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Abstract

We study the dynamics of spontaneous generation of coherence and photon spin-qubit entangle-

ment in a Λ system with non-degenerate lower levels. The cases of entanglement in frequency only

and frequency and polarization are compared and the reduced density matrix and entanglement

entropy are analyzed. We explore in detail how which-path information manifest when the energy

difference between the qubit states is larger than the linewidth of the excited state suppresses co-

herence. A framework is provided to describe the dynamics of spontaneous generation of coherence

and (ideal) photodetection obtaining the post measurement qubit density matrix. A simple model

of photodetection with a quantum eraser to suppress which-path information in the detection mea-

surement is implemented. It is found that such quantum eraser purifies the qubit density matrix

after photodetection, our results are in agreement with those reported in recent experiments.
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I. INTRODUCTION

Quantum entanglement has evolved from being a paradoxical aspect of quantum

mechanics[1] to becoming a resource for quantum computing and quantum information[2–4]

with potential for technological breakthroughs in these areas[5–7]. Several recent experi-

ments demonstrated photon entanglement with single atoms [8–10], atomic ensembles[11],

long-distance entanglement between qubits[12–14], and tunable ion-photon entanglement in

optical cavities[15, 16]. Along with atom-photon entanglement[4, 8–10], and entanglement

in cavity quantum electrodynamicsl[17] recent proposals suggested electron spin-photon en-

tanglement in quantum dots as platforms for entanglement between distant spins[18]. Spin-

photon entanglement could be the pathway towards implementation of quantum networks

among distant nodes[3, 13, 14]. Remarkable experiments demonstrated the realization of

entanglement between the polarization of a single optical photon and an electronic spin

qubit in nitrogen vacancy (NV) centers in diamond[19] and more recently the demonstra-

tion of entanglement between a single electron spin and a photon in a quantum dot has

been reported[20–22]. A main paradigm in many of these experiments is that of sponta-

neous generation of coherence[23–25] in a type-II or Λ system, namely a situation in which

spontaneous emission from a single excited state via a two-channel decay to degenerate or

non-degenerate lower levels results in coherence between these two states. Spontaneous gen-

eration of electron spin coherence has also been observed from the radiative decay of charged

excitons (trions) in quantum dots[26].

These experimental efforts are paving the way towards the implementation of atom-

photon or spin-photon entanglement as potential platforms for quantum information and

quantum computing protocols and networks[3, 4, 27], motivating a theoretical effort seeking

a deeper understanding of these processes[24, 28–30].

Although there have been some recent studies of the dynamics of spontaneously generated

coherence[24, 25, 30] many important aspects merit further investigation.

Our main goal in this article is to provide a more complete theoretical study of the exper-

imental results reported in ref.[19] but that apply more generally to current experiments on

spin-qubit-photon entanglement[20–22] from spontaneous generation of coherence as men-

tioned above. With this aim, we focus on the following aspects: 1) to provide a treatment of

the dynamics of spontaneous generation of coherence, entanglement both in frequency and
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polarization and photodetection within a single framework consistent with causality[31],

2) to study the entanglement entropy of reduced spin-qubit density matrices after tracing

over the radiation degrees of freedom for photon-qubit entanglement both in frequency and

polarization, of particular interest when spontaneous emission produces polarized photons

which are measured by projection on differen polarization states 3) to analyze in detail how

which- path information affects coherence, in particular within the setting of the experi-

ment in ref.[19], predicting the time dependence of conditional probabilities when which

path information is present. 4)To implement a model for a “quantum eraser”[32, 33] within

the framework of photodetection a lá Glauber[34–36] so as to erase which path information

in the photodetection process. An important result of this treatment is that “quantum

erasing” “which- path” information leads to the purification of the qubit state confirming

the experimental results of ref.[19, 20] and bolstering the arguments on “quantum erasing”

in these references. We obtain a conditional probability in complete agreement with the

experimental results of ref.[19].

Our study differs from and complements recent theoretical treatments of spontaneous

generation of coherence[24, 30] in that we analyze both frequency and polarization entan-

glement, which-path decoherence, the spin-qubit entanglement entropy and incorporate a

Glauber model of broadband photodetection[34,35,36] in a unified manner with the treat-

ment of spontaneous emission. This treatment directly builds in causality in the spontaneous

emission/photodetection process[31], leads to detailed understanding of how which path in-

formation affects coherence, and allows to model a quantum eraser[32,33] consistently within

the broadband photodetector model. This approach is different from that advocated in a

recent article[30] where the photodetector is modeled with a collection of two-state atoms

spread over some distance where the excited state features a short lifetime. Furthermore

our study also differs from those of refs.[24, 30] in that it shows how the implementation

of a “quantum eraser” leads to the purification of the qubit density matrix upon photode-

tection and yields a result for the conditional probability in complete agreement with the

experimental findings in ref.[19].
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II. DYNAMICS OF ENTANGLEMENT VIA SPONTANEOUS DECAY.

We consider a Λ-system with one excited state |A〉 and two Zeeman split non-degenerate

lower levels interacting with the electromagnetic field in the dipole and rotating wave approx-

imations. The degenerate case can be obtained straightforwardly. We refer to the two-lower

state levels | ± 1〉 as a spin- qubit. The cases in which there is photon-qubit entanglement

in frequency only and in frequency and polarization are studied separately and compared.

A. Entanglement in frequency only:

We first consider the case when the dipole matrix elements are independent of the polar-

ization of the photon and for simplicity we only consider one polarization to establish contact

with the results of ref.[24]. This case leads to qubit-photon entanglement in frequency only,

and generalization to two polarizations is straightforward. The total Hamiltonian for the

three level system is given by

H = HA +HR +HAR , (II.1)

where

HA = EA|A〉〈A|+ E+|+ 1〉〈+1|+ E−| − 1〉〈−1| ; HR =
∑

~k

ωka
†
~k
a~k . (II.2)

The interaction Hamiltonian in the interaction picture and in the rotating wave approxima-

tion is given by

HAR(t) =
∑

~k

{
gk a

†
~k

[
|+ 1〉〈A| ei(k−Ω+)t + | − 1〉〈A| ei(k−Ω−)t

]
+ h.c.

}
(II.3)

where

Ω± = EA − E± ; gk = −i

√
k

2V
D , (II.4)

here V is the volume and D is the dipole matrix element neglecting polarization degrees of

freedom.

Consider that at time t = 0 the initial state is

|Ψ(0)〉 = |A〉 |0γ〉 (II.5)
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where |0γ〉 is the radiation vacuum state, and write in the interaction picture the time

evolved state as

|Ψ(t)〉I = CA(t)|A〉|0γ〉+
∑

~k

|1~k〉
[
Ck,+(t) |+ 1〉+ Ck,−(t) | − 1〉

]
. (II.6)

The coefficients obey the following equations (in obvious notation)

ĊA(t) = −i〈A; 0γ |HAR(t)|1~k; +1〉Ck,+(t)− i〈A; 0γ|HAR(t)|1~k;−1〉Ck,−(t) (II.7)

Ċk,±(t) = −i〈1~k;±1|HAR(t)|A; 0γ〉CA(t) . (II.8)

We solve this system of equations with the initial conditions

CA(0) = 1 ; Ck,±(0) = 0 . (II.9)

In the Wigner-Weisskopf approximation[34, 37] the coefficients are given by1

CA(t) = e−
Γ

2
t , (II.10)

Ck,±(t) = igk

[
1− ei

(
k−Ω±+iΓ/2

)
t
]

(
k − Ω± + iΓ

2

) . (II.11)

The level width Γ is given by

Γ = Γ+ + Γ− (II.12)

where the partial widths Γ± correspond to the spontaneous decay channels |A; 0γ〉 → |1~k〉|+
1〉; |A〉 → |1~k〉| − 1〉 respectively, namely

Γ± = 2π
∑

~k

|〈A|HAR(0)|1~k;±1〉|2 δ(k − Ω±) = 2π
∑

~k

|gk|2 δ(k − Ω±) =
D2Ω3

±
2π

(II.13)

In most experimental circumstances, the energy splitting is much smaller than the optical

frequency of the transitions, namely |Ω+−Ω−| ≪ Ω± in which case it is convenient to write

Ω± = Ω± ∆ω

2
; ∆ω ≪ Ω (II.14)

and to leading order in ∆ω/Ω it follows that

Γ+ ≃ Γ− ≃ Γ/2 . (II.15)

1 We neglect the contribution from the Lamb shift to the energy level EA.

5



In the experiment reported in ref.[19], it has been verified that the approximation (II.15)

is fulfilled in the setting of that experiment. In what follows we will assume that the relation

(II.15) holds unless otherwise stated.

We write the spin qubit-photon entangled part of the wavefunction (in the interaction

picture) (II.6) as

|Ψsp(t)〉 =
1√
2

[
|σ1(t)〉|+ 1〉+ |σ2(t)〉| − 1〉

]
(II.16)

where the single photon wavepackets are given by

|σ1(t)〉 =
√
2
∑

~k

Ck,+(t)|1~k〉 ; |σ2(t)〉 =
√
2
∑

~k

Ck,−(t)|1~k〉 (II.17)

B. Normalization of photon wavepackets:

The normalization and orthogonality of the single photon wave-packets is determined by

the overlaps

〈σa(t)|σb(t)〉 = 2
∑

~k

C~k,b(t)C
∗
~k,a

(t) ; a, b = 1, 2 . (II.18)

Consider the functions

Gα(ω, t) =

[
1− ei(ω−Ωα+iΓ

2
)t
]

[
ω − Ωα + i Γ

2

] (II.19)

in the narrow width limit Γ ≪ Ωα these are sharply localized near ω ≃ Ωα, straightforward

contour integration yields

∫ ∞

−∞
Gα(ω, t)G∗

β(ω, t) dω = 2π

[
1− e−i(Ωα−Ωβ)t e−Γt

]

Γ + i(Ωα − Ωβ)
. (II.20)

Combining this result with (II.17,II.11) we find consistently with the Wigner-Weisskopf

approximation

〈σ1,2(t)|σ1,2(t)〉 =
2Γ+,−
Γ

[
1− e−Γt

]
. (II.21)

This result, along with the relation between the total and partial decay widths given by

(II.12) yields the normalization of the |Ψsp〉 state,

〈Ψsp(t)|Ψsp(t)〉 =
[
1− e−Γt

]
, (II.22)

which is a result of unitary time evolution manifest in the Weisskopf-Wigner formulation

since the total state |Ψ(t)〉I given by (II.6) must obey 〈Ψ(t)|Ψ(t)〉 = 1. Because |σ1,2〉 are
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single photon wavepackets, it is straightforward to confirm that the total number of photons

is given by

Nγ(t) = 〈Ψsp(t)
∣∣∣
∑

~k

a†~ka~k

∣∣∣Ψsp(t)〉 =
[
1− e−Γt

]
. (II.23)

Taking Γ+ ≃ Γ− ≃ Γ/2 under the assumption that ∆ω ≪ Ω, consistent with the ex-

perimental setup in [19], it follows that the single photon wavepackets are normalized for

Γt ≫ 1 but they are not orthogonal, we find

〈σ2(t)|σ1(t)〉 =

[
1− e−i∆ωt e−Γt

]

1 + i∆ω
Γ

, (II.24)

a result that is in agreement with an observation in ref.[24] for Γt ≫ 1.

Let us consider the reduced density matrix for the qubit by tracing over the radiation

field, namely (in the interaction picture)

ρIfo(t) = TrR|Ψsp(t)〉〈Ψsp(t)| , (II.25)

going back to the Schroedinger picture we find

ρfo(t) =
1

2

[
1− e−Γt

]{
|+ 1〉〈+1|+ | − 1〉〈−1|+

(
ei∆ωt η(t) |+ 1〉〈−1|+ h.c.

)}
(II.26)

where

η(t) ≡ |η(t)|eiϕ(t) =

[
1− e−i∆ω t e−Γt

]

(
1− e−Γt

)(
1 + i∆ω

Γ

) . (II.27)

In the long time limit Γt ≫ 1 the coherence is suppressed by the factor 1/
√
1 + ∆ω2/Γ2

reflecting the suppression of coherence by “which-path” information. If Γ ≫ ∆ω the spectral

width of the radiation, determined by the lifetime of the excited state, suppresses which path

information by blurring the energy resolution of the decay channels of the emitted photons

and coherence is maintained. In the opposite limit ∆ω ≫ Γ the energy difference between

the lower lying states is resolved and which path information is available in the emission

spectrum thereby suppressing coherence. This is manifest in the overlap of the photon

wavepackets (II.24) in terms of the product of the Lorentzian line shapes for the individual

channels.

The main reason for studying the reduced density matrix in the case of frequency en-

tanglement only is that, as it will be discussed in detail in section (III) photodetection that

filters horizontal (H) or vertically (V) polarized photons projects the density matrix onto a

reduced density matrix precisely of the form (II.26) that contains “which-path” information.
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C. Entanglement in frequency and polarization

In the experimental situations considered in refs.[8–10] for atom-photon entanglement and

in ref.[19] for electron spin-photon entanglement in NV-centers, there are angular momentum

selection rules in spontaneous decay and the photons emitted are right handed (for |A〉 →
| − 1〉) or left handed (for |A〉 → | + 1〉) circularly polarized as depicted in fig. (1). In

this case the spin- qubit and the spontaneously emitted photons are entangled both in

polarization and frequency. Including the polarization of the emitted photons leads to

several important modifications of the results obtained in the previous case, therefore we

restore the polarization, momentum and spatial dependence of the dipole matrix elements.

Although we focus the discussion on the experimental setup of ref.[19] with NV-centers, the

results will be more general.

|A〉

| + 1〉

σ−

| − 1〉

σ+

FIG. 1: Transitions

In this case the total Hamiltonian for the three level Λ-system interacting with the elec-

tromagnetic field is given by (II.1) with HA given in eqn. (II.2), but now

HR =
∑

~k,λ=±

ωka
†
~k,λ

a~k,λ , (II.28)

and the interaction Hamiltonian in the interaction picture and in the rotating wave approx-

imation is given by

HAR(t) =
∑

~k

{
g~k,+(~x0) a

†
~k,−|+1〉〈A| ei(k−Ω+)t+g~k,−(~x0) a

†
~k,+

|−1〉〈A| ei(k−Ω−)t+h.c.

}
(II.29)

where Ω± = EA − E±, and

g~k,±(~x0) = −i

√
k

2V
~D± · ~ǫ~k,∓ ei

~k·~x0 (II.30)
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here V is the volume, ~D± are the dipole matrix elements 〈±1|~d|A〉 respectively, ~ǫ~k,∓ are

the left and right handed polarization vectors respectively and ~x0 is the position of the NV

center.

Consider that at time t = 0 the initial state is

|Ψ(0)〉 = |A〉 |0γ〉 (II.31)

where |0γ〉 is the radiation vacuum state, and following the notation of the previous section

we write the time evolved state in the interaction picture as

|Ψ(t)〉I = CA(t)|A〉|0γ〉+
∑

~k

[
C~k,+(t) |1~k,−〉|+ 1〉+ C~k,−(t) |1~k,+〉| − 1〉

]
. (II.32)

The coefficients obey the following equations (in obvious notation)

ĊA(t) = −i〈A; 0γ |HAR(t)|1~k,+;−1〉C~k,−(t)− i〈A; 0γ|HAR(t)|1~k,−; +1〉C~k,+(t)(II.33)

Ċ~k,±(t) = −i〈1~k,∓;±1|HAR(t)|A; 0γ〉CA(t) . (II.34)

Just as in the previous section we solve this system of equations with the initial conditions

CA(0) = 1 ; C~k,±(0) = 0, in the Wigner-Weisskopf approximation the coefficients are given

by2

CA(t) = e−
Γ

2
t , (II.35)

C~k,±(t) = ig~k,±(~x0)

[
1− ei

(
k−Ω±+iΓ/2

)
t
]

(
k − Ω± + iΓ

2

) . (II.36)

The level width Γ is given by

Γ = Γ+ + Γ− (II.37)

where the partial widths Γ+ , Γ− correspond to the spontaneous decay channels |A; 0γ〉 →
|1~k,+〉| − 1〉; |A〉 → |1~k,−〉|+ 1〉 respectively, namely

Γ+ = 2π
∑

~k

|〈A|HAR(0)|1~k,−; +1〉|2 δ(k − Ω+) = 2π
∑

~k

|g~k,+(~x0)|2 δ(k − Ω+) (II.38)

Γ− = 2π
∑

~k

|〈A|HAR(0)|1~k,+; +1〉|2 δ(k − Ω−) = 2π
∑

~k

|g~k,−(~x0)|2 δ(k − Ω−) . (II.39)

2 Again we neglect the contribution from the Lamb shift to the energy level EA.
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Just as in the previous case of unpolarized photons, it follows that Γ± ∝ | ~D±|2Ω3
± but the

proportionality constants now depend on the angular average of the polarization vectors.

Now the second term of the wave function (II.32) describes an entangled state of circularly

polarized photons and the spin states of the NV- center, following the literature[8–10, 19]

we write this second term (in the interaction picture) as

|Ψsp(t)〉 =
1√
2

[
|σ−(t)〉 |+ 1〉+ |σ+(t)〉 | − 1〉

]
(II.40)

where

|σ∓(t)〉 =
√
2
∑

~k

C~k,±(t) |1~k,∓〉 (II.41)

describe orthogonal circularly polarized single photon wave packets.

Unlike the results in ref.[24] we do not take the limit Γt ≫ 1, in the experimental setting

of ref.[19] the lifetime of the excited state is 1/Γ ≈ 12 ns but the measurements are performed

during a time interval ≃ 10− 20 ns.

Borrowing the results from the previous section, we now find

〈σ∓(t)|σ∓(t)〉 =
2Γ±
Γ

[
1− e−Γt

]
; 〈σ+(t)|σ−(t)〉 = 0 , (II.42)

where the orthogonality of |σ∓(t)〉 is a consequence of the fact that they describe one photon

wavepackets with orthogonal polarizations. This result, along with the relation between the

total and partial decay widths given by (II.37) again yields the normalization of the |Ψsp〉
state,

〈Ψsp(t)|Ψsp(t)〉 =
[
1− e−Γt

]
, (II.43)

which is a result of unitary time evolution and similarly

Nγ(t) = 〈Ψsp(t)
∣∣∣
∑

~k,λ=±

a†~k,λa~k,λ

∣∣∣Ψsp(t)〉 =
[
1− e−Γt

]
. (II.44)

Just as in the previous section the one-photon wave packets |σ±〉 have unit normalization

when Γt ≫ 1 and Γ+ = Γ− = Γ/2, which is justified when the Zeeman splitting Ω+ −Ω− ≪
Ω+,Ω− and describes the experimental setup of ref.[19]. The reduced density matrix for

the spin-qubit can be obtained by tracing over the radiation field just as in the previous

section (II.25,II.26). However, in this case, the orthogonality of the circularly polarized

wave packets leads to vanishing coherence and a diagonal density matrix that describes a

statistical mixture given by

ρfp(t) = Tr|Ψsp(t)〉〈Ψsp(t)| =
1

2

[
1− e−Γt

](
|+ 1〉〈+1|+ | − 1〉〈−1|

)
. (II.45)
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D. Entanglement entropy:

As we have seen above spontaneous generation of coherence leads to very different reduced

density matrices depending on whether photon-qubit entanglement is in frequency and po-

larization or frequency only. This difference is highlighted by comparing the Von-Neumann

entanglement entropy in both cases.

Frequency entanglement only: in this case the total reduced density matrix is

ρ(t) = e−Γt|A〉〈A|+ ρfo(t) (II.46)

where ρfo(t) is given by (II.26) which can be diagonalized with the following eigenvectors

and eigenvalues

|̃1〉 =
1√
2

(
|+ 1〉+ e−iϕ(t) e−i∆ωt| − 1〉

)
; λ1(t) =

1

2

[
1− e−Γt

] [
1 + |η(t)|

]
(II.47)

|̃2〉 =
1√
2

(
|+ 1〉 − e−iϕ(t) e−i∆ωt| − 1〉

)
; λ2(t) =

1

2

[
1− e−Γt

] [
1− |η(t)|

]
(II.48)

where η(t) = |η(t)|eiϕ(t) is given by (II.27), leading to

ρ(t) = e−Γt|A〉〈A|+ λ1(t) |̃1〉〈̃1|+ λ2(t) |̃2〉〈̃2| . (II.49)

The entanglement entropy follows directly,

Sfo(t) = Γte−Γt − λ1(t) lnλ1(t)− λ2(t) lnλ2(t) . (II.50)

For Γt ≫ 1

Sfo(∞) = −1

2

[
1 + |η∞|

]
ln

[
1 + |η∞|

2

]
− 1

2

[
1− |η∞|

]
ln

[
1− |η∞|

2

]
(II.51)

with

|η∞| = 1√
1 + ∆ω2

Γ2

(II.52)

As ∆ω/Γ → 0 the entanglement entropy vanishes as the asymptotic state is the pure state

|̃1〉 = 1√
2

(
|+〉 + |−〉

)
in the opposite limit ∆ω/Γ ≫ 1 where which-path information sup-

presses coherence it follows that Sfo(∞) = ln(2) describing an equal probability statistical

mixture.
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Entanglement in frequency and polarization: in this case the total reduced density

matrix is simply

ρ(t) = e−Γt|A〉〈A|+ 1

2

[
1− e−Γt

](
|+ 1〉〈+1 + | − 1〉〈−1|

)
(II.53)

as a consequence of the orthogonality of the right and left circular polarized photon

wavepackets. In this case the entanglement entropy is

Sfp(t) = Γte−Γt − [1 − e−Γt] ln
[1− e−Γt

2

]
(II.54)

with the asymptotic value

Sfp(∞) = ln(2) . (II.55)

The entanglement entropies in both cases are displayed in fig.(2) for the parameters of

the experiment in ref.[19], ∆ω = 2π × 122MHz ; Γ = 1/12 ns.
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FIG. 2: Entanglement entropy for the case of entanglement in frequency only Sfo(t) and frequency

and polarization Sfp(t) for ∆ω = 2π × 122MHz ; Γ = 1/12 ns,Γ+ = Γ− = Γ/2.

Analytically it can be seen that

Sfp(t) ≥ Sfo(t) , (II.56)

a relation that is confirmed numerically and confirms the qualitative expectation that the

entanglement entropy should be larger in the case of entanglement both in frequency and

polarization.
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The results above were obtained under the assumption that Γ+ = Γ− = Γ/2. If the

partial widths to the two non-degenerate levels are different the generalized form of the

entanglement entropy in this case of entanglement in frequency and polarization is given by

Sfp(t) = Γte−Γt− Γ+

Γ

(
1−e−Γt

)
ln
[Γ+

Γ

(
1−e−Γt

)]
− Γ−

Γ

(
1−e−Γt

)
ln
[Γ−
Γ

(
1−e−Γt

)]
(II.57)

where Γ = Γ+ + Γ−.

III. PHOTODETECTION

We consider a model for a broadband photodetector described by an atom localized at

position ~xd interacting with the radiation field in the dipole approximation a lá Glauber[34–

36]. The Hamiltonian is given by HD +HDR where the detector Hamiltonian HD describes

a zero energy ground state and a collection of excited states which eventually will be taken

as a continuum

HD = ν0 |gd〉〈gd|+
∑

j

νj |edj〉〈edj | ; ν0 = 0 , (III.1)

and HDR is the interaction Hamiltonian that describes a dipolar coupling to the radiation

field with a filter that selects H/V linear polarization states of the radiation field. In the

rotating wave approximation and in the interaction picture it is given by

HDR(t) =
∑

j

[
~dj · ~E(+)

P (~xd; t)|edj〉〈gd| eiνjt + h.c.
]

; P = H ;V (III.2)

~dj are the dipole matrix elements and

~E
(+)
P (~xd; t) =

∑

~k

i

√
k

2V
~ǫP a~k,P ei

~k·~xde−ikt . (III.3)

The combined process of spontaneous emission from the NV-center |A〉 considered to be

localized at ~x0 = ~0 and photodetection by a broadband photodetector localized at ~xd is now

described by the total Hamiltonian

Htot = HA +HR +HAR +HD +HDR , (III.4)

where the first three terms are given by (II.1-II.3).

13



Insight into the combined processes and the intermediate states that contribute is gleaned

in second order in the perturbative expansion with the full interaction Hamiltonian in the

interaction picture (and in the rotating wave approximation)

HI(t) = HAR(t) +HDR(t) (III.5)

where HAR(t);HDR(t) are given by (II.29) with ~x0 = ~0 and (III.2) respectively. Consider

that the initial state is (in obvious notation)

|Ψ(0)〉 = |A; 0γ; gd〉 , (III.6)

in the interaction picture the resulting time dependent state in second order becomes

|Ψ(t)〉 =
[
1− i

∫ t

0

HI(t1)dt1 + (−i)2
∫ t

0

∫ t1

0

HI(t1)HI(t2)dt1dt2 + · · ·
]
|Ψ(0)〉 . (III.7)

To first order only HAR contributes and describes the perturbative spontaneous decay of

the excited state |A〉 of the NV-center into the Zeeman split states |1~k,+;−1〉 and |1~k,−; +1〉.
Inserting a complete set of eigenstates ofH0 = HA+HD+HR it is straightforward to see that

in the second order contribution the first term HI(t2) describes the spontaneous emission of

the circularly polarized photons while the second term HI(t1) describes the absorption of

these photons and the photoexcitation of the detector (along with a second order contribu-

tion from HAR that yields the original state back). The photodetection probability at time

t is given by[34–36]

PD(t) = Trd
∑

j

|edj〉〈edj |ρ(t) , (III.8)

where the density matrix

ρ(t) = |Ψ(t)〉〈Ψ(t)| , (III.9)

and the trace in (III.8) is over the detector excited states.

Our goal is to describe these processes non-perturbatively with a Wigner-Weisskopf de-

scription that incorporates both processes at once. Guided by this perturbative analysis, we

propose the following form of the time dependent state in the interaction picture

|Ψ(t)〉 = |ΨA(t)〉 |gd〉+ |ΨDS(t)〉 |0γ〉 (III.10)

where

|ΨA(t)〉 = CA(t)|A〉|0γ〉+
∑

~k

[
C~k,+(t) |1~k,−〉|+ 1〉+ C~k,−(t) |1~k,+〉| − 1〉

]
(III.11)

14



and

|ΨDS(t)〉 =
∑

j

[
Dj,−(t)| − 1〉+Dj,+(t)|+ 1〉

]
|edj〉 , (III.12)

with the initial conditions

CA(0) = 1 ; C~k,±(0) = 0 ; Dj,±(0) = 0 . (III.13)

We highlight that |ΨDS(t)〉 describes an entangled state between the spins and the detector.

The explicit solution for the coefficients with the initial conditions (III.13) is provided in

the appendix.

The coefficients Dj,±(t) determine the photodetection probability and display the causal

nature of the propagation[31]: the detection time tD has to be larger than td = xd/c, namely

the time it takes the front of the photon pulse to travel from the NV-center to the position

of the photodetector. In the experimental setup of ref.[19] the photon travels along a ∼ 2m

long fiber to the photodetector, therefore td ≃ 7 ns.

The photodetection probability is obtained as in (III.8), and obviously only the state

|ΨDA(t)〉 contributes. The result is a projected reduced density matrix for the spin-qubit

subpace | ± 1〉 namely

ρ
(I)
D (t) = Trd

∑

j

|edj 〉〈edj ||ΨDS(t)〉〈ΨDS(t)| =
∑

j

[
|Dj,+(t)|2 |+ 1〉〈+1|+ |Dj,−(t)|2 | − 1〉〈−1|

+
(
Dj,+(t)D

∗
j,−(t) |+ 1〉〈−1|+ h.c.

)]
. (III.14)

where the coefficients Dj,±(t) are given in the appendix by (A.7). We now introduce the

density of states of the photodetector D(ω): for any arbitrary function of the detector

frequencies F(νj)

∑

j

|κ2
j | F(νj) =

∫ ∞

−∞
D(ω)F(ω)dω ; D(ω) =

∑

j

|κ2
j |δ(ω − νj) . (III.15)

With the result for Dj,±(t) given in the appendix (A.7), we introduce

F±(ω; t) =

√
Γ∓
2π

[
1− ei(ω−Ω±+iΓ

2
)(t−td)

]

[
ω − Ω± + i Γ

2

] (III.16)
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in terms of which the projected reduced density matrix at the photodetection time tD in the

interaction picture becomes

ρ
(I)
D (tD) =

∫ ∞

−∞
D(ω)

{
|F+(ω; tD)|2 |+ 1〉〈+1|+ |F−(ω; tD)|2 | − 1〉〈−1|

+ δP− F+(ω; tD)F∗
−(ω; tD)|+ 1〉〈−1|+ h.c.

}
dω Θ(tD − td) . (III.17)

In the narrow width limit Γ ≪ Ω± the functions F±(ω; t) feature sharp peaks at ω = Ω± =

Ω±∆ω/2, again we assume that ∆ω ≪ Ω and consequently that Γ+ ≃ Γ− ≃ Γ/2. We also

assume a broadband detector whose spectral density is insensitive to the spectral width of the

emitted photon Γ and the energy difference between the | ± 1〉 states ∆ω, namely D(Ω±) ≃
D(Ω). In particular the correlation function for the broadband photodetector[34, 35] is given

by

GD(t− t′) =
∑

j

|~dj|2eiνj(t−t′) ∝
∫ ∞

−∞
D(ω) eiω(t−t′) dω ∼ 2πD(Ω) δ(t− t′) . (III.18)

We can now extract D(ω) ≃ D(Ω) outside the integrals, and using the result (II.20) we

find

∫ ∞

−∞
Fa(ω; tD)F∗

b (ω; tD)dω =

√
ΓaΓb

Γ

[
1− e−i∆ab(tD−td) e−Γ(tD−td)

]

1 + i∆ab

Γ

; ∆ab = Ωa−Ωb ; a, b = +,−

(III.19)

Going back to the Schroedinger picture at time tD and taking Γ+ = Γ− = Γ/2 the final

result for the projected reduced density matrix is given by

ρD(tD) =
D(Ω)

2

[
1− e−Γτ

]
Θ(τ)

{
|+ 1〉〈+1|+ | − 1〉〈−1|

+ δP− |+ 1〉〈−1| ei∆ω tD η(τ) + h.c.

}
; τ = tD − td (III.20)

where η(τ) is given by (II.27) with τ = tD − td.

Comparing the prefactor of this expression with the total photon number (II.44) it is

clear that the prefactor is just describing the number of photons detected at the retarded

time tD − td and allows the identification of D(Ω) with the detection efficiency. In the

experimental setup in[19] this efficiency is ≪ 1 thus justifying the neglect of the photon

emission from the decay of the excited states of the detector. The coherence term has a

simple interpretation: photodetection by filtering the linear polarizations H or V projects
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the spin-qubit-photon entangled state at a time tD into a state similar to that studied

in section (IIA) effectively disentangling the polarization from the spin degree of freedom

leaving frequency entanglement only. For Γτ ≫ 1 the coherence is suppressed by the same

factor as in the previous case (II.26) reflecting which path information.

This result is fully compatible with Glauber’s theory of photodetection with an “ideal”

broadband photodetector[34–36], where the detection probability is given by

PD(tD) = κ

∫ tD

0

〈σ±(t)|E(−)( ~xd, t)E
(+)( ~xd, t)|σ±(t)〉 dt = κ′ Γ∓

Γ

[
1− e−Γτ

]
Θ(τ) (III.21)

here κ, κ′ are constants[34] and we used eqn. (A.5). Similarly the interference terms are

given by

PI(tD) = κ

∫ tD

0

〈σ+(t)|E(−)( ~xd, t)E
(+)( ~xd, t)|σ−(t)〉 dt = κ′

√
Γ+Γ−
Γ

[
1− e−i∆ωτ e−Γτ

]

[
1 + i∆ω

Γ

]

×δP− Θ(τ) (III.22)

These are precisely the terms in the reduced density matrix (III.20).

After projection of the photon state into H/V polarization, spin-qubit-photon entangle-

ment is displayed by projecting on any state of the form

|M〉 = 1√
2

[
|+ 1〉+ eiφ| − 1〉

]
. (III.23)

This is implemented with the reduced density matrix (III.20) by obtaining the conditional

probability

PM |H,V (tD) = TrρD(tD)|M〉〈M | . (III.24)

The non-vanishing coherence in (III.20) in the basis | ± 1〉 leads to oscillatory behavior of

PM |H,V (tD) as a function of tD. For the state (III.23) with φ = 0 and an H projection we

find for τ = tD − td > 0

PM |H(τ)

D(Ω)
=

1

2

[
1− e−Γτ

]
[
1 + Re

(
ei∆ω tD η(τ)

)]
; τ = tD − td (III.25)

Fig. (3) displays the probability (III.25) as a function of τ = tD − td for the experimental

values reported in ref.[19]: ∆ω = 2π × 122MHz ; 1/Γ = 12 ns ; td = 7ns.

This figure reveals the effect of which-path suppression of the coherence: the asymptotic

behavior of the probability is

PM |H(τ ≫ 1/Γ)

D(Ω)
≃ 1

2

[
1 +

Γ

∆ω
sin
[
∆ω(τ + td)

]]
. (III.26)
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FIG. 3: The probability (III.25) for td = 7ns , ∆ω = 2π × 122MHz ; 1/Γ = 12ns.

Measurement in the H/V basis results in a post-measurement density matrix that features

coherence in the qubit basis | ± 1〉 suppressed by which-path information. This coherence

was not manifest in the pre-measurement density matrix because of the orthogonality of the

circularly polarized photon wave packets.

The reduced density matrix (III.20) is similar to (II.26), normalizing so that ρ̃D(τ) =

ρD(τ)/TrρD(τ) it can be diagonalized in a new basis that differs from (II.47,II.48) by the

phases multiplying | − 1〉 and with eigenvalues

ǫ±(τ) =
1

2

[
1± |η(τ)|

]
(III.27)

respectively, leading to the post-photodetection Von-Neumann entropy of entanglement

S̃D(τ) = −Trρ̃D(τ) ln ρ̃D(τ) = −ǫ+(τ) ln ǫ+(τ)− ǫ−(τ) ln ǫ−(τ) . (III.28)

This post-measurement entanglement entropy is given by Sfo(∞) in eqn. (II.51) asymptot-

ically for Γτ ≫ 1 .

A. Implementing a “Quantum eraser”:

The factor 1/(1+i∆ω/Γ) in the results (III.20,III.22,II.27) reflects which-path information

because it suppresses coherence when ∆ω ≫ Γ. It is noteworthy that this suppression

remains in the final expressions even in an “ideal” broadband photodetector a lá Glauber

which is insensitive to the photon frequency and with a photodetection correlation function

∝ δ(t− t′) as discussed above.
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In the experiment in ref.[19] ∆ω = 2π × 122MHz ; Γ ≃ 1/12 ns so that ∆ω/Γ ≃
9.2 and there is a strong suppression of coherence because of which-path information

1/
√
1 + ∆ω2/Γ2 ≃ 0.11. In this experiment photodetection is carried out with a photode-

tector with time resolution δt ≃ 300 ps ≪ 1/∆ω to implement a “quantum eraser”[32, 33]

to “erase” which-path information by introducing an energy uncertainty ∼ 1/δt ≫ ∆ω.

A simple model for such photodetector can be implemented by modifying the interaction

Hamiltonian between the detector and the radiation field HDR (III.1) introducing a “shutter

function” S(t) with explicit time dependence, namely

HDR(t) =
∑

j

[
~dj · ~E(+)

P (~xd; t)|edj〉〈gd| eiνjt + h.c.
]
S(t) ; P = H ;V , (III.29)

where the only restrictions on the shutter function S(t) are

S(t) =

{
∼ 1 tD − δt ≤ t ≤ tD

0 otherwise
(III.30)

with the shutter interval δt such that

Γδt ≪ ∆ωδt ≪ 1 . (III.31)

This function effectively describes a shutter with a time resolution δt and amounts to “slic-

ing” or time-binning the photon wavefunction upon detection.

A similar procedure of “chopping” the wave function in short time intervals has also been

advocated as a quantum eraser in ref.[24]. In ref.[30] a phenomenological damping term

is added to the right hand side of the equivalent of equations (A.4) in this reference, with

the argument that such damping term describes the coupling of the (single) excited state of

the detector atom to some reservoir. A “quantum eraser” is implemented in this approach

by taking the damping constant γ ≫ ∆ω. While this phenomenological approach seems

sensible, we consider instead the model of the photodetector with the shutter function S(t)

introduced above implemented within an ideal broadband photodetector as follows.

The solution for the coefficients Dj,±(tD) are now given by

Dj,±(tD) = −i
~dj√
2
·
∫ tD

0

〈0γ| ~E(+)
P (~xd, t)|σ∓(t)〉 S(t) eiνjtdt , (III.32)
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and the reduced density matrix elements in (III.14) become

∑

j

Dj,a(tD)D
∗
j,b(tD) =

1

2

∫ tD

0

dt

∫ tD

0

dt′ S(t) S(t′)〈σb(t)|E(−)( ~xd, t)E
(+)( ~xd, t

′)|σa(t
′)〉

×
∫ ∞

−∞
D(ω)eiω(t−t′) dω ; a, b = +,− , (III.33)

where we have used that |σ±(t)〉 are one-photon wavepackets and only the vacuum con-

tributes to the intermediate state in the correlation function of the electric field. The last

term in (III.33) is the photodetector correlation function [34, 35] which for a broadband

photodetector is given by eqn. (III.18), leading to

∑

j

Dj,a(tD)D
∗
j,b(tD) = 2π

D(Ω)

2

∫ tD

0

dtS2(t) 〈σb(t)|E(−)
P ( ~xd, t)E

(+)
P ( ~xd, t)|σa(t)〉

≃ 2π
D(Ω)

2
〈σb(tD)|E(−)

P ( ~xd, tD)E
(+)
P ( ~xd, tD)|σa(tD)〉 δt . (III.34)

where we have used the condition (III.31) so that the integrand is constant in the interval

tD − δt ≤ t ≤ tD and vanishes outside it. Using the result (A.5) we obtain the reduced

density matrix in the Schroedinger picture

ρD(tD) =
D(Ω)

2

(
Γδt
)
e−Γτ Θ(τ)

{
|+1〉〈+1|+ | − 1〉〈−1|+ δP−

(
|+1〉〈−1| ei∆ω td +h.c.

)}
.

(III.35)

Remarkably, this density matrix describes a pure state, namely

ρD(tD) = N (τ)
(
eiΩ+td |+ 1〉+ δP− eiΩ−td| − 1〉

)(
e−iΩ+td〈+1|+ δP− e−iΩ−td〈−1|

)
(III.36)

with the normalization

N (τ) =
D(Ω)

2

(
Γδt
)
e−Γτ Θ(τ) ; τ = tD − td . (III.37)

It is noteworthy that the quantum eraser has purified the post-measurement reduced

density matrix. This analysis confirms the experimental results in refs.[19, 20] and bolsters

the arguments presented in ref.[20].

In the experiment in ref.[19] after detection the spin-qubit evolves freely in time from tD

until a time t so that

ρD(t) = N (τ)
(
eiΩ+(t−τ)|+ 1〉+ δP− eiΩ−(t−τ)| − 1〉

)(
e−iΩ+(t−τ)〈+1|+ δP− e−iΩ−(t−τ)〈−1|

)

(III.38)
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at which time two microwave pulses resonant with the levels |±〉 are turned on and transfer

coherently the state

|M(t)〉 = 1√
2

(
eiΩ+t|+ 1〉+ eiΩ−teiφ| − 1〉

)
(III.39)

with a fixed phase φ to the ground state |0〉, as depicted in fig. (4). Now we find the total

|A〉

| + 1〉

σ−

| − 1〉

σ+

|0〉

FIG. 4: Coherent transfer of the state |M(t)〉 to the ground state |0〉 see ref.[19].

(joint) probability

PM |H,V (τ) = Tr
[
ρD(t)|M(t)〉〈M(t)|

]
=

N (τ)

2

[
1± cosα(τ)

]
; α(τ) = ∆ω τ +φ . (III.40)

This result agrees with the joint probability quoted and experimentally confirmed in

ref.[19] up to the overall normalization factor and the retardation in the detection time

τ = tD − td.

IV. SUMMARY AND CONCLUSIONS:

In this article we have studied the dynamics of frequency and polarization entangle-

ment between photons and a spin-qubit from spontaneous decay in a typical Λ system with

non-degenerate lower levels. We addressed in detail how which path information affects co-

herence, obtained the entanglement entropy for the reduced spin-qubit with frequency and

polarization entanglement and provided a unified description of the process of spontaneous

emission and broadband photodetection that is fully causal and allows to include a quantum

eraser in a consistent manner.

The main results are the following: beginning with the case in which photon spin-qubit

entanglement does not involve polarization but only frequency, the reduced qubit density
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matrix obtained from tracing out the radiation bath features oscillatory coherence terms (in

the qubit basis) that are suppressed by which path information by a factor 1/
√
1 + ∆ω2/Γ2

where ∆ω is the Zeeman splitting between the lower spin states and Γ is the linewidth of the

excited state. In the case in which the spin degree of freedom is entangled with circularly

polarized photons, the reduced density matrix is a statistical mixture as a consequence of

the orthogonality of the polarization of the photon states. We obtain the entanglement

Von-Neumann entropy in both cases and analyze their long time asymptotic behavior. In

the case in which the spontaneous decay rate is the same to the two lower levels, we find

that Sfp(t) ≥ Sfo(t) where Sfp(t) (Sfo(t)) is the entanglement entropy for frequency and

polarization (frequency only). Focusing on broadband photodetection in the case of fre-

quency and polarization entanglement, we find that with an ideal photodetector that filters

photons with horizontal (H) or vertical (V) directions the post-measurement density ma-

trix describes a mixed state with non-vanishing coherences in the qubit basis. Despite the

broadband nature of the photodetector described by correlation function ∝ δ(t − t′), the

coherences display oscillatory behavior suppressed by which path information just as the

pre-measurement density matrix in the case of frequency entanglement.

A “quantum eraser” is implemented within the Glauber model of broadband photodetec-

tion by including a “shutter function” that effectively time-bins photodetection with a time

resolution δt so that Γδt ≪ ∆ωδt ≪ 1 thereby introducing enough energy uncertainty to

average out frequency information. We find that photodetection with this “quantum eraser”

purifies the post-measurement reduced density matrix to a pure state. The resulting joint

probability for H/V photodetection with projection onto a a superposition of qubit states

|M(t)〉 = 1√
2

(
eiΩ+t|+1〉+eiΩ−teiφ|−1〉

)
is given by (III.40) and agrees with the experimental

results found in ref.[19].

Several aspects of the results obtained in this article suggest possible experimental av-

enues: 1) the dependence on the delay time td = xd/c with xd the position of the photode-

tector, suggests the possibility of using several photodetectors in coincidence, for example to

study interference effects, Hanbury-Brown-Twiss correlations or as a complementary vari-

able to explore coherence as a function of this delay distance, 2) rather than implementing

a “quantum eraser” with time-binned photodetection, continuous photodetection should

instead produce a joint probability given by (III.25) which displays steps in the coherent

oscillations (see fig. (3)), 3) instead of a “quantum eraser” with time resolution δt ≪ 1/∆ω
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one could consider a “quantum blurrer” with a varying shutter time resolution. This serves

as a window to let more which path information thereby suppressing the coherence in a

controlled manner.

The experimental relevance of the questions studied in this article merit further study

perhaps including alternative methods such as those of quantum open systems in terms

of a master equation[38, 39] or “quantum jumps” followed by density matrix resetting as

advocated in ref.[40].

Entanglement and quantum correlations are becoming very important in many timely

aspects of particle physics: in neutrino oscillations[41, 42] and in CP and T violation[43, 44].

Recently the entanglement of neutral B-meson pairs produced from the (spontaneous) decay

of a Υ(4S) resonance has been exploited experimentally to unambiguously show time-reversal

violation[45, 46] by tagging individual members of the correlated pairs. Therefore the interest

on the dynamics of entanglement, the emergence of spontaneous coherence and quantum

correlations is transcending disciplines and clearly merits deeper understanding.
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Appendix A: Solutions for the coefficients in eqn. (III.11,III.12)

The equations of motion for the coefficients in eqn. (III.11,III.12) are obtained from the

Schroedinger equation in the interaction picture d|Ψ(t)〉/dt = −iHI(t)|Ψ(t)〉 projecting on

the corresponding states.

These simplify substantially from the following properties: HAR is the identity in the

detector space {|edj〉, |gd〉} and HDR is the identity in the NV-center basis {|A〉, | ± 1〉}.
The equations of motion for the coefficients C~k,±(t) feature contributions of the form

〈1~k,±;∓1; gd|HDR| ∓ 1; edj ; 0γ〉Dj,∓(t)
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arising from the term
∑

j
~d∗j · ~E(−)(~xd, t)|gd〉〈edj | in HDR(t). Such term describes the de-

excitation of the photodetector by spontaneous emission from an excited state |edj〉 in which

the NV-center states | ± 1〉 are passive, this term is of higher order in dipolar couplings and

under the assumption of very small detection efficiency as is the case experimentally (see

below) it will be neglected3, leading to the final form of the equations of motion

iĊA(t) = 〈A; 0γ|HAR(t)|1~k,+;−1〉C~k,−(t) + 〈A; 0γ|HAR(t)|1~k,−; +1〉C~k,+(t) (A.1)

iĊ~k,+(t) = 〈1~k,−; +1|HAR(t)|A; 0γ〉CA(t) (A.2)

iĊ~k,−(t) = 〈1~k,+;−1|HAR(t)|A; 0γ〉CA(t) (A.3)

Ḋj,±(t) = −i
~dj√
2
· 〈0γ| ~E(+)

P (~xd, t)|σ∓(t)〉 eiνjt , (A.4)

where the states |σ∓(t)〉 are given by (II.41) with (II.36) evaluated at ~x0 = ~0. The solutions

to eqns. (A.1,A.2,A.3) are the same as (II.35,II.36). Upon inserting these solutions in the

matrix element (A.4), we obtain in the Wigner-Weisskopf approximation

−i
~dj√
2
·〈0γ| ~E(+)

P (~xd, t)|σ∓(t)〉 eiνjt = κj

√
Γ±
2π

δP∓ eiνjtd ei(νj−Ω±)(t−td) e−
Γ

2
(t−td)Θ(t−td) ; td =

xd

c
(A.5)

where the constants κj are proportional to dj/xd with proportionality coefficients that result

from angular and contour integration4 and

δP∓ =

{
1 for P = H

∓ 1 for P = V
. (A.6)

From this result we obtain

Dj,±(t) = iκj

√
Γ±
2π

δP∓ eiνjtd

[
1− ei(νj−Ω±+iΓ

2
)(t−td)

]

[
νj − Ω± + i Γ

2

] Θ(t− td) . (A.7)
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