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 We study the creation of electron-positron pairs induced by two spatially separated electric 

fields that vary periodically in time.  The results are based on large-scale computer simulations of 

the time-dependent Dirac equation in reduced spatial dimensions.  When the separation of the 

fields is very large, the pair creation is caused by multi-photon transitions and mainly determined 

by the frequency of the fields.  However, for small spatial separations a coherence effect can be 

observed that can enhance or reduce the particle yield compared to the case of two infinitely 

separated fields.  If the travel time for a created electrons or positrons between both field locations 

becomes comparable to the period of the oscillating fields, we observe new peaks in the energy 

spectrum which can be explained in terms of field-induced transient bound states. 
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1. Introduction 

 In 1951 Schwinger published his analysis of the electron-positron pair creation process in 

the vacuum triggered by an ultra-strong static and spatially uniform electric field [1].  This 

important work about the breakdown of the vacuum has received wide attention in the physics 

community [2].  Although the typical electric field strengths to produce a substantial amount of 

pair creation are still hard to generate experimentally, laser technology has advanced at a rapid 

pace in recent years [3] to make the laser based pair creation [4] an area of current interest.  In 

addition to the motivation from the experimental side, theoretical studies of the pair creation 

process by supercritical fields have attracted attention in the optics community and the research 

has led to many interesting results, allowing us to understand more details of this fascinating 

process and preparing us better for the design of future experiments that can probe relativistic 

quantum electrodynamics.  

 Theoretical studies have proposed several ways to produce or control the pair creation 

process.  Among these studies one approach is to use a supercritical static field (or a field that 

varies slowly in time), thus allowing particles to tunnel across the positive and negative energy gap 

reduced by the static field and creating a continuous flux of particle pairs [5-7].  This mechanism is 

referred to as the Schwinger tunneling effect.  However, even if the fields are only subcritical there 

are also other mechanisms that can lead to the creation of particles.  For example, time dependent 

fields [8-18] can produce particles by triggering a transition between the negative and positive 

states through photon absorption if the frequency of the alternating field exceeds the mass gap.  

Many proposals have been reported to lower the pair creation threshold by exploiting more than 

just one external field [19,20].  Recently, it was also proposed to use spatially localized magnetic 

fields to control the pair creation process [21,22]. 

 In a recent work, we studied how the pair creation process could be controlled by a 

combination of a time dependent force field with a static field [17].  The time dependent field was 

represented by the Sauter potential [23].  The static field was intended to drag the created particles 

out of the interaction zone but it also caused the particles to return to the interaction zone, thus 

leading to a complicated dynamics.  In this work, we will examine two spatially localized and time 

dependent force fields with a variable spatial separation.  We show that quantum coherence can 

play a significant role during the pair creation.  The two oscillatory electric fields point in opposite 

directions at each time.  For such a configuration, new effects are predicted that cannot occur for a 
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single oscillating field.  We discuss a coherence effect between the pairs created at each localized 

field, that is associated with the fact that energy levels can be shifted up and down leading to the 

occurrence of additional transient bound states. 

 The paper is organized as follows.  In Section 2, we introduce the field theoretical 

framework for our approach and present the necessary equations for calculating the total number 

of created particles as well as the spatial distributions.  In Section 3 we study the pair creation 

yields and compare the perturbative predictions with the exact data in the single-photon regime.  In 

Section 4, we examine the spatial densities, energy and momentum spectra, and the role of 

transiently bound states in the multi-photon domain.  In Section 5, we summarize and discuss our 

findings.   

 

2. The quantum field theoretical simulations and the perturbative approach 

 We briefly summarize first the main idea for our numerical approach based on quantum 

field theory (QFT) in external fields.  The time dependent operator Ψ̂ (z,t) for the 

electron-positron field can be obtained from the time dependent Heisenberg equation as well as the 

Dirac equation (here and below we use atomic units) [4].  As long as we are neglecting 

interfermionic forces, this equation is sufficient to predict multi-particle dynamics of pair creation. 

 

 i∂Ψ̂ z, t( ) / ∂t = cαzp̂z +βc2 + V z, t( )⎡⎣ ⎤⎦Ψ̂ z, t( )              (2.1) 

 

For simplicity we assume that the time dependent potential V(z,t) is extended only along the 

z-axis.  Here αz and β are the Pauli matrices and c is the speed of light (c=137.036 a.u).  In the 

appendix of Ref. [21] it was shown explicitly and illustrated numerically that the specific gauge 

used to represent a spatially localized electric field does not affect the pair creation rate.  We can 

expand Ψ̂ (z,t) in terms of the electron annihilation and position creation operators ( ˆ b and ˆ d†, 
respectively) and the position representation of the force-free positive and negative energy 

eigenstates |p> and |n>,  

 

ˆ Ψ(z,t) = Σp ˆ bp(t) up(z) + Σn d̂ n
†(t) vn(z) 

                           =  Σp ˆ bp up(z,t) + Σn ˆ dn
† vn(z,t)                                                   (2.2) 
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Here ˆ bp  and ˆ dn
† denote the annihilation and creation operators for the electron and the positron.  

Note that up(z,t) and vn(z,t) satisfy the single-particle time dependent Dirac equation.  The 

numerical split operator technique [26-29] can be used to obtain solutions without any 

approximation and the final states of the system according to Eq. (2.2) can be obtained at any 

space-time point.  

 With the knowledge of the QFT field operator, the expectation value of the electron density 

operator in the vacuum can be expressed according to 

 

                 ρ(z,t) ≡ <<vac|| ˆ Ψ†
e(z,t) ˆ Ψe(z,t)||vac>>                                                 (2.3) 

 

which is the electronic number density.  Here ˆ Ψe = Σp ˆ bp(t) up(z) denotes the electronic portion of 

the field operator.  This particular definition leads to a certain interpretation of the observables 

computed inside the interaction zone.  All probabilities shown correspond to the amount of 

electron-positron pairs after the electric field has been turned off abruptly.  The values therefore 

include also the unavoidable pair-creation or annihilation associated with the temporal turn off.  

For a more detailed discussion, see [18, 30].  After some operator algebra, the result can be 

expressed via the field free positive and negative energy eigenstates |p> and |n> of the 

single-particle Dirac Hamiltonian and the associated single-particle evolution operator U(t) as 

 

 ρ(z,t) = Σn ⎢Σp Up,n(t) up(z) ⎢2                                                   (2.4) 

 

where Up,n ≡ <p|U(t)|n> = <p|n(t)>.  Here the initial states |n(t=0)> are the energy eigenstates 

associated with the negative energy continuum.  By integrating Eq. (2.4) over space, we can get the 

total number of the created pairs as  

 

          N(t) ≡  ∫dz ρ(z,t) = Σp,n ⎢Up,n(t)⎢2                                            (2.5) 

 

These expressions permit us to study the details of the pair creation process for various parameters 

such as potential height, width and frequency of the oscillating fields by investigating the total 
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number of created pairs as well as their spatial and momentum distributions.  For an alternative 

approach based on in- and out-states, see, e.g. [29].  While this approach leads to the same result 

[30,31] than the asymptotic in- and out-state based S-matrix formalism after the external field is 

turned off, it permits us to follow the dynamics with space-time resolution. 

 To model two spatially localized fields, we define V(z,t) ≡ V0sin(ωt) [S(z-D/2) -S(z+D/2)] 

shown in Fig.1.   

 
Fig. 1  Sketch of the space and time dependent potential used in our 

calculations. The created waves due to photon absorption and their initial 

spacing characteristic of the two-peaked bound state may cause resonances 

in the pair creation yield. 

 

Here S(z) represents the Sauter potential [23] function S(z) ≡1/2 [1+tanh(z/W)] with the width W 

of each field, and D denoting the separation between the two localized electric fields.  For such a 

configuration that varies in time with frequency ω, particles can be created via the absorption of an 

integer number of photons.  The potential configuration corresponds to two dislocated oscillatory 

electric fields that have identical intensities, frequencies but differ by an overall phase shift of π. 

For such a model potential, new effects are predicted that cannot occur for a single oscillating 

field. It creates particles with coherent frequency and certain phase difference and enables us to 
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study quantum interference effects. We show that quantum coherence can play a significant role 

during the pair creation.  For such potential well configuration, transient bound states should 

appear, and we intend to study their effect on the pair creation process.  The energy levels shift up 

and down in time leading to the occurrence of additional transient bound states. 

 The states in the negative energy manifold can absorb one or a multiple number of photons 

with energy ω each.  The absorption of photons connects the negative and the positive energy 

states to effectively bridge the energy gap in between and thus creates the pairs.   

 Our numerical simulations naturally include photon transitions of all orders.  But to obtain 

a first understanding of the process we examine the lowest number of relevant photon absorption 

schemes.  For instance, for the single-photon absorption, the energy threshold for pair creation 

corresponds to the condition ω > 2c2.  Such a process has been confirmed to be a viable picture for 

interpreting numerical results [17].  When the photon frequency is gradually increased, an 

apparent turn-on of the pair creation is observed after ω exceeds 2c2, which is equal to the gap 

between the negative and positive energy levels.  It is worth mentioning that the usual condition of 

supercriticality requires the potential height V0 to exceed the energy gap 2c2.  Since both fields are 

time-dependent, the critical condition for the pair creation is mainly determined by the frequency 

ω, while the total yield is proportional to V0
2.  As a result the potential strength can be much less 

than 2c2, thus technically being subcritical, while still triggering the photon-induced pair creation. 

 To describe the few-photon absorption theoretically, we consider first time-dependent 

perturbation theory.  As the interaction does not couple different spin directions, we can express 

the field operator by only two components.  The Hamiltonian of this system can then be separated 

in two parts, H=H0+H’, where H0 = cσ1p+σ3c2 is the force-free Hamiltonian, and the external field 

is represented by the interaction Hamiltonian H’ = V0 sin(ωt) [S(z-D/2)-S(z+D/2)] treated as a 

perturbation.  Here σ1 and σ3 are the Pauli matrices. The eigenvalues and eigenvectors of H0 can 

be found analytically, as Ep and up(z) for the positive energy, and En and vp(z) for the negative 

energy.  The first-order transition amplitude from the negative state |n> to the positive state |p> at 

an arbitrary time t is given by 

 

 
Cpn

1( ) = 1
i
 p ′H n

0

t

∫ ei(Ep−En )τ  dτ
                        (2.6) 
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After some algebra, we obtain the following expression: 

 

 

Cpn
1( ) = πWV0

L
sin ωpn − ω( ) t / 2⎡⎣ ⎤⎦

ωpn − ω( ) / 2⎡⎣ ⎤⎦
Apn csch

πW p + n( )
2

⎡

⎣
⎢

⎤

⎦
⎥sin p + n( ) D / 2⎡⎣ ⎤⎦

 (2.7) 

 

Here the term associated with the inner product Apn is defined as 

 

 Apn =
sgn n( ) Ep + c2 −En −c2 + sgn p( ) Ep − c2 −En +c2

4π −EpEn           (2.8) 

 

By summing over all the states of p and n, we can obtain the first-order perturbation estimation of 

the total pair production as 

 

  N(1)(t) = Cpn
(1) 2

pn∑
 (2.9) 

 

With the help of Eq. (2.7) the first-order perturbative result can be obtained as 

 

   

N 1( ) t( ) = π4W2V0
2

2L2

sin2 ωpn − ω( ) t / 2⎡⎣ ⎤⎦

ωpn − ω( ) / 2⎡⎣ ⎤⎦
2 Apn

2 csch2

p,n
∑ πW p + n( )

2
⎡

⎣
⎢

⎤

⎦
⎥2sin2 p + n( ) D / 2⎡⎣ ⎤⎦

  (2.10) 

  

Except for the last sinusoidal term 2sin2[(p+n)D/2], such an expression describes exactly twice the 

yield associated with a single localized field.  The potential well width D enters the expression 

only via this additional factor, thus resulting in an oscillatory behavior.  Notice that this term is 

independent of time, therefore such an oscillation also manifests itself in the creation rate, which is 

defined as the slope of N(1)(t).  The fact that the spacing D between both fields can modify the rate 

associated with two infinitely apart fields by a factor between 0 and 2, suggests that we can have a 

reduction as well as an enhancement of the pair creation process.  The possibility of an 

enhancement is rather unexpected as the binding of fermions usually lowers the pair-creation rate 
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due to Pauli blocking [6].  In the limit of large D the extra factor 2 sin2[(p+n)D/2] approaches 1 so 

Eq. (2.10) predicts the total number of pairs for two single-fields, as is expected. 

 

3. Coherence effects in the single-photon regime (ω>2c2) 

 To examine the validity of the first-order perturbative prediction from the previous section, 

we first choose a frequency ω=2.5c2.  Such a frequency enables the single-photon absorption to 

bridge the negative and the positive energy states, even though the value of V0=1.5c2 is chosen to 

be subcritical from an energetic point of view.  One could refer to subcritical potentials that can 

continuously produce pairs due to single or multiphoton transitions as temporally supercritical.  In 

Fig. 2a we present the time evolution of the total number of pairs created, for five different 

potential well widths D=2/c, 4/c, 6/c, 8/c and ∞.  For the infinite width, we recover the yield 

generated by two single localized fields.  
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Fig. 2  (a) Graph of the total pair production as a function of time (in a.u.), 

for the potential well widths D=2/c, 4/c, 6/c, 8/c and ∞ (dashed line).  

The inset shows the data for the case where the external field has been 

smoothly turned off.  Other parameters used in our simulations are: 

V0=1.5c2, W=0.5/c and ω=2.5c2.  (b) Same as in (a) but with W=3/c, ω=3c2 

and D=5/c,10/c and ∞.  The corresponding perturbative results are in dashed 

lines.  

 

For comparison, the dashed line in Fig. 2a denotes twice the production associated with a single 

localized field.  Due to the condition ω = 2.5c2 > 2c2, pairs are created continuously at a constant 

rate.  Obviously, for different well separations, the creation rates yield different values.  Such a 

change in the creation rate with different D is a coherence effect, which is due to the interference of 

the created particles from both localized fields.  Note that although there exists an oscillatory 

behavior brought about by D, in this particular case, the pair creation produced by two infinitely 

extended fields (dashed line) take the largest value.  Note also the change in pair creation in Fig. 2a 

is not monotonic with the increase of D.  Such a non-monotonic feature, can be associated with 

Pauli blocking and will be discussed further below.  For the parameters in Fig. 2a, the numerical 

results deviate from the perturbative result due to a too large V0.  Below we will show that for a 

smaller V0 the perturbative results are highly accurate. 

 In order to show that the non-monotonic dependence of the total pair production as a 

function of D is not sensitive to the type of turn-off, we have repeated the same simulation with 
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identical parameters as in Fig. 2a, except that the external field was turned off smoothly (and not 

abruptly).  As expected, the data in the inset of Fig. 2a suggest that the dependence on D occurs 

during the interaction, independent of details of how the field was turned on or off. 

 Equivalently, perturbation theory also becomes more valid if the width W of the 

corresponding potential well is increased, leading to smaller electric fields.  We show in Fig. 2b 

that the discrepancy is indeed smaller for W=3/c and ω=2.5c2.  But in this case the variation with 

different D is monotonic and not oscillatory as in Fig. 2a. 

 We next investigate the pair creation as a function of the field frequency ω.  As shown in 

Fig. 3, the pair production is significantly enhanced at the threshold ω=2c2.  This frequency 

couples the edges of the upper and lower energy levels by a single photon.  A second, but much 

weaker enhancement that develops into a plateau is also visible in the figure.  It starts at the smaller 

frequency ω=c2 and can be attributed to a two-photon transition.  Our numerical accuracy does not 

allow us to determine the three-photon enhancement threshold starting at ω=2c2/3 (not displayed).  

For finite spacings D, the general shape of distribution which is peaked at around ω=2.4c2 is nearly 

identical for small and large frequencies ω.  In addition to this peak at 2.4c2  we also observe an 

oscillatory dependence of ω for finite values of D, which, however, for  D→∞ disappears.  

0

2

4

6

1 2 3 4

N

10=Dc

20

∞

ω/c2
 

Fig. 3  The total pair production as a function of frequency of the 

oscillating fields at t=0.004 for three potential well widths D=10/c, 20/c and 

∞ (dashed line). Other parameters used in our simulations are V0=1.5c2, 
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W=1/c.  

 

To roughly estimate the possible modulation frequency for the case of D=10/c one could consider 

the formation of a standing classical wave between the edges of a potential well with separation D.  

The longest permitted wavelength is λ~2D corresponds to a wave number k=2π/λ=2π/(2D)= π/D.  

If we furthermore assume c as the speed then the associated frequency would be ω =ck=cπ/D.  For 

D=10/c this amounts to ω =0.314c2, which differs from the modulation frequency 0.23c2 that can 

be read off of Fig. 3.  However, for D=20/c the same estimate leads to ω~ 0.157 c2, comparing to 

the value found in Fig. 3, 0.15c2, the match is better than 4.7%. 

 Next we investigate the spatial distributions associated with the yields displayed in Fig. 2.  

We can see in Fig. 4 that the electrons created from the two fields leave the interaction region as 

they are accelerated outwards by the two edges of the potential well that produced them.  The 

locations of the fields agree with the maxima of the electronic densities.  For comparison, the 

dashed lines are the perturbative results.  For small D, the mismatch amounts to around 2.89% but 

as D increases the agreement with the perturbation theory becomes better than 2.3%.  Agreements 

are also found for the momentum distribution (not shown) with an agreement better than 1.57%.  

We should mention that the case of D→∞, of course, cannot be studied in a finite simulation.  We 

chose here a distance 82.2/c (half of the numerical box length), which guaranties that the created 

particles have not met on the time scales of our simulation. 
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Fig. 4 The spatial probability density of the created electrons for three 

different potential well spacings D (as indicated) for ω=3c2. Other parameters 

used in the simulations are t=0.002, V0=1.5c2, W=3/c.  The bold lines are 

simulation results and the dashed lines are the perturbative results.  

  

 To observe the effect of the potential well width on a larger scale, we calculate the pair 

production at a specific time t=0.004 for D in the range between 0 and 20/c.  We also choose a 

supercritical frequency ω=3c2, which yields a maximum production at energy Ep=1.5c2 

corresponding to a single-photon transition. 
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Fig. 5  The created pairs as a function of the potential well separation D, for 

field widths of W=0.5/c, 1/c and 3/c, at a specific time t=0.004.  The dashed 

line shows the perturbative result for W=1/c. [V0=1.5c2, ω=3c2]  The inset 

shows the perfect agreement between the exact and the perturbative yield for 

a smaller potential V0=0.1c2. [W=0.5/c, ω=2.5c2, t=0.002] 

 

 In Fig. 5 we show the number of created pairs at final time 0.004 as a function of the 

spacing D for W=0.5/c, 1/c and 3/c.  This interaction time was chosen large enough, such that even 

for the largest value of D (=20/c) the particles had sufficient time to travel back and forth between 

both electric fields.  As D increases further, all curves evolve to a (D-independent) constant as the 

corresponding time 0.004 is too short to allow the particles created at z=-D/2 to interfere with the 

process at the other field at z=D/2.  

 As for a given potential height V0 the corresponding electric field amplitude increases with 

decreasing width W, a smaller W results in an overall larger amount of pair creation reflected by an 

increased mean level of the oscillatory curves.  Note that for W=0.5/c the dynamics can not be 

described by simple perturbation theory.  For example, the mean level for D<10/c is N=5.15, and 

for D≥10/c the average moves to N=5.43.  For D→∞, the production approaches 5.83.  
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 Note the oscillations are present for D=3/c as well, but they are very small in magnitude 

and therefore invisible in the graph. According to the perturbative theory in section 2, as D→∞, the 

last term in Eq. (2.10), or 2 sin2[(p+n)D/2], approaches 1, corresponding to two times the single 

field result, which is expected.  Eq (2.10) also suggests that while D→∞ the term (p+n) tends to be 

zero as the limit of the quadratic sine-term leads to δ(p+n).  For such a limit, the csch-term 

approaches 1/(p+n)2, thus reducing the amplitude of oscillation caused by D. 

 We have noted in the prior section the important result that the total yield predicted by 

perturbation theory can either enhance or decrease depending on D.  In the inset we display the 

yield for the smaller potential V0=0.1c2, where we have a perfect agreement between the exact and 

the perturbative yield.  Here it is obvious that we obtain the largest yield (N ≈0.036) for about 

D=2.5/c, while the yield for D→∞ with N≈0.025 is less.  Due to the double integral over the 

momentum in Eq. (2.10), it is very difficult to realize the maximum possible amount of 

enhancement (a factor of 2) relative to the yield for D→∞.  

 It is interesting to note that the period of oscillation for W=0.5/c and 1/c are rather similar 

and around ~2.8/c.  According to the sinusoidal term in Eq. (2.10), the period should be related to 

sin2[(p+n)D/2].  By considering the maximum pair production at Ep=1.5c2, or from the negative 

state with momentum n=±153.2 to the positive state with momentum p=±153.2, we expect the 

period of oscillation to be around 2.81/c, which matches quite well with our observation in the 

simulation results, with an agreement of around 1%. 

 In Fig. 5, for the field width W=1/c, we have also presented the perturbation results 

according to Eq. (2.10) with the dashed curve.  However, the validity of such perturbative 

approximation is limited to low intensities and short times.  Since we assign an electric field with 

intensity E=V0/(2W)=0.75c3, and a relatively long time t=0.004, the error turns out to be around 

9%, but the qualitative behavior is basically reproduced. 
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Fig. 6  Momentum spectrum of the created pairs at t=0.002, with parameter 

V0=1.5c2, W=1/c, ω=4c2, for D=5/c, D=10/c, and D= ∞. The dashed lines 

represent the corresponding perturbative results. 

 

 According to the term sin2[(p+n)D/2] in Eq. (2.10), one could also expect oscillations in 

the momentum distribution, with a period Tp=86.06 and 43.03 for D=5/c and 10/c respectively. To 

test this hypothesis, we graph in Fig. 6, the corresponding number densities in the momentum 

space for the same parameters.  For an infinite D we find a wide and singly peaked distribution 

with a maximum located at k=237.3 corresponding to an energy of E=ω/2.  This energy is expected 

as it corresponds to a momentum conserving single-photon transition (here ω =4c2) from the lower 

to the upper energy continuum.  In the special case for which the external force is spatially 

independent (W→∞), only momentum conserving transitions would be permitted favoring 

transitions that are nearly symmetric about E=0, between the positive and the negative energy 

manifolds [32].  Although each field’s width W is not so wide, the conservation in momentum still 

influences the location of the peak in energy here. 

 As we decrease the spacing D, we observe the predicted oscillatory behavior.  The 

observed periods (in k) from the simulation are 87.1 (for D=5/c) and 43.6 (for D=10/c) and deviate 

with less than 2% from the perturbative results. 

 Let us also present the spatial distribution for ω<2c2. The probability distributions at time 
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t=0.0015 are displayed in Fig. 7. The wavelengths of the spatial oscillations outside of the 

interaction area have similar maxima and minima for different potential well separations D.   The 

periodicity of the maxima according to the data is λ=0.043 and 0.029 for ω=c2 and 1.5c2, 

respectively.  These spatial oscillations may be related to the temporal variation of the field, rather 

than to the coherent interferences due to both fields.  This suggests that we obtain a maximum of 

bursts when the electric fields are maximum.  In fact, the numerical values of the corresponding 

wave lengths λ=2πc/ω leads to λ=0.044/c (for ω=c2) and λ=0.029/c (ω=1.5c2).  The agreement 

with the predictions is rather good as the deviation is less than 2.3%.  

 It is interesting to see that while the D-dependence showed up in the frequency graph of Fig. 

3, the dependence on ω is apparent in the spatial distributions in Fig. 7.  Note that also the location 

of the peaks does not depend on D.  
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Fig. 7   The probability density of the created electrons of two different 

potential well widths D, for (a) ω=c2 and (b) ω=1.5c2. Other parameters used in 

the simulations are t=0.0015, V0=1.5c2, W=0.5/c. 

 

4. Energy spectra and transient bound states in the multi-photon regime (ω=c2) 

 In this section we will analyze the energy spectra of the created electrons.  We will see that 

the spacing D of the two electric fields has a significant impact on the energy distributions.  For a 

steady potential well that does not vary with time, some bound states are formed, with discrete 

energy levels.  In this case, some uppermost negative levels could shift up from -c2, and thus would 

be closer to the positive levels.  Below we will show that such a phenomenon can also occur for a 

time-dependent potential for a certain relationship of the temporal characteristics of the dynamics.  

The first one is the time it takes to form these discrete energy levels, which we denote by T1.  Here 

in our model, it may be considered as the time that created particles at one edge need to travel to 

the other edge, which is approximately D/c.  The second time scale is obviously given by the 

period of the potential T2 =2π/ω.  As long as T1 and T2 are comparable, we might expect that the 

shifts of energy levels are relevant for the electron spectra. 

 To set the scale, let us first examine in Fig. 8a the energy spectra for the case of two 

independent fields that are infinitely apart (D→∞).  The simulation extends from t=0 to 0.005 (15 

cycles) with an interval Δt=3.34×10–4.  We only focus on the location of energy peaks here. 
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Fig. 8  The time evolution of the energy spectrum from t=0 to 5×10–3, with interval 

Δt=3.34×10–4, and V0=1.5c2, W=0.5/c and ω=c2, for potential well separations (a) D 

→∞, and (b) D=3/c.  

 

At very early times (lower graphs) the spectra are rather monotonic and peaked at lower energies.  

They are associated with the details in which the time-dependent is turned on.  As we increase the 

interaction time we observe the occurrence of three peaks with energies corresponding the 

absorption of 2, 3, and 4 photons from the negative energy edge of –c2.   For comparison of the data 

for a finite D, we label the three peaks 1a, 1b and 1c.For the spectra in Fig. 8b we have repeated the 

same simulation, but this time we chose spacing of D=3/c.  The small frequency ω and potential 

well separation D make the two characteristic times T1 and T2 comparable.  We now observe that 



                                                                           19                                                               

3/18/2013 

 

 

in addition to three peaks a set of four additional peaks have been created in addition to the rather 

pronounced minima close to E=1.5 c2 and E=2.5 c2.  The energies of the new peaks are 1.24 

(labeled as 2a), 1.80 (2b), 2.15 (2c) and 2.78 (2d). 

 As we will discuss in rather detail below, these additional peaks are a direct manifestation 

of the transient formation of bound states, that can shift in and out of resonance and therefore 

enhance the pair creation for electron-positron pairs with specific set of energies.  To confirm this 

assessment, we have calculated the instantaneous energy spectra of the system within one 

temporal period. 
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Fig. 9 Instantaneous eigenvalues of the potential well in one temporal period with 

width D=3/c, while V0=1.5c2, W=0.5/c, as the same parameters with Fig. 7.  

 

 In Fig. 9 we display the instantaneous energy eigenvalues of the continuous as well as the 

discrete states as a function of time within one temporal period, by diagonalizing the Dirac 

Hamiltonian at every instant of time.  During the first half of the laser period the potential is 

attractive for a positron, which leads to the emergence of three bound states from the lower energy 

continuum.  During the second half each of the two fields point now in the opposite direction, 

producing a potential that is attractive for the electron, leading to the transient occurrence of three 

bound states that have emerged from the positive energy continua.  The three  maximum bound 

state energies are at ±0.13c2(state 1), ±0.47c2 (state 2) and ±0.94c2 (state 3).  While the third 
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bound state remains very close to the corresponding edges of the continuum states (at energy ±c2), 

the maximum values of the first and second discrete states suggest rather large shifts.  As the 

instantaneous energies of the discrete states vary significantly over each period at first, it is not 

clear which particular energy value is relevant with regard to the set of additional energy peaks.

   

 
Fig. 10 The excitations of the three bound states during one temporal period with 

width D=3/c. [V0=1.5c2, W=0.5/c, as the same parameters with Fig. 8]. 

 

 In order to test directly the involvement of these transient discrete states for the creation 

dynamics and to possibly identify characteristic energies we have computed their total population.  

As indicated in section 2, the quantum field theoretical data were obtained by solving the Dirac 

equation repeatedly for any possible state in the entire Hilbert space for negative energies.  During 

each of these simulations we monitored the excitation of the (instantaneous) three discrete states.  

These instantaneous bound states are denoted by |Bt>. Note that these are not solutions to the 

time-dependent Dirac equation. The excitations shown in Fig. 10 are calculated as ∑n |< Bt |n(t)>|2, 

which can take any value between 0 and 1.  

 In Fig. 10 we present the time evolution of these excitations.  The evolution of each period 
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does not change too much from period to period, so we chose the time interval corresponding to 

the sixth cycle.  The probability of the first and second bound state is apparently bigger than the 

third one, and they both have a two-peak distribution, which exceeds each other alternately in time.  

The bottom figure shows the excitations of the discrete state that are up-shifted from the negative 

energy continuum.  As in our simulation these states are initially populated as  |Bt=0>=|n(t=0)> for 

energy –c2, their population is initially equal to 1.  It is interesting that it then looses precisely the 

same amount of population as the corresponding down-shifted level from the upper continuum 

gains. 

 The triangular symbols (pointing up or down) superimposed on the excitation curves for 

the first and second bound state denote the value of corresponding energy of the energy level at the 

moment when the excitation is temporarily at its maximum value (or minimum for negative 

energies.).  In view of the rather symmetric shape of the discrete energies as a function of time for 

each half-period in Fig. 9, it should be clear that the two excitation maxima correspond to the same 

energy value.  For the first bound state this characteristic energy is E1±=±0.818c2, while for the 

second discrete state we obtain E2±=±0.965c2. 

In addition to their significance with regard to their maximum degree of excitation, these 

characteristic energies play also a key role with regard to the observed energy peaks in the electron 

spectrum.  It turns out that if we add two photons (ω=c2) to the energy E1-=-0.818c2, we approach 

with 1.18c2 the location of energy peak 2a (measured as 1.24c2 in Fig. 7).  If we add three photons 

to E1- we obtain 2.18c2, which is rather close to peak (2c) with energy 2.15 c2.  The slight mismatch 

could be explained by the dispersion towards higher energy of the peaks in Fig. 9.  

 Very similarly, if we add one photon to the characteristic energy associated with the first 

discrete state (from the positive energy manifold with E1+=0.818c2), we obtain 1.818c2, which 

matches nearly perfectly the energy of the peak (2b) (1.80c2).  A two-photon transition from E1+ 

brings us to energy 2.818c2, once again in agreement with the energy of peak (2d), 2.78 c2.  

 The characteristic energies E2±=±0.965c2 of the second bound state are rather close to the 

edge of the continuous states, thus transitions via this discrete state would predict the energy peak 

locations 0.035c2, 1.035c2, 1.965c2 and 2.965c2.  As apparent from the Fig. 8, these specific 

locations would blend in with the main multi-photon peaks 1a, 1b and 1c. 

 As the final ultimate test for the correspondence between the characteristic energies of the 

transient discrete states and the electrons’ energy spectrum, we have repeated the simulation for a 
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periodic potential that is constantly zero during each first (or second) half of each period.  In this 

case the potential never can reverse its sign and would be always binding (or repulsive) at each 

time for the electron.  The details of the simulations can be found in the appendix.  They perfectly 

confirm our above findings.   

 

5. Summary  

 The details of the pair creation process under a time-dependent potential well configuration 

are investigated in this paper. According to our analysis, rather than the multi-photon effect that 

dominates the one-step time dependent potential that we studied before, coherent and potential 

well effects can be observed under such field configuration.  For a temporally supercritical 

potential with relatively wide potential well separation, the coherent effects appear and result in 

characteristic oscillations, which can be predicted by a first-order perturbative analysis.  The 

potential well effect is limited to the specific condition that D/c is comparable to 2π/ω, while the 

time scale of the temporally varying system is slow enough to detect the bound states that are 

created by the potential well. As a result, new peaks emerge in the energy distribution. By varying 

the corresponding spacing D, the total production can be controlled in such a configuration. 

 Note that the corresponding peaks in the energy spectrum Fig. 8b and their relations with 

the bound state level structure in Fig. 9 is rather similar to the photo-ionization energy spectrum 

with peaks that were due to the sweeping though Rydberg levels [33].  

 There are, of course, many questions that can be raised.  For example the reduction of pair 

creation due to Pauli blocking [6] should change with D, due to particles created at one edge that 

arrive at the other edge. In Fig. 4 slight up-shift of the oscillation center was observed, and for 

ω=2.5c2 such shift is more obvious, which is absent in the perturbation result. In this model it is 

hard to distinguish the Pauli blocking effect from the coherence effect.  It would be interesting to 

see what happens if one chooses the bosonic system [34,35] in which case the suppression is 

expected to turn into enhancement.  

 Also, notice that in Fig. 8 the location of the n-th order photon peaks are not exactly at nω, 

which could be explained as a break-down of momentum conservation due to small field width, 

since we are using a relatively small width W=0.5/c here.  Such a displacement from nω may also 

be due to the pondermotive shift caused by the potential.  Moreover, a more systematic analysis 

could answer why only a finite bound states participate in the pair creation process. Below the 
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second bound state, there also exists a third bound state that is very close to the edge of the 

continuous state, but its influence is ignorable since it yields a deviation of only 0.01c2 in the time 

average. Such establishment requires more investigations. We note that further pair creation in 

heavy ions and also magnetic controlled pair creation bound states are rather important.  The 

analysis of those cases may help to confirm the multi-peak energy structure we discovered in this 

work. 
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Appendix 

 Below we examine the validity of the direct correspondence between the  

characteristic energies of the transient discrete states and the electrons’ energy spectrum for a more 

general situation in which the potential is always repulsive for the electron.  To achieve this we 

formally replace the time-dependence sin(ωt) in the potential by a new function that has been 

truncated to zero for 2nπ<ωt<(2n+1)π, but remains unchanged sin(ωt) for (2n-1)π<ωt<2nπ.  We 

denote the simulations where the first (second) half of each period has been truncated by FHT 

(SHT).  In the case of an FHT-simulation, the periodic potential is always repulsive for the electron, 

and therefore attractive for the positron.  In other words, for a FHT-simulation we expect the 

discrete levels to arise solely from the lower energy continuum and as a result only a single set of 

additional peaks, corresponding to those that we labeled 2a and 2c.  The corresponding 

SHT-simulation should lead to a different set of complementary peaks.  This rather 

“mathematical” truncated function has therefore the advantage of permitting us to analyze the 

contributions from each discrete state separately.  
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 Fig. 11.  The bound state excitations for a periodically truncated external 

potential.  All other parameters as in Fig. 10. 

 

 In Fig. 11 we display the corresponding excitations of the discrete states, however, the 

results for the up-shifted simulation were shifted by half a period to the left.  In order to illustrate 
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the expected symmetry, we have also graphed one minus the excitation for the negative state 

instead of the excitation itself.  In this situation the maximum excitation occurs at times when the 

corresponding energy of the bound states is around the values E1±=±0.75c2 and E2±=±0.95c2 . In 

contrast to the full-cycle simulation (where we obtained the corresponding characteristic energy E1

±=±0.818c2), this new value for E1± is slightly less.  We therefore would predict for the 

FHT-simulation the energy peaks at locations E1-+nω=1.25c2, 2.25c2.and 3.25c2, while for the 

SHT-simulation the energies E1++nω=1.75c2, 2.75c2 and 3.75c2.  The data in Fig. 12 very 

accurately confirm this prediction. 
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 Fig. 12  The time evolution of the created electron energy spectrum for 

the simulation in which the potential is only on during the second half of 

each period is preserved (left).  For the spectrum on the bottom of the 
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potential during the second half of each cycle is truncated to zero.  

  

 As a last point we should mention that the total yield associated with each (field-truncated) 

simulation is almost twice that of the yield of the force that is proportional to sin(ωt).  The finding 

displayed in Fig. 13 might be surprising at first as in the two truncated cases the force is zero for 

practically half of the simulation.  But in the case of the truncated force, the electrons are always 

ejected into the same spatial direction, whereas the periodic sign reversal for the sin(ωt) force 

periodically returns the created particle to the interaction zone where they can inhibit the pair 

creation due to Pauli-blocking.  
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 Fig. 13 The total yield after each cycle for the two temporally truncated 

force fields, and the normal (untruncated) force proportional to sin(ωt). 

[Other parameters are as in Fig. 10.] 
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