technique is
that the amplitudes for these linear interactions differ in
phase by π/2, causing these two terms to add in quadra-
ture. The second field component εω2 , whose frequency is
half that of the first, at a wavelength λ = 1079 nm, drives
the same atomic transition by way of a two-photon inter-
action (2P ). This additional laser field presents us with
several advantages over previous techniques: (1) The con-
tinuous control of the phase difference between the strong
two-photon amplitude and the various weaker transition
amplitudes provides us our primary means of reversing
the interference; so (2) precise reversal of large dc fields is
not necessary; and (3) we employ linearly-polarized laser
fields.
The total transition rate W for excitation of the

6s 2S1/2, F,m → 7s 2S1/2, F
′,m′ transition is propor-

tional to the square of the sum of the amplitudes for
the transition

W ∝ |A2P +ASt +AM1
|2 , (1)

where the terms A represent the transition amplitudes for
the various interactions. F , m, F ′ and m′ represent the
total angular momentum, including nuclear spin, and its
projection onto the z-axis, of the ground 6s state, and the
excited 7s state, respectively. These amplitudes depend
on the polarization of the optical fields and the orienta-
tion of the static electric and magnetic fields, E = Ey ŷ

and B = Bz ẑ, that we apply to the atoms. We follow the
notation of Gilbert and Wieman [21] for explicit forms of
these moments, and select the specific experimental ge-
ometry that allows us to measure M1. For ∆m = 0
transitions, the transition amplitude of the Stark-induced
transition amplitude is

ASt =
[

αE · εω1δF,F ′ + iβ(E× ε
ω1)zC

F ′,m
F,m

]

eiφ
ω1

, (2)

the magnetic dipole amplitude is

AM1
= (k̂× ε

ω1)zM1C
F ′,m
F,m eiφ

ω1

, (3)
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and the two-photon interaction driven by the 1079 nm
laser beam is

A2P = α̃ (εω2 eiφ
ω2

)2. (4)

In these expressions, α and β are the scalar and vector
polarizabilities, which characterize the transition ampli-
tude induced by E when this static field is parallel to (α)
or perpendicular to (β) the laser polarization ε

ω1 . The
polarizabilities α and β are each purely real parameters.
For this transition, the most precise determination of the
scalar polarizability is α = −269.7 (11) a30 [22], and for
the vector polarizability β = 26.99 (5) a30 [22–26], where
a0 is the Bohr radius, and the number in parentheses

is the uncertainty. The terms CF ′,m′

F,m are related to the
Clebsch-Gordon coefficients, and are tabulated for this
transition in Ref. [21]. Ordinarily, one can disregard the
optical phases φω1 and φω2 of the laser fields, but we
must retain these terms here to properly determine the
interference between the linear amplitudes and the two-
photon transition amplitude. M1 is the magnetic dipole
transition moment. To first order, this transition is mag-
netic dipole forbidden, but mixing due to configuration
interactions and relativistic effects relaxes this restric-
tion [27, 28].

The two-photon moment α̃ has a form similar to that
of the scalar polarizability α, except the energy denom-
inator differs to reflect the detuning of the laser fre-
quency from single-photon resonances with intermediate
states [2]. Since the two photons are of a single frequency
in our measurements, ω2 = ω1/2, and the two-photon
process can excite only ∆F = 0, ∆m = 0 transitions [29–
31]. This feature allows us to ignore ∆m = ±1 transitions
via theM1 or Stark-induced moments, which greatly sim-
plifies our experimental determination.
Without loss of generality, we define the y-direction

to be aligned with k̂, the propagation direction of the
540 nm beam, such that the y-component of the electric
field ε

ω1 associated with this beam must vanish for a
plane wave or a weakly focussed beam. This beam is
linearly polarized primarily along the x-axis. With the
laser frequency tuned to the ∆F = 0 transition, the sum
of the transition amplitudes is

∑

A = A2P + α(Exε
ω1

x + Ezε
ω1

z )eiφ
ω1

(5)

−{iβEy +M1} εω1

x eiφ
ω1

CF,m
F,m ,

where C4,m
4,m = −C3,m

3,m = m/4 [21]. The primary terms in
this expression are the dominant two-photon term A2P ,
the Stark term iβEy εω1

x , and the magnetic dipole term
M1 εω1

x . The latter two terms differ in phase by π/2.
From our measurements, described later, we estimate
that A2P ≈ 104AM1

, while ASt varies from 0 to ∼ 3AM1
.

The two terms proportional to the scalar polarizability α
are small for our experimental geometry. We will retain
the αExε

ω1

x term to properly account for misalignment
of the fields. As we vary the optical phase difference

∆φ ≡ 2φω2 −φω1 , the excitation rate W modulates sinu-
soidally, with signal proportional to

W ∝ |
∑

A|2 ≈ |A2P |2 −K(Ey) cos {∆φ− δφ(Ey)} ,
(6)

where we have omitted the negligibly-small term that
is second-order in εω1

x . This signal consists of a non-
varying term due to the two-photon interaction alone,
and a modulating term resulting from the interference
between the two-photon amplitude and the weaker Stark-
induced and magnetic-dipole amplitudes. The amplitude
of the modulation is

K(Ey) = 2 |A2P | εω1

x CF,m
F,m η (7)

×
√

(

M1 − αEx/C
F,m
F,m

)2

+ (βEy)
2
,

where η, whose maximum value is one, accounts for the
spatial overlap and alignment between the ω1 and ω2

beams [19, 20]. The phase δφ(Ey) is

δφ(Ey) = tan−1
[

βEy/
(

M1 − αEx/C
F,m
F,m

)]

. (8)

The amplitude K(Ey) is minimized when Ey ≈ 0, and
grows with increasing |Ey| as a hyperbolic function.
Our measurement of M1, then, is carried out by ap-

plying a static field Ey to the atoms and measuring the
amplitude K(Ey) and phase δφ(Ey) of the modulation
of the signal as we vary the optical phase difference ∆φ.
Note that, while the two-photon process is integral to
the interference, the measurement of the amplitude of
the modulation vs. Ey provides a direct determination of
M1/β, and is insensitive to the two-photon amplitude.
Careful matching of the wavefronts of the two optical
beams helps produce the largest amplitude of the mod-
ulation signal (i.e. η → 1), but a perfect match is not
required, nor is a calibration of the two-photon transition
rate. This feature is critical to the measurements.
We carry out the measurements in an effusive beam of

Cs atoms, housed inside a vacuum chamber evacuated to
a pressure of ∼ 2.5× 10−6 torr. We have constructed the
Cs beam nozzle using an array of stainless steel capillary
tubes [32], producing a high-density, collimated beam of
atoms of height 3 mm by width 1 cm. The atomic beam
is crossed by laser beams in three regions, as we show
in Fig. 1. We label these regions the ‘preparation’ re-
gion, the ‘interaction’ region, and the ‘detection’ region,
respectively. In the preparation region, the atoms are
optically pumped into a specific sub-level of the ground
state using a pair of external cavity diode lasers (ECDL)
tuned to the Cs 6s 2S1/2 → 6p 2P3/2 level at 852 nm.
We control the polarization of these beams to drive the
ground state population of the atomic beam to a single
magnetic component. By selecting the frequency and po-
larization, we can choose any one of the four ‘extreme’
components of the ground state (the m = ±F compo-
nent of the F = 3 or F = 4 hyperfine level) as the initial
atomic state for our measurements of M1/β. In this re-
gion, we apply a dc magnetic field of magnitude B ∼ 2
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FIG. 1: (Color online) A schematic layout of the measurement
system.

G in the direction of the laser propagation k̂. We have
determined that, at the high atomic beam densities (esti-
mated at ∼ 5× 109 cm−3) used for these measurements,
∼92% of the atoms are transferred to this initial state.
This preparation scheme is similar to that discussed by
Wood [33].

After the atoms are prepared in the ground state, they
travel to the interaction region of the atomic beam, where
they are driven by the two-frequency (ω1 and ω2 = ω1/2)
laser beam. We generate this beam using a home-made
Littrow style ECDL operating at λ = 1079 nm, produc-
ing an optical power of about 50 mW. We stabilize this
laser frequency to the 6s → 7s two-photon absorption
line in a Cs vapor cell, and amplify this 1079 nm beam
using a commercial fiber amplifier system to a power of 12
W. Using a magnesium-doped periodically-poled lithium
niobate (MgO:PPLN) crystal, we frequency double a por-
tion of this beam, producing more than 800 mW of light
at 539.5 nm. This second harmonic beam is coherent
to and propagating co-linear with the 1079 nm beam.
We separate the two components, phase delay the green
beam, and recombine the beams before directing them to-
ward the interaction region of the atom beam inside the
vacuum chamber. We delay the phase of the green beam
using a rotating optical flat mounted on a galvanometer.
We double pass the green beam through this optical flat
in order to minimize beam displacement. We apply a lin-
ear ramp voltage (∼ 0.1 Hz) to the galvanometer, sweep-
ing the galvanometer angle θ, producing a slow, nearly
linear variation of the relative optical phase, which we
label ∆φscan. In addition, we apply a higher frequency
(∼ 150 Hz) dither signal to the galvanometer, producing
a sinusoidal modulation of the phase ∆φmod. The sum
of these phases ∆φ = ∆φscan + ∆φmod gives rise to a
modulation in the excitation rate of the 7s state of the
cesium atoms, as given by Eq. (6).
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FIG. 2: (Color online) The normalized amplitude
K(Ey)/K(0) as a function of Ey. The data points represent
our measurements. The solid line represents a fit of Eqs. (7)
to the data.

We apply a 7 G magnetic field in the z-direction (verti-
cal) to the atoms in the interaction region, and a variable
electric field in the y-direction. We generate the electric
field by applying a potential difference V between a pair
of parallel aluminum plates of dimension 15 by 15 cm,
separated by a spacing of d = 5.338 (7) cm and coated
with a thin layer of Aquadag. A 2.5 mm diameter hole
in the center of each plate admits the interaction laser
beams. Through numerical modeling of the electric field,
we have determined that the variation of this field over
the interaction volume is less than 0.05%.

After excitation by the interaction beams, the atoms
travel downstream to the detection region, where they
are intersected by a laser beam tuned to 852 nm. This
laser drives the 6s 2S1/2 → 6p 2P3/2 cycling transition,
and we detect the fluorescence scattered by atoms in a
scheme patterned after that developed by the Boulder
group [33]. We tune the frequency of the detection laser
to be resonant with the hyperfine line from the compo-
nent of the ground state that was initially emptied by
the preparation beam. Atoms that were excited to the
7s state in the interaction region relax spontaneously to
the ground state, with a significant probability (of or-
der 1/2) of landing in the hyperfine component that was
emptied by the preparation laser. We detect the fluores-
cent light scattered by these atoms as they are driven by
the detection laser, with about 10 photons detected per
atom passing through this region, using a large area pho-
todiode placed close to the atom beam. An interference
filter reduces the light levels arising from other sources,
and we amplify the photocurrent in a pre-amplifier. We
measure the component of the 7s excitation rate mod-
ulating at 150 Hz (the dither frequency applied to the
galvo plate) as a function of Ey using a lock-in amplifier
for phase-sensitive detection. We compute the amplitude
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FIG. 3: (Color online) Results of the 16 individual determi-
nations of M1/β. The blue circles represent |M1/β| for initial
states in the F=3 hyperfine line, while red squares are for the
initial F=4 hyperfine line. We use open symbols for results
from m = −F initial states and closed symbols for results
from m = +F initial states. The dashed line and black solid
round data point at the right represent the weighted average
of the individual results.

of the peak of the Fourier Transform of these data to de-
termine the amplitude K(Ey). To reduce the effect of
slight drifts in the signal (resulting from variations in the
overlap of the 1079 and 540 nm beams, the power of the
540 nm and 1079 nm laser beams, and the density of the
Cs beam), we alternate measurements of the signal with
field Ey applied and zero field. We repeat this at several
different values of Ey, and show a plot of K(Ey)/K(0)
in Fig. 2. The cesium atoms are prepared in the F=3,
m=-3 state for these data. We show three data points
at each field value Ey, with each data point representing
the average of five measurements of K(Ey)/K(0). Only
∼ 80 seconds were required to acquire each data point.
For the data shown, the least-squares fit to Eq. (7) yields
the value |M1/β| = 29.80 (29) V/cm. The only other
adjustable parameter in this fit is the small angle be-

tween E and the propagation direction k̂. We carry out
each measurement four times under the same initial con-
ditions, and repeat the procedure discussed above after
preparation of the initial ground state in each of four dif-
ferent cases (i.e. F= 3 or 4, with m = ±F ). We illustrate
the individual results of the 16 determinations of |M1/β|
in Fig. 3. From the variation of the phase δφ(Ey) as a
function of Ey, not shown, we determine that the value
of M1/β is negative.
The primary sources of uncertainty in these measure-

ments are due to amplitude and frequency fluctuations
of the 852 nm detection laser (15 ppm/

√
Hz), shot noise

in the excitation process (10 ppm/
√
Hz), power noise in

the excitation laser (8 ppm/
√
Hz), and shot noise related

to the residual population in the initially ‘empty’ ground
state (5 ppm/

√
Hz). The effect of pointing instabilities

in the interaction beam is difficult to quantify, but they
appear to be well accounted for in our method of data
collection. The combined noise density of∼25 ppm/

√
Hz

corresponds to a signal-to-noise ratio of about 3 in one
second of integration time. This roughly agrees with our
quoted 0.3% uncertainty in M1/β after about 2×104 s of
data collection time. In addition, we estimate the follow-
ing systematic uncertainties in our determination of the
electric field produced by the parallel field plates: 0.14%
from the field plate spacing, 0.034% for the uncertainty in
the voltage measurement, and 0.07% due to instrumen-
tal variations between channels of the data acquisition
system.

Our final determination of M1/β is
−29.55 (10)stat(5)sys V/cm, where we give the sta-
tistical and systematic uncertainties individually. This
is consistent with the previously measured values by
Gilbert, Watts, and Wieman [34] of M1/β = −29.73 (34)
V/cm, M1/β = −29.55 (45) V/cm by Bouchiat,
Guéna, Pottier [35], and M1/β = −29.48 (7) V/cm by
Bennett [36]. Using β = 26.99 (5) a30 [22–26], our mea-
surement result for M1 is −4.251(18)×10−5|µB |/c, where
µB = e~

2mec
is the Bohr magneton. Agreement with the

latest theoretical result [28] M1 = −3.58× 10−5 |µB|/c is
reasonable, considering the difficulty of calculating this
moment.

As we stated in the introduction, our long-term goal is
an application of this technique to a measurement of the
weak-force induced interaction on the same transition,
with essentially the same apparatus. The field config-
uration for such a measurement must be altered, with
E, B, and ε

ω1 each aligned with the z-axis. Since the
magnitude of EPNC is smaller than that of M1, by a fac-
tor of ∼ 2× 104, several improvements to our apparatus
will be required. An optical power build-up cavity to en-
hance the amplitude εω1 will be necessary. Such a cavity
is also used in other measurements of the PNC ampli-
tude [6, 11, 12]. With a Finesse of 104, we can enhance
the field amplitude by ∼ 102. In contrast to techniques
used elsewhere in which the cavity supports a standing
wave mode, we must use a traveling wave configuration
in order to maintain the interference phase across the
interaction region. This optical cavity can also be used
to improve the polarization purity of εω1 [37], which will
be necessary to reduce the systematic effects due to the
magnetic dipole amplitude. Further suppression of the
noise on the frequency of the 1079 nm laser and the de-
tection laser will be necessary for this measurement, as
will longer integration times. With each of these improve-
ments in place, application of the two-pathway coherent
control scheme to measurement of the PNC interaction,
while challenging, should be attainable.

We have reported a new technique based upon coher-
ent control ideas for the measurement of weak optical
interaction moments. Our measurement of M1 is in good
agreement with previous measurements. We are extend-
ing this technique for application toward the weak-force
induced amplitude EPNC .
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