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In this work, we propose a parity-time (PT -) symmetric optical coupler whose arms are birefrin-
gent waveguides as a realistic physical model which leads to a so-called quadrimer i.e., a four complex
field setting. We seek stationary solutions of the resulting linear and nonlinear model, identifying
its linear point of PT symmetry breaking and examining the corresponding nonlinear solutions that
persist up to this point, as well as, so-called, ghost states that bifurcate from them. We obtain
the relevant symmetry breaking bifurcations (between symmetric –circularly polarized– and asym-
metric –elliptically polarized– states) and numerically follow the associated dynamics which give
rise to growth/decay even within the PT -symmetric phase. Our symmetric stationary nonlinear
solutions are found to terminate in saddle-center bifurcations which are analogous to the linear PT -
phase transition. We found that the PT symmetry significantly changes the stability and dynamical
properties of the modes with different polarizations.

PACS numbers: 42.65.Jx, 42.65.Tg, 42.65.Wi

I. INTRODUCTION

An optical coupler with one arm having losses and an-
other one having gain, balanced against each other, re-
cently became a test-bed for many phenomena originat-
ing from the interplay of the parity-time (PT ) symme-
try and nonlinearity. Unidirectional dynamics [1], un-
versality of the dynamics [2], symmetry breaking proper-
ties [3, 4], switching of the beams [5] and of solitons [6],
formation of symmetric and asymmetric bright solitary
waves [7, 8], breathers [9], and their stability [10], dark
solitons [11], as well as the emergence of ghost states [12–
14] and large-scale temporal PT -symmetric lattices [15]
are some among the many topics that have been touched
upon in very intense recent theoretical and experimental
work.

As a direct extension of the previous activity, a large
chunk of which has focused on the prototypical setting
of the PT -symmetric dimer, there emerges a problem of
effect of PT symmetry and nonlinearity on the polariza-
tion of the electric field. In that regard, the previously
proposed settings, to the best of our knowledge, were
chiefly focused on effectively scalar models. On the other
hand, the “vector” type of problems is natural for exper-
imental settings where the exploited fibers obey birefrin-
gence, since the two orthogonal polarizations are to be
taken into account [16].

In this work we consider a PT -symmetric coupler
whose arms are birefringent waveguides. Assuming that
the first waveguide is active and the second one is ab-
sorbing, we address the problem of a PT -preserving (in
the linear limit) configuration. While being an interest-
ing model from a physical point of view, this setting also
offers a different (in comparison to what was studied be-
fore) mathematical situation where the nonlinear modes
bifurcate from doubly degenerated eigenvalues of the lin-
ear problem. This requires the generalization of earlier
developed approaches (e.g. like the one reported in [17])

for the bifurcation of the nonlinear modes from the lin-
ear spectrum. In addition, it presents a rich playground
for dynamical systems analysis, due to the emergence of
a variety of saddle-center bifurcations (nonlinear analogs
of the linear PT -phase transition), as well as symmetry-
breaking (pitchfork) ones. It is these nonlinear states,
their emergence, stability, dynamics and the asymptotics
of the system that we will focus on hereafter.
The organization of the paper is as follows. In sec-

tion II, we present the model in its evolution as well as
in its stationary form. In section III, we focus on its
linear properties. Then, in section IV, we examine the
nonlinear modes (and bifurcations). Finally, in section V,
we briefly touch upon the dynamical implications of our
findings and in section VI, we present some conclusions,
as well some potential directions for future work.

II. THE MODEL

We specify the problem by imposing that the principal
optical axes of the two Kerr-type waveguides are π/4-
rotated with respect to each other, as it is schematically
represented in Fig. 1. In each arm, labeled by j, there
are two orthogonal field components of the electric fields
which we write down in the form [16] (j = 1, 2):

Ej(r, z, t) =
[

uj(z)Aj(r− rj)e
−iβjzej

+ uj+2(z)Aj+2(r − rj)e
−iβj+2zej+2

]

√

2

χ
eiωt + c.c. (1)

Here uj are the field envelopes depending on the prop-
agation distance z, i.e. we consider the stationary – in
time – problem, assuming that the carrier wavelength
λ0 is in the region of the normal group velocity disper-
sion, thus ruling out a possibility of modulational insta-
bility; r = (x, y) is a transverse radius vector, and r1,2
are the positions of the centers of the cores of the cou-
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pler. The real parameters βj are the propagation con-
stants of each of the field components, and ej are the
polarization vectors, which are mutually orthogonal in
each arm of the coupler, i.e. e1 · e3 = e2 · e4 = 0. The
real functions Aj(r − rj) and Aj+2(r − rj) describe the
transverse distributions of the fields in each waveguide
and the normalization coefficient

√

2/χ, where χ is the
Kerr coefficient, is introduced for convenience. For j = 1
and j = 2 the functions Aj(r) are centered in different
points rj . Also, for the sake of simplicity, we consider
Aj(r) = Aj+2(r) = A(r) (for j = 1, 2), such that the
integral

(ej · ej+1)

∫

A(r− rj)A(r− rj+1)d
2r

∫

A2(r)d2r

(the integration is performed over the transverse plane)
describes the linear coupling between the respective
modes. Since in the configuration shown in Fig. 1
e1 · e2 = e1 · e4 = e3 · e4 = −e3 · e2 = 1/

√
2 we use the

single linear coupling coefficient k (see also [18]). Then

u1

u3

u4u2

u1

u4 u3

u2k

k -k

k

FIG. 1: (Color online) (a) Schematic presentation of a PT -
symmetric coupler based on birefringent fibers. (b) Equiv-
alent graph (plaquette) representation illustrating the PT -
symmetry. Here − and + stand for active and lossy waveg-
uides, respectively.

following the analysis described in details in [16] we end
up with the system of equations:

i
du1

dz
= −k(u2 + u4) + iγu1 −

(

|u1|2 +
2

3
|u3|2

)

u1

−1

3
u2
3u

∗
1e

i∆1z (2a)

i
du2

dz
= −k(u1 − u3)− iγu2 −

(

|u2|2 +
2

3
|u4|2

)

u2

−1

3
u2
4u

∗
2e

i∆2z (2b)

i
du3

dz
= −k(u4 − u2) + iγu3 −

(

2

3
|u1|2 + |u3|2

)

u3

−1

3
u2
1u

∗
3e

−i∆1z (2c)

i
du4

dz
= −k(u1 + u3)− iγu4 −

(

2

3
|u2|2 + |u4|2

)

u4

−1

3
u2
2u

∗
4e

−i∆2z (2d)

Here γ > 0 describes gain in the first waveguide and dis-
sipation in the second waveguide, ∆j = 4πc

λ0

(

β′
j − β′

j+2

)

with β′
j =

dβj(ω0)
dω0

, ω0 being the carrier wave frequency,
is a properly normalized mismatch between the propaga-
tion constants of the orthogonal polarizations uj+2 and
uj. The asterisk stands for complex conjugation.
We will be interested in the stationary solutions, in

particular in their linear stability properties and ensuing
nonlinear dynamics which can be found in the two proto-
typical limiting cases of (i) zero mismatches |βj−βj+2| =
0 and (ii) large mismatches |β′

j−β′
j+2| ≫ kλ0/c when the

respective nonlinear terms can be neglected. It is conve-
nient to introduce a parameter α which vanishes (α = 0)
in the case (ii) and is unity (α = 1) in the case (i). Using
the standing wave ansatz uj(z) = wje

ibz, where wj are
z−independent, into (2), we obtain the system of alge-
braic equations:

bw1 = k(w2 + w4)− iγw1 +

(

|w1|2 +
2

3
|w3|2

)

w1

+
α

3
w2

3w
∗
1 , (3a)

bw2 = k(w1 − w3) + iγw2 +

(

|w2|2 +
2

3
|w4|2

)

w2

+
α

3
w2

4w
∗
2 , (3b)

bw3 = k(w4 − w2)− iγw3 +

(

2

3
|w1|2 + |w3|2

)

w3

+
α

3
w2

1w
∗
3 , (3c)

bw4 = k(w1 + w3) + iγw4 +

(

2

3
|w2|2 + |w4|2

)

w4

+
α

3
w2

2w
∗
4 . (3d)

Below the spectral parameter b will be also referred to as
the propagation constant.

III. PROPERTIES OF THE LINEAR PROBLEM

First we address the underlying linear problem [which
corresponds to the situation when all cubic terms in (3)
are negligible]. It can be rewritten in the matrix form

b̃w̃ = Hw̃ where

w̃ =







w̃1

w̃2

w̃3

w̃4






and H =







−iγ k 0 k
k iγ −k 0
0 −k −iγ k
k 0 k iγ







(hereafter we use tilde in order to distinguish eigenvalues
and eigenvectors of the linear problem).
The operator H is PT symmetric, which means that

[H,PT ] = HPT −PTH = 0, where P is a spatial rever-
sal linear operator

P =







0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0






(4)
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and T performs element-wise complex conjugation:
T w = w∗. The spectrum of operator H consists of two
double eigenvalues

b̃± = ±
√

2k2 − γ2, (5)

which are real for γ < γ
(1)
cr where γ

(1)
cr =

√
2k will be re-

ferred to as a primary critical point: the spontaneous PT
symmetry breaking occurs at γ

(1)
cr above which the eigen-

values are all imaginary. In order to visualize the PT
symmetry of the linear system, following [17] one can rep-
resent it with a graph shown in the right panel of Fig. 1,
reminiscent of four linearly coupled waveguides [17] (no-
tice however the sign difference in the coupling constants)
or plaquettes [19].
Since the details of our analysis are the same for both

eigenvalues b̃− and b̃+, we drop the subscripts + and
− wherever this does not lead to confusion. Despite
having double eigenvalues in its spectrum, H is diago-
nalizable below the PT -symmetry breaking point. This
means that double eigenvalues are semisimple, i.e. for
an eigenvalue b̃ one can find two linearly independent
eigenvectors, i.e. Hw̃(j) = b̃w̃(j), where j = 1, 2. More-
over, each eigenvalue b̃ possesses an invariant subspace
spanned by w̃(1) and w̃(2).
Let us also notice the following peculiarity of the case

at hand. In a situation where a PT -symmetric operator
H has no multiple eigenvalues, the condition of unbroken
PT symmetry (i.e. reality of all the eigenvalues) requires

that for each eigenvalue b̃ the corresponding eigenvector
w̃ can be chosen as an eigenstate of the PT operator,
i.e. PT w̃ = w̃. However, in the situation at hand arbi-
trarily chosen linearly independent eigenvectors w̃(1) and
w̃(2) may not be PT eigenstates. However, unbroken PT
symmetry requires that a certain linear combination of
w̃(1) and w̃(2) is an eigenstate for the PT operator. More
specifically, it is easy to establish that all the eigenvec-
tors that belong to the invariant subspace of b̃ and, at the
same time, are the eigenstates for the PT operator, can
be parametrized by a complex parameter a as follows:

w̃ =









a∗

ia∗(γ−ib̃)
k

− a
−ia(γ+ib̃)

k
− a∗

a









(6)

Being interested in linearly independent vectors w̃, it is
sufficient to consider only the vectors with

a = eiθ. (7)

Then Eq. (6) yields a monoparametric set of eigenvec-
tors w̃(θ) with a real parameter θ. In particular, setting

θ(1) = 0 and θ(2) = arctan(2k−b̃
γ

) one can choose two or-

thogonal (and therefore linearly independent) eigenvec-
tors:

w̃(1,2) = w̃(θ(1,2)), 〈w̃(1), w̃(2)〉 = 0 (8)

(hereafter we use the standard scalar product 〈g,h〉 =
∑4

j=1 gjh
∗
j ). Any eigenvector w̃ corresponding to the

eigenvalue b̃ can be represented as a linear combination of
PT eigenstates w̃(1,2): w̃ = λ1w̃

(1) + λ2w̃
(2) (of course,

this does not mean that any eigenvector w̃ is also a PT
eigenstate).
Let us also introduce a Hermitian adjoint operator H†.

Since the matrix H is symmetric, one has H† = H∗. As
long as PT symmetry of H is unbroken, the spectrum
of the adjoint operator H† also consists of two double
eigenvalues b± which are semi-simple. Any eigenvector

corresponding to an eigenvalue b̃ of the adjoint operator
H† can be represented as a linear combination of (w̃(1))∗

and (w̃(2))∗.

IV. NONLINEAR MODES

A. Bifurcations from the linear limit

Now we develop a perturbation theory for the eigen-
states of the linear problem giving rise to monoparamet-
ric families of nonlinear modes. We will look for nonlin-
ear modes w that are eigenstates of the PT operator, i.e.
PT w = w. To this end we introduce the expansions

w = εw̃(θ) + ε3W3 + . . . and b = b̃+ ε2B2 + . . . (9)

Here ε is a small real parameter, W3 and B2 are the
coefficients of the expansions and θ is to be determined
from the symmetry of the solution (see below). We notice
that for the expansion to be meaningful the coefficient B2

must be real.
Expansions (9) describe nonlinear modes that bifur-

cate from the linear limit corresponds to ε = 0 and is
given by the eigenvector w̃(θ) being a linear combination
of w̃(1,2) such that PT w̃(θ) = w̃(θ). Respectively, in the

linear limit the parameter b is given by the eigenvalue b̃.
Passing from ε = 0 to 0 < ε ≪ 1 one has to compute

the coefficients W3 and B2. While the physical sense
of the coefficient B2 is clear — it is a deviation of the
propagation constant due to small nonlinearity, it turns
out that B2 also has a clear geometrical interpretation.
Indeed, let us consider the total energy flow through the
coupler, which is defined by

U =

4
∑

j=1

|wj |2, (10)

Expansion (9) implies that in the vicinity of the linear
limit U = ε2〈w̃(θ), w̃(θ)〉 + O(ε3). Therefore, the co-
efficient B2 governs a slope of the energy curve in the
vicinity of the bifurcation point, i.e.

∂U

∂b

∣

∣

∣

∣

b=b̃,U=0

=
〈w̃(θ), w̃(θ)〉

B2
. (11)
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For the sake of definiteness, now we concentrate on
the case α = 0. Then the nonlinear problem (3) is con-
veniently written in the matrix form

bw = Hw + F (w)w, (12)

where F (w) is a diagonal matrix-function describing
the nonlinearity: F (w) = diag(|w1|2 + 2

3 |w3|2, |w2|2 +
2
3 |w4|2, 2

3 |w1|2 + |w3|2, 2
3 |w2|2 + |w4|2). Substituting (9)

into Eq. (12), noticing that F (w) = ε2F (w̃)+O(ε3), and
collecting the terms order of ε3, we obtain

(H − b̃)W3 = −[F (w̃(θ))−B2]w̃(θ). (13)

Equation (13) implies two possibilities. The first one
corresponds to the case when at some θ the eigenvector
w̃(θ) of the operator H is simultaneously an eigenvector
for the matrix F (w̃(θ)). Then the coefficient B2 can
be chosen as an eigenvalue of F (w̃(θ)) corresponding to
the eigenvector w̃(θ) (provided that this eigenvalue is
real). In this situation, the right hand side of Eq. (13)
is zero and it is sufficient to set W3 = 0. Since the
matrix F (w̃(θ)) is diagonal, its eigenvalues are equal to
its diagonal elements and the corresponding eigenvectors
are given as columns of the 4× 4 identity matrix.
Let us first assume that all the eigenvalues of F (w̃(θ))

are simple. In this case w̃(θ) can not be an eigenvec-
tor for F (w̃(θ)). The latter fact becomes evident if one
notices that w̃(θ) has no zero entries for any θ [see the
definition (6)]. Therefore, w̃(θ) can be an eigenvalue for
F (w̃(θ)) only if F (w̃(θ)) has a multiple eigenvalue. Then
one could search for a linear combination of eigenvectors
corresponding to the multiple eigenvalue, which would be
equal to w̃(θ). However, using the same argument, i.e.
the fact that all entries of the vector w̃(θ) are nonzero,
one can see that even if F (w̃(θ)) has a double or an triple
eigenvalue, the matrix F (w̃(θ)) still can not have w̃(θ)
among its eigenvalues. Therefore w̃(θ) can be an eigen-
vector of F (w̃(θ)) only if all its eigenvalues are equal.
Imposing this constraint on the matrix F (w̃(θ)), one ob-
tains |w1| = |w3| and |w2| = |w4|. Noticing that the form
of w̃(θ), i.e. Eqs. (6) and (7), implies that |w1| = |w4| = 1
we conclude that w̃(θ) is an eigenvalue of F (w̃(θ)) only
if the moduli of all the entries of w̃(θ) are equal to unity.
Then matrix F (w̃(θ)) is equal to the 4 × 4 identity ma-
trix multiplied by 5/3. Requiring the moduli of all the
entries of w̃(θ) to be equal, one arrives at the equation
for θ whose root is given as

θ =
π

8
− 1

2
arctan

(

b̃

γ

)

. (14)

Since now the moduli of all the entries of w̃(θ) are equal
to unity and therefore 〈w̃(θ), w̃(θ)〉 = 4, B2 = 5/3 and

Eq. (11) readily yields that in the vicinity of b̃ the slope
∂U/∂b|b=b̃,U=0 = 12/5 = 2.4. Notice that the found
value does not depend on k or γ, and thus these modes
correspond to their counterpart in pure conservative cou-
pler with birefringent arms with γ = 0 [Eq. (14) is valid
in this case since arctan(±∞) = ±π/2].

Let us now consider the second possibility to fulfill
Eq. (13). If for some θ the corresponding w̃(θ) is not an
eigenvector for F (w̃(θ)), then one must satisfy Eq. (13)
choosing nonzero W3. Then the coefficient B2 is to be
determined from the solvability condition which requires
the right hand side of Eq. (13) to be orthogonal to all the

eigenvectors of the invariant subspace of b̃ in the spec-
trum of the adjoint operator H†. As we have established
in Sec. III, any eigenvector of H† from the invariant sub-
space of b̃ can be represented as a linear combination of
(w̃(1))∗ and (w̃(2))∗. Requiring the right hand side of
Eq. (13) to be orthogonal to an arbitrary linear combi-
nation of (w̃(1))∗ and (w̃(2))∗, we arrive at the following
relations:

〈F (w̃(θ))w̃(θ), (w̃(1))∗〉
〈w̃(θ), (w̃(1))∗〉 =

〈F (w̃(θ))w̃(θ), (w̃(2))∗〉
〈w̃(θ), (w̃(2))∗〉 = B2.

(15)
In Eq. (15) the first equality sign is an equation which
is to be solved with respect to θ. Once a root θ of the
latter equation is found, then B2 is given from the second
equality sign. Notice that despite the fact that the vector
w̃(θ) is complex, the coefficient B2 will be real [17].

Substituting the expression for w̃(θ) into Eq. (15), one
obtains a rather cumbersome equation, which, however
can be attacked with a computer algebra program. Af-
ter some transformations, Eq. (15) yields the following
condition:

|e2iθ| = |γ −
√

−k2 + γ2|
k

. (16)

The latter equation has a real root θ only if 0 < γ ≤ k,
i.e. when the expression under the radical is not positive.
This result suggests that there exists a critical value of
the gain-loss parameter which we term as the secondary

critical point γ
(2)
cr = k, such that for sufficiently small

γ, namely, 0 < γ ≤ γ
(2)
cr , there exists another family bi-

furcating from the eigenvalue b̃ of the linear spectrum.

However, this family disappears for γ > γ
(2)
cr , in spite of

the fact that the PT symmetry of the underlying linear

problem remains unbroken, i.e. γ
(2)
cr < γ

(1)
cr . It is impor-

tant to point that the newly found family of solutions
does not correspond to equal amplitude among the dif-
ferent nodes, and hence pertains to an elliptically (rather
than circularly) polarized family of modes.

Computing the corresponding value ofB2 for the newly
found elliptically polarized family, one finds that the co-
efficient B2 does depend on k and γ (in contrast to the
above considered circularly polarized family, character-
ized by B2 = 5/3 for any combination of k and γ which
does not violate PT symmetry). In particular, when γ
approaches k, the coefficient B2 of the elliptically polar-
ized family tends to 5/3, which suggests that at γ = k
the circularly polarized and elliptically polarized families
globally merge.
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B. Algebraic analysis and numerical results

1. Exact solutions

Having explored nonlinear modes close to the linear
limit, where the amplitudes of the modes are small and
therefore they can be analyzed by means of perturbation
theory, let us now consider nonlinear modes of arbitrary
amplitudes (turning again to the general case α 6= 0).
Relying on results of the previous subsection we firstly
search for nonlinear modes which have equal intensities in
all four waveguides. Making the substitution w2 = −iw∗

1

and imposing the condition w4 = w∗
1 , w3 = w∗

2 , which is
necessary for a nonlinear mode to be an eigenstate of PT
thus leading to the circularly polarized light in each of
the coupler arms, system (3) yields the single (complex)
algebraic equation

bw1 = k(1− i)w∗
1 +

5− α

3
|w1|2w1 − iγw1. (17)

Representing w1 = ρeiφ, we obtain a bi-quadratic equa-
tion for ρ yielding two families of the modes bifurcating
from the eigenvalues b̃±, given by (5), of the linear spec-
trum:

ρ2± =
3(b− b̃±)

5− α
, e2iφ± =

b̃±(1− i)− γ(1 + i)

2k
. (18)

Respectively, the nonlinear modes have the following
form:

w =









ρ±e
iφ±

−iρ±e
−iφ±

iρ±e
iφ±

ρ±e
−iφ±









(19)

Using Eqs. (18) one can easily obtain continuous fam-
ilies of nonlinear modes that can be identified as a func-
tion of the propagation constant b, for given k and γ.
Let us now recall that Eq. (16) predicts that for α = 0

and γ < γ
(2)
cr , there exist families of elliptically polarized

modes having different absolute values of the polarization
vectors. Such families were indeed found in our numerics.
However, all such modes turned out to be unstable (see
Figs. 2–3 and discussion below).
In the case of zero propagation constant mismatch, i.e.

when α = 1, one also can find families which have differ-
ent amplitudes of the polarization vectors. The explicit
expressions for the families bifurcating from b̃± read

w1 = w∗
4 = ρ±e

iφ, w2 = w∗
3 = (−1±

√
2)ρ±e

−iφ,

ρ2± =
b− b̃±

4∓ 2
√
2
, φ = ∓1

2
arcsin

γ√
2k

.
(20)

Remarkably, these modes, which also describe propaga-
tion of elliptically polarized light, are stable in a certain
range of the parameters.

FIG. 2: (Color online) Prototypical examples of families of
nonlinear modes in the plane (b, U) for k = 1 and gain-loss
parameters γ: γ = 0.5 (the upper panels), γ = 1.1 (the lower
panels). Left and right columns correspond to α = 0 and
α = 1. Stable and unstable modes are shown by solid and
dashed lines, respectively. The families with the circular and
elliptical polarization (if any) are marked with labels “(c)”
and “(e)”, respectively (in the color online version families
with the circular and elliptical polarization are also shown
by blue and red lines, respectively). Notice that the families
corresponding to the modes having exact solutions (18) and
(20) are represented by the straight lines.

2. Families of nonlinear modes

The results of our analysis of the families of nonlin-
ear modes are summarized in Fig. 2. The upper panels
show that for 0 < γ < k each eigenvalue of the linearized
problem gives rise to two distinct (circularly and ellipti-
cally polarized) families of nonlinear modes. In the case
of α = 0 the slopes of the dependencies U(b) are close
for the families of both types, and the elliptically polar-
ized families are always unstable while circularly polar-
ized families have both stable and unstable solutions. For
α = 1 one can find stable solutions both for the families
with circular and for those with elliptical polarization.

For k < γ <
√
2k, the case α = 0 does not allow

for elliptically polarized families [see Fig. 2 C], a feature
which is in accordance with the perturbation approach
developed above. In this case one can only find circularly
polarized modes, which are unstable. On the other hand,
for α = 1, stable and unstable modes of both types can
be found [see Fig. 2 D].

Summarizing at this point, we have identified 4 sets
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of solutions, two circularly polarized with equal ampli-
tude at the nodes, and two elliptically polarized with
unequal such amplitudes. These all degenerate into the
two distinct eigenvalues b̃±, given by (5), of the linear
problem. The circularly polarized solutions are more ro-
bust, while the elliptically polarized ones are always un-
stable for α = 0 and stable only for small enough am-
plitudes for α = 1. Among the circularly polarized ones,
for 0 < γ <

√
2k the more fundamental state (stem-

ming from the negative eigenvalue at the linear limit) is
always the stable ground state of the system in contin-
uations over the parameter b, while the excited state is
only stable for small enough amplitudes.

3. Continuation over γ

An alternative and perhaps even more telling way to
illustrate the above features stems from fixing some value
of b, starting from the Hamiltonian limit of γ = 0 and
subsequently identifying branches of the nonlinear modes
by means of changing γ, as shown in Fig. 3. It is impor-
tant to note that this alternative viewpoint affords us the
ability to visualize bifurcations that cannot be discerned
over variations in b.
The relevant results for parametric continuations over

γ are given in Figs. 3-4; typical examples of the corre-
sponding linearization spectra for different values of γ can
be found in Fig. 5. Here, it can be seen that a lower am-
plitude and a higher amplitude symmetric (i.e., equal am-
plitude) branch exist, for fixed b, from the Hamiltonian
limit of γ = 0 and all the way up to the linear PT -phase

transition point γ
(1)
cr =

√
2k. At that point, the two sym-

metric branches collide and disappear in a saddle-center
bifurcation which can be thought of as a nonlinear ana-
log of the linear PT -phase transition [20]. An additional

very interesting feature arises precisely at the point γ
(2)
cr

[see (16) and the related discussion], where it can be seen
that both branches of equal amplitude between the sites
become dynamically unstable for α = 0. In fact, it is seen
that for the larger amplitude branch (associated with the
blue circles), one pair of unstable eigenvalues arises, while
for the smaller amplitude (red diamond) branch, two such
pairs accompany the symmetry breaking bifurcation oc-
curring at this critical point. A closer inspection reveals
that the symmetric branch (blue circles) is destabilized
through a subcritical pitchfork bifurcation with its “cor-
responding” asymmetric state (i.e., the one degenerate
with it in the linear limit). In the case of the lower
amplitude (excited) state for the same b, the situation
appears to be more complex. In particular, there exists
once again a subcritical pitchfork with the correspond-
ing asymmetric branch, yet this would justify one pair
of unstable eigenvalues and we observe two. This is be-
cause at the same point, there also exists a supercritical
pitchfork, which gives rise to the so-called ghost states,
denoted by magenta plus symbols. These states are anal-
ogous to the ones to analyzed in [12–14], but remarkably

are not stationary states of the original problem, yet they
are pertinent to its dynamical (instability) evolution and
for this reason they will be examined in further detail
separately in the dynamics section below.
In the case of α = 1, only one pair of unstable eigen-

values emerges for the lower amplitude branch at the

secondary critical point of γ
(2)
cr (while the larger ampli-

tude branch remains stable throughout the continuation
in γ). Hence, in this case, once again a saddle-center bi-
furcation will mark the nonlinear PT -phase transition,
yet the number of unstable eigendirections of each sym-
metric branch (fundamental and excited) is decreased by
one (0 and 1 real pairs instead of 1 and 2, respectively, for
α = 0). In this case, in fact, both asymmetric branches
persist up to the linear PT -phase transition (rather than
terminate in a subcritical pitchfork as above), and col-
lide and disappear with each other. Interestingly all 3
branches (the lower amplitude, excited symmetric one
and the two asymmetric ones) become unstable at the

secondary critical point γ
(2)
cr = k, which again points

to the existence of corresponding ghost states. For the
lower amplitude symmetric branch, the bifurcating ghost
states are again identified by the magenta plus symbols
in Fig. 4.
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FIG. 3: (Color on-line) The four panels denote the solu-
tion amplitude (top left), phase differences between adjacent
nodes (top right), real and imaginary parts (second row) of
eigenvalues for α = 0, b = 2, and k = 1. The blue circles
branch corresponds to the “+” sign in Eq. (18), while the
red diamonds branch corresponds to the “-” sign (the sym-
metric/circularly polarized branches). The green stars and
black squares crosses are those solutions with distinct abso-
lute values of the polarization vectors (the asymmetric or el-
liptically polarized branches). In the top left panels, they
collide and disappear in two subcritical pitchfork bifurcations
with the blue circles and red diamond branches, respectively.
The magenta pluses branch in the panels represents the ghost
state solutions, which bifurcate from the red diamonds at

γ = γ
(2)
cr = 1 and terminate at γ = 2.44.

V. DYNAMICS OF THE POLARIZATION

To examine the potentially symmetry breaking (and
more generally instability driven) nature of the dynami-
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FIG. 4: The four panels show the same diagnostics as in the
previous figure but now for α = 1, b = 2, and k = 1.
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FIG. 5: Stability plots. The top two panels are for α = 0,
and the bottom one is when α = 1. In the case α = 0,

at γ = γ
(2)
cr = 1, one pair of blue circles and two pairs of red

diamonds collide at 0 so that one pair of real eigenvalues arises
in blue circles branch whereas two pairs of real eigenvalues
arise in the red diamonds branch. The asymmetric branches
only exist (and are unstable) for the smaller value of γ = 0.5,
for α = 0. For the same parameters (b = 2, k = 1), in the
case of α = 1, the excited symmetric and both asymmetric
branches are unstable for γ = 1.2.

cal evolution past the critical points identified above, we
have also performed direct numerical simulations which
are illustrated in Fig. 6; see also Fig. 7. Here, it can
be seen that although the relevant parameters are be-
low the critical point for the linear PT -phase transi-

tion γ
(1)
cr =

√
2k, nevertheless, symmetry breaking phe-

nomena are observed due to the dynamical instability
of the relevant states (the ones denoted by dashed lines
in Fig. 2). This dynamics may, in principle, be associ-
ated with the so-called ghost states of complex propaga-
tion constant that have recently been proposed as rele-
vant for the dynamical evolution in [14]. To substantiate
this claim, we note that it is observed in the left panel
of Fig. 6 that the relative phase of the two gain sites
that lock into an equal growing amplitude, is π/2, as is

those of the decaying amplitude lossy sites. In light of
this, we seek ghost states with precisely this phase dif-
ference and are able to explicitly identify them via the
ansatz w3 = iw1, w4 = iw2, setting wj = cje

iφj for
j = 1, 2. For these branches, the propagation constant is
complex. This highlights the potential growth or decay
of such states. Importantly also, note that these states
are “ghosts” because they may be solving the stationary
problem of Eqs. (3), but the U(1) invariance of the orig-
inal model does not permit them to be a solution of the
dynamical Eqs. (2).
The algebraic conditions that this family of solutions

satisfies are

sinφb =
(c22 − c21)γ

(c21 + c22)B
(21)

cosφb =
(5 − α)(c21 + c22)

3B
(22)

sin(φ2 − φ1)

=
(3γ −B(sinφb + cosφb) + (5− α)c22)c2

6kc1
(23)

=
(3γ +B(sinφb − cosφb) + (5− α)c21)c1

6kc2
(24)

cos(φ2 − φ1)

=
(3γ −B(sinφb − cosφb)− (5− α)c22)c2

6kc1
(25)

=
(3γ +B(sinφb + cosφb)− (5− α)c21)c1

6kc2
. (26)

Notice that the imaginary part of the propagation con-
stant B sin(φb) is proportional to the difference c21 − c22.
Hence, prior to the symmetry breaking, the relevant so-
lutions bear a real propagation constant. Past the bi-
furcation point one (unstable) branch has c22 > c21, while
the stable branch has c21 > c22. The relevant ghost state
branches and their bifurcation from the equal amplitude
ones are explored in Fig. 3-4. Given that these are only
ghost solutions of the original dynamical problem, the
interpretation of their linearization spectrum (shown for
completeness in Fig. 5) is still an open problem.

These ghost states appear, in fact, to be the ones di-
rectly observed in the unstable evolution dynamics. To
illustrate this, we observed the particular behavior of the
unstable modes and how it depends on the form of the
initial perturbation. A typical example in which the gain
sites lead to growth and the lossy sites to decay is shown
in the left panel of Fig. 6. It is remarkable that the
dynamics appears to closely follow the ghost states iden-
tified above. This is clearly showcased in Fig. 7, through
the comparison of the growth pattern in the relevant sites
(and the decay pattern in the lossy sites) with the ex-
act, shifted in the propagation distance to fit the onset
of growth, ghost state solution for the same parameters.
The matching is excellent, lending strong support to the
dynamical relevance of the ghost states. On the other
hand, in the right panel of Fig. 6 a different scenario of
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evolution is illustrated. Instead of the gain nodes grow-
ing and the lossy ones decaying, a breathing oscillation
settles between the two pairs. These two scenarios, illus-
trated in Fig. 6, are the prototypical instability evolution
ones that we have obtained in this system.

FIG. 6: (Color online) Dynamics of an unstable circularly
polarized mode at b = 3, γ = 0.5 and for α = 0 for two dif-
ferent small initial perturbations. The result of the evolution
of the left panel involves growth at the gain sites (u1,3, red
curves in the color online version) and decay at the lossy sites
(u2,4, blue curves in the color online version). Notice that
intensities among the two gain sites and among the two lossy
sites are approximately equal (|u1|

2 ≈ |u3|
2 and |u2|

2 ≈ |u4|
2)

and are not distinguishable in the scale of the plots. In the
right panel only the initial stage of the found persistent pe-
riodic dynamics is shown; the simulations were performed up
to z = 2000.
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FIG. 7: The dynamical semi-log plot of the ghost state with
α = 0, b = 2, and k = 1 for γ = 1.02. The red solid line and
blue dashed line correspond to the red diamond and magenta
plus branches in Fig. 3, respectively. The blue dashed line is
plotted with a shift in time, i.e. delay by z = 19.61. The
time axis in the plot is the actual time of the red solid line.
Their dynamical behaviors are essentially identical (and can
not be distinguished on the scale of the plot), showcasing how
the unstable dynamics of the red diamond branch follows the
bifurcating ghost state.

VI. CONCLUSION

In conclusion, in the present work, we have proposed
a novel, physically realistic variant of a PT symmetric
dimer where the effect of birefringence has been taken
into consideration. The existence of polarization of the
electric field within the coupler yields two complex dy-

namical equations for each of the fibers, providing a phys-
ical realization of a plaquette model with both linear and

nonlinear coupling between the elements. The station-
ary states of the model were identified and both lin-
ear and nonlinear PT -phase transitions were obtained.
The degenerate nature of the linear limit complicated
the problem in comparison to other ones studied earlier
in this context. Furthermore, the emergence of symme-
try breaking phenomena and associated (subcritical or
supercritical) pitchfork bifurcations, as well as their dy-
namical implications in leading to indefinite growth and
decay (of the corresponding waveguide amplitudes) were
elucidated. A connection was given to ghost states that
appeared to dominate the symmetry-breaking dynamics.

From the physical point of view, we emphasize that the
use of PT symmetry significantly changes the stability of
the modes with different polarizations. For example, in
the case of large propagation constant mismatches, we
saw that the symmetric –circularly polarized– states be-
come destabilized in the presence of gain/loss and may
even cease to exist past a certain critical point of the
relevant parameter. Instead of them, the dynamics may
lead to a breathing exchange of “mass” between the gain
and the lossy waveguides, or most commonly an indef-
inite growth of the former at the expense of the latter.
This is in line with what is expected from the dynamics of
the dominant emerging ghost states of the system. The
instabilities and associated dynamics should be observ-
able in suitable generalizations of existing experiments
such as [3]. Such properties are relevant also to possibili-
ties of solitonic –waveguide array– generalizations of the
coupler system as well as towards a possible use of PT
symmetric coupler for measurement techniques based on
the use of several nonlinear modes.

From the mathematical point of view, we believe that
these studies may pave the way for considering multi-
component, as well as multi-dimensional (generalizing
the plaquettes considered here or those of [19]) lattice
models of PT -symmetric form. In generalizing to multi-
plaquette configurations, it would be especially interest-
ing to examine which of the symmetry-breaking and non-
linear PT -phase transition phenomena examined herein
are preserved and what new phenomena may arise as ad-
ditional degrees of freedom are added. Such studies will
be deferred to future publications.
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