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Excitation energies of the ns, np, nd, and nf (n ≤ 9) states in Li-like Be+ are evaluated within the
framework of relativistic many-body theory. First-, second-, third-, and all-order Coulomb energies
and first- and second-order Breit corrections to energies are calculated. Two alternative treatments
of the Breit interaction are investigated. In the first approach, we omit Breit contributions to the
Dirac-Fock potential and evaluate Coulomb and Breit- Coulomb corrections through second order
perturbatively. In the second approach, we include both Coulomb and Breit contributions on the
same footing via the Breit-Dirac-Fock potential and then treat the residual Breit and Coulomb inter-
actions perturbatively. The results obtained from the two approaches are compared and discussed.
All-order calculations of reduced matrix elements, oscillator strengths, transition rates, and lifetimes
are given for levels up to n = 9. Electric-dipole (2s −np), electric-quadrupole (2s −nd), and electric-
octupole (2s −nf), matrix elements are evaluated in order to obtain the corresponding ground state
multipole polarizabilities using the sum-over-states approach. Recommended values are provided
for a large number of electric-dipole matrix elements. Scalar and tensor polarizabilities for the ns,
np1/2, np3/2, nd3/2, and nd5/2 states with n ≤ 9 are also calculated. Scalar hyperpolarizability for
the ground 2s state is evaluated and compared with non-relativistic calculation.

PACS numbers: 31.15.ac, 31.15.ag, 31.15.ap, 31.15.bw

I. INTRODUCTION

In the present paper, we report a systematic ab ini-

tio relativistic study of Be+ properties, including calcu-
lations of excitation energies, oscillator strengths, tran-
sition rates, lifetimes, polarizabilities and hyperpolariz-
ability in Li-like beryllium. The calculations are carried
out using a high-precision relativistic all-order method
which includes all single, double (SD), and partial triple
excitations (SDpT) of the Dirac-Fock wave functions [1].
In 2012, all-order calculations of neutral Li oscillator
strengths, lifetimes, and polarizabilities [2] were found in
excellent agreement with benchmark high-precision re-
sults obtained with Hylleraas basis functions [3–7]. Re-
cently, oscillator strengths, polarizabilities and hyperpo-
larizabilities in Li-like beryllium evaluated using Hyller-
aas basis functions were presented by Tang et al. [8, 9].
We compare our values with these calculations as well as
provide a large number of recommended data for other
states. These calculations provide recommended values
critically evaluated for their accuracy for a number of
Be+ atomic properties useful for a variety of applications.

We start with a review of relevant theoretical and ex-
perimental studies. Most accurate calculations of the
oscillator strengths, lifetimes, polarizabilities in neutral
lithium were obtained using Hylleraas basis functions [3–
7, 10–21]. A review of Li polarizabilities was recently
given in [22].

Early theoretical calculations and measurements of en-

ergies, wavelengths, oscillator strengths, transition rates,
polarizabilities, and lifetimes in Be+ were presented in
Refs. [14, 23–62]. Recently published comprehensive
critical NIST compilation by Fuhr and Wiese [63] in-
cluded the energies, wavelengths and transition rates for
allowed and forbidden transitions of Be+. Recommended
values of the line strengths, oscillator strengths, an tran-
sition rates in Ref. [63] were based on accurate theoretical
calculations presented by Yan et al. [14], Godefroid et al.

[23], Froese Fisher et al. [27], Qu et al. [25, 26], Chung
[34], and Peach et al. [40].

The Hylleraas-type variational method was used in
Ref. [14] to calculate the energies of the lithium 2s and
2p isoelectronic sequences up to Z = 20. The oscilla-
tor strengths for the 2s → 2p transitions were evaluated
for Z up to 20 including finite nuclear mass effects; the
corresponding lifetimes were also determined [14]. The
multiconfiguration Hartree-Fock method was used in [23]
to calculate wavefunctions in the infinite nuclear mass
limit for the 1s2ns 2S (n = 2-4), 1s2np 2P (n = 2-3),
and 1s23d 2D terms of lithium-like ions (3≤ Z ≤ 8).
Line strength and transition rates were evaluated for the
2s−2p, 2s−3p, 3s−3p, 2p−3s, 2p−4s, 3p−4s, 2p−3d,
and 3p − 3d transitions [23]. Multiconfiguration Breit-
Pauli energy levels, lifetimes, and transition data were
presented by Froese Fisher et al. [27] for the lithium
sequence in the range Z ≤ 8. All J-levels of the six low-
est 2L terms, namely those with configuration labels 2s,
2p, 3s, 3p, 3d, and 4s were included. The nonrelativistic
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dipole length, velocity, and acceleration absorption oscil-
lator strengths for the 2s− np (3≤ Z ≤ 9) transitions of
the lithium isoelectronic sequence up to Z = 10 were cal-
culated by using the energies and the multiconfiguration
wave functions obtained from a full core plus correlation
(FCPC) method [25]. Authors underlined that in most
cases, the the f -values from the length and velocity for-
mulae were in agreement up to forth or fifth digit [25].
The same method was used in Refs. [24, 26] to evalu-
ate oscillator strengths for the 2p − nd (3≤ n ≤ 9) and
3d − nd (4≤ n ≤ 9) transitions of the lithium isoelec-
tronic sequence up to Z = 10. Theoretical wavelengths,
oscillator strengths, line strengths, and transition proba-
bilities for the E1, M1, and E2 transitions among states
in Li isoelectronic sequence were evaluated by Cheng et

al. [43]. The multiconfiguration Dirac-Fock technique
was used to calculate necessary energy levels and wave
functions. In addition to relativistic effects arising from
the Dirac Hamiltonian and the Breit operator, authors
included the Lamb shift of the 1s, 2s, and 2p1/2 elec-
trons [43].

The oscillator strengths of all allowed transitions be-
tween the singly excited states of Be+ with principal
quantum numbers up to n = 11 were calculated within
the Coulomb approximation with a Hartree–Slater core
(CAHS) approach [37]. The results were subsequently
combined to obtain the radiative lifetimes of the excited
states. Tabulated results were given by Theodosiou [37]
for the ns, np, nd, nf , and ng states up to n =12.
Lifetime of the 2p1/2 and 2p3/22p levels in the lithium
isoelectronic sequence were computed by Theodosiou et

al. [38] using the semiempirical Coulomb approximation
with a Hartree–Slater core. Isoelectronic trends of line
strength data in the Li isoelectronic sequences were pre-
sented by Träbert and Curtis [64]. Authors proposed
that the decays of the 2p1/2 and 2p3/2 levels of Li-like
ions can be used as simple-atom test beds for lifetime
measurements and for the development of accurate cal-
culations of the transition rates. The experimental data
were summarized and filtered in order to obtain consis-
tent data sets and isoelectronic trends that can be com-
pared with theoretical predictions. The graphical pre-
sentation of line strength data enables direct comparison
and evaluation of the merit of data along extended iso-
electronic sequences [64].

The energy levels of the ns, np1/2, 2p3/2 (n = 2-3),
3d3/2, and 3d5/2 levels of Li-like ions with Z =2-16 were
calculated by Safronova [52] using the perturbation the-
ory method (MZ code). The Z-expansion method al-
lowed to describe the correlation part of the energy in
the first, second, and higher orders of the perturbation
theory. Relativistic effects were taken into account by the
Breit-Pauli operators [52]. Relativistic all-order calcula-
tions of energies and matrix elements for Li and Be+ were
presented by Blundell et al. [39]. Valence removal ener-
gies, hyperfine constants, and E1 transition amplitudes
were calculated for the 2s, 2p1/2, 2p3/2, and 3s, states of

Li and Be+. This calculation was a significant improve-

ment over the earlier second- and third-order many-body
perturbation theory (MBPT) calculations, and included
infinite subset of MBPT terms evaluated using all-order
methods [39]. The nonrelativistic energies of the lithi-
umlike ns, nd (n =3, 4, and 5), and nf (n = 4 and
5) states for Z =3 to 10 were calculated by Wang et

al. [35, 36] using a full–core–plus–correlation method
with multiconfiguration–interaction wave functions. Rel-
ativistic and mass-polarization effects were treated as
the first–order perturbation corrections. The quantum-
electrodynamic (QED) correction to the energy was in-
cluded using effective nuclear charge [35, 36].

The dipole polarizabilities of the lithium-like ground
states, 2s were calculated by Wang and Chung [33] using
the full-core plus correlation (FCFC) wavefunctions. The
non-relativistic polarizabilities were obtained by using a
variation-perturbation method. Based on the relativistic
and QED correction to the energy, the dipole polarizabil-
ities were corrected using an oscillator strength formula
[33]. The same approximation was used by Chen and
Wang [65] to evaluate the quadrupole and octupole po-
larizabilities for the ground states of lithiumlike systems
from Z = 3 to 20. The polarizabilities and hyperpolar-
izabilities of the Be+ ion in the 2s and 2p states were
determined by Tang et al. [8]. Calculations were per-
formed using two independent methods: variationally de-
termined wave functions using Hylleraas basis set expan-
sions and single-electron calculations utilizing a frozen-
core Hamiltonian. The dynamic dipole polarizabilities
for Li atoms and Be+ ions in the 2s and 2p states were
calculated using the variational method with a Hylleraas
basis in [9]. Corrections due to relativistic effects were
also estimated. Analytic representations of the polariz-
abilities for frequency ranges encompassing the n = 3
excitations were presented in Ref. [9].

In the present paper, we investigate all of the above
properties of the ground and excited states of Li-like
Be+ using the relativistic all-order method described in
[1]. In particular, we evaluate excitation energies of ns,
np, nd, and nf states with n ≤ 10, reduced matrix ele-
ments, oscillator strengths, transition rates, and lifetimes
for levels with n ≤ 9, ground state E1, E2, and E3 static
polarizabilities, scalar and tensor polarizabilities for for
the np1/2, np3/2 (n =2-9), nd3/2, and nd5/2 (n =3-9)
states. Scalar hyperpolarizability for the ground 2s1/2
state is evaluated and compared with non-relativistic cal-
culations. We use a complete set of DF wave functions
on a nonlinear grid generated using B-splines [66] con-
strained to a spherical cavity. A cavity radius of 220 a0
is chosen to accommodate all valence orbitals with n < 13
so we can use experimental energies for these states. The
basis set consists of 70 splines of order 11 for each value
of the relativistic angular quantum number κ.
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TABLE I: Energy calculated with a Dirac-Fock (DF) and Breit-Dirac-Fock (BDF) potentials. Zeroth-orders (DF) and (BDF),

single-double Coulomb energies E(SD), E(BSD), E
(3)
extra, first-order B(1) and second-order Breit-Coulomb (B(2) and BB(2))

corrections , Lamb shift ELS corrections in 9Be+ are listed. The total energies (E
(SD)
tot = E(DF)+ESD+E

(3)
extra+B(1)+B(2)+ELS

and E
(BSD)
tot = E(BDF) + EBSD + E

(3)
extra + BB(2) + ELS) are compared with experimental energies ENIST [73], δE = Etot -

ENIST. Units: cm−1. The value of the infinite mass Rydberg constant used to convert numerical data from a.u. to cm−1 is
Ry=10973.7316.

nlj E(DF ) E(SD) E
(3)
extra B(1) B(2) ELS E

(SD)
tot E(BDF ) E(BSD) BB(2) E

(BSD)
tot ENIST δE(SD) δEBSD)

2s1/2 -146210.3 -690.27 2.45 5.64 -1.77 1.10 -146893.2 -146205.1 -690.32 -1.33 -146893.2 -146882.9 -10.3 -10.4
2p1/2 -114005.4 -959.58 4.06 5.99 -1.30 0.00 -114956.2 -114000.3 -959.52 -0.44 -114956.2 -114954.1 -2.1 -2.1
2p3/2 -113996.5 -958.77 4.05 2.88 -1.19 0.00 -114949.5 -113994.5 -958.84 -0.34 -114949.6 -114947.5 -2.0 -2.1
3s1/2 -58495.1 -161.28 0.35 1.43 -0.47 0.22 -58654.9 -58493.8 -161.30 -0.35 -58654.9 -58650.9 -3.9 -3.9
3p1/2 -50133.8 -257.80 0.98 1.87 -0.42 0.00 -50389.2 -50132.2 -257.79 -0.16 -50389.2 -50387.5 -1.7 -1.7
3p3/2 -50131.1 -257.57 0.97 0.88 -0.38 0.00 -50387.2 -50130.5 -257.59 -0.13 -50387.3 -50385.6 -1.7 -1.7
3d3/2 -48788.5 -42.99 0.41 0.02 0.00 0.00 -48831.1 -48788.5 -43.00 0.01 -48831.1 -48828.3 -2.8 -2.8
3d5/2 -48788.0 -42.99 0.41 0.00 0.00 0.00 -48830.5 -48788.0 -43.00 0.01 -48830.9 -48827.8 -2.8 -3.2
4s1/2 -31358.9 -62.14 0.11 0.57 -0.19 0.09 -31420.4 -31358.4 -62.14 -0.14 -31420.4 -31418.4 -2.0 -2.0
4p1/2 -28019.4 -105.13 0.39 0.79 -0.18 0.00 -28123.5 -28018.7 -105.13 -0.07 -28123.5 -28122.3 -1.2 -1.2
4p3/2 -28018.3 -105.04 0.39 0.37 -0.16 0.00 -28122.7 -28018.0 -105.05 -0.06 -28122.7 -28121.5 -1.2 -1.2
4d3/2 -27443.8 -19.68 0.18 0.00 0.00 0.00 -27463.3 -27443.8 -19.68 0.00 -27463.3 -27461.7 -1.6 -1.6
4d5/2 -27443.5 -19.68 0.18 0.00 0.00 0.00 -27463.0 -27443.5 -19.68 0.00 -27463.2 -27461.4 -1.6 -1.8
4f5/2 -27434.6 -3.38 0.04 0.00 0.00 0.00 -27437.9 -27434.6 -3.38 0.00 -27438.0 -27436.3 -1.7 -1.7
4f7/2 -27434.5 -3.37 0.04 0.00 0.00 0.00 -27437.8 -27434.5 -3.38 0.00 -27437.8 -27436.1 -1.7 -1.7
5s1/2 -19518.9 -30.31 0.05 0.29 -0.09 0.04 -19548.9 -19518.7 -30.31 -0.07 -19549.0 -19547.7 -1.2 -1.2
5p1/2 -17859.6 -52.94 0.19 0.40 -0.09 0.00 -17912.0 -17859.2 -52.94 -0.04 -17912.0 -17911.2 -0.8 -0.8
5p3/2 -17859.0 -52.89 0.19 0.20 -0.08 0.00 -17911.6 -17858.9 -52.90 -0.03 -17911.6 -17910.8 -0.8 -0.8
5d3/2 -17563.4 -10.44 0.09 0.00 0.00 0.00 -17573.8 -17563.4 -10.44 0.00 -17573.8 -17572.7 -1.0 -1.0
5d5/2 -17563.3 -10.43 0.09 0.00 0.00 0.00 -17573.6 -17563.3 -10.44 0.00 -17573.7 -17572.6 -1.0 -1.1
5f5/2 -17558.1 -1.93 0.02 0.00 0.00 0.00 -17560.1 -17558.1 -1.93 0.00 -17560.1 -17559.0 -1.0 -1.1
5f7/2 -17558.1 -1.93 0.02 0.00 0.00 0.00 -17560.0 -17558.1 -1.93 0.00 -17560.0 -17558.9 -1.0 -1.1
6s1/2 -13310.4 -17.02 0.03 0.15 -0.05 0.02 -13327.3 -13310.3 -17.02 -0.04 -13327.3 -13326.4 -0.8 -0.8
6p1/2 -12368.1 -30.34 0.11 0.24 -0.05 0.00 -12398.2 -12367.9 -30.34 -0.02 -12398.2 -12397.5 -0.7 -0.7
6p3/2 -12367.8 -30.31 0.11 0.11 -0.05 0.00 -12397.9 -12367.7 -30.32 -0.02 -12397.9 -12397.3 -0.7 -0.7
6d3/2 -12196.4 -6.15 0.06 0.00 0.00 0.00 -12202.5 -12196.4 -6.15 0.00 -12202.5 -12201.7 -0.8 -0.8
6d5/2 -12196.3 -6.15 0.06 0.00 0.00 0.00 -12202.4 -12196.3 -6.15 0.00 -12202.5 -12201.7 -0.7 -0.8
6f5/2 -12193.2 -1.18 0.01 0.00 0.00 0.00 -12194.3 -12193.2 -1.18 0.00 -12194.3 -12193.7 -0.7 -0.7
6f7/2 -12193.1 -1.18 0.01 0.00 0.00 0.00 -12194.3 -12193.1 -1.18 0.00 -12194.3 -12193.6 -0.6 -0.7
7s1/2 -9654.3 -10.49 0.02 0.09 -0.03 0.02 -9664.7 -9654.2 -10.49 -0.02 -9664.7 -9664.1 -0.6 -0.6
7p1/2 -9068.6 -18.99 0.07 0.15 -0.03 0.00 -9087.4 -9068.5 -18.99 -0.01 -9087.4 -9086.9 -0.5 -0.5
7p3/2 -9068.4 -18.97 0.07 0.07 -0.03 0.00 -9087.2 -9068.3 -18.97 -0.01 -9087.2 -9086.7 -0.5 -0.5
7d3/2 -8960.3 -3.92 0.04 0.00 0.00 0.00 -8964.2 -8960.3 -3.92 0.00 -8964.2 -8963.7 -0.5 -0.5
7d5/2 -8960.3 -3.92 0.00 0.00 0.00 0.00 -8964.2 -8960.3 -3.92 0.00 -8964.2 -8963.7 -0.5 -0.5
7f5/2 -8958.2 -0.77 0.01 0.00 0.00 0.00 -8959.0 -8958.2 -0.77 0.00 -8959.0 -8958.5 -0.4 -0.4
7f7/2 -8958.2 -0.76 0.01 0.00 0.00 0.00 -8959.0 -8958.2 -0.77 0.00 -8959.0 -8958.5 -0.4 -0.4
8s1/2 -7321.3 -6.92 0.01 0.07 -0.02 0.00 -7328.2 -7321.2 -6.92 -0.02 -7328.2 -7327.7 -0.5 -0.5
8p1/2 -6932.6 -12.66 0.05 0.09 -0.02 0.00 -6945.2 -6932.5 -12.66 -0.01 -6945.2 -6944.8 -0.4 -0.4
8p3/2 -6932.5 -12.65 0.05 0.04 -0.02 0.00 -6945.1 -6932.5 -12.65 -0.01 -6945.1 -6944.7 -0.4 -0.4
8d3/2 -6860.1 -2.64 0.02 0.00 0.00 0.00 -6862.7 -6860.1 -2.64 0.00 -6862.7 -6862.3 -0.4 -0.4
8d5/2 -6860.1 -2.64 0.00 0.00 0.00 0.00 -6862.7 -6860.1 -2.64 0.00 -6862.7 -6862.3 -0.4 -0.4
8f5/2 -6858.6 -0.52 0.01 0.00 0.00 0.00 -6859.2 -6858.6 -0.52 0.00 -6859.2 -6858.7 -0.4 -0.4
8f7/2 -6858.6 -0.52 0.01 0.00 0.00 0.00 -6859.1 -6858.6 -0.52 0.00 -6859.1 -6858.7 -0.4 -0.4
9s1/2 -5742.2 -4.81 0.01 0.04 -0.02 0.00 -5746.9 -5742.1 -4.81 -0.01 -5746.9 -5746.6 -0.4 -0.4
9p1/2 -5471.2 -8.87 0.03 0.07 -0.02 0.00 -5479.9 -5471.1 -8.87 -0.01 -5479.9 -5479.6 -0.3 -0.3
9p3/2 -5471.1 -8.86 0.03 0.02 -0.02 0.00 -5479.9 -5471.0 -8.86 -0.01 -5479.9 -5479.5 -0.3 -0.3
9d3/2 -5420.2 -1.86 0.00 0.00 0.00 0.00 -5422.1 -5420.2 -1.86 0.00 -5422.1 -5421.7 -0.3 -0.3
9d5/2 -5420.2 -1.86 0.00 0.00 0.00 0.00 -5422.0 -5420.2 -1.86 0.00 -5422.0 -5421.7 -0.3 -0.3
9f5/2 -5419.2 -0.37 0.00 0.00 0.00 0.00 -5419.5 -5419.2 -0.37 0.00 -5419.5 -5419.2 -0.3 -0.3
9f7/2 -5419.2 -0.37 0.00 0.00 0.00 0.00 -5419.5 -5419.2 -0.37 0.00 -5419.5 -5419.2 -0.3 -0.3
10s1/2 -4623.9 -3.48 0.00 0.02 -0.02 0.00 -4627.3 -4623.8 -3.48 -0.01 -4627.3 -4627.0 -0.3 -0.3
10p1/2 -4427.4 -6.49 0.02 0.04 -0.02 0.00 -4433.9 -4427.4 -6.49 -0.01 -4433.9 -4433.6 -0.3 -0.3
10p3/2 -4427.4 -6.46 0.02 0.02 -0.02 0.00 -4433.8 -4427.4 -6.46 -0.01 -4433.8 -4433.5 -0.3 -0.3
10f5/2 -4389.5 -0.27 0.00 0.00 0.00 0.00 -4389.8 -4389.5 -0.27 0.00 -4389.8 -4389.5 -0.3 -0.3
10f7/2 -4389.5 -0.27 0.00 0.00 0.00 0.00 -4389.8 -4389.5 -0.27 0.00 -4389.8 -4389.5 -0.3 -0.3
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TABLE II: Recommended values of the reduced electric-dipole matrix elements in Li-like Be+ in atomic units. Final recom-
mended values and their uncertainties are given in the Zfinal column.

Transition Zfinal Transition Zfinal Transition Zfinal Transition Zfinal Transition Zfinal

2s− 2p1/2 1.8506(2) 3s− 2p1/2 0.8675(1) 4s− 2p1/2 0.2838(0) 5s− 2p1/2 0.1597(0) 6s− 2p1/2 0.1079(0)
2s− 2p3/2 2.6172(3) 3s− 2p3/2 1.2271(3) 4s− 2p3/2 0.4013(1) 5s− 2p3/2 0.2258(1) 6s− 2p3/2 0.1526(0)
2s− 3p1/2 0.4347(0) 3s− 3p1/2 4.6951(3) 4s− 3p1/2 2.1611(3) 5s− 3p1/2 0.6810(1) 6s− 3p1/2 0.3774(0)
2s− 3p3/2 0.6145(1) 3s− 3p3/2 6.6400(4) 4s− 3p3/2 3.0568(7) 5s− 3p3/2 0.9632(1) 6s− 3p3/2 0.5338(1)
2s− 4p1/2 0.2403(0) 3s− 4p1/2 0.7008(0) 4s− 4p1/2 8.6922(6) 5s− 4p1/2 3.9845(4) 6s− 4p1/2 1.2201(1)
2s− 4p3/2 0.3397(0) 3s− 4p3/2 0.9907(3) 4s− 4p3/2 12.2927(8) 5s− 4p3/2 5.636(1) 6s− 4p3/2 1.7257(2)
2s− 5p1/2 0.1590(1) 3s− 5p1/2 0.3941(0) 4s− 5p1/2 1.0130(1) 5s− 5p1/2 13.8507(9) 6s− 5p1/2 6.3388(7)
2s− 5p3/2 0.2249(0) 3s− 5p3/2 0.5572(0) 4s− 5p3/2 1.4319(5) 5s− 5p3/2 19.588(1) 6s− 5p3/2 8.966(2)
2s− 6p1/2 0.1159(1) 3s− 6p1/2 0.2641(1) 4s− 6p1/2 0.5688(2) 5s− 6p1/2 1.3737(3) 6s− 6p1/2 20.172(1)
2s− 6p3/2 0.1639(1) 3s− 6p3/2 0.3734(1) 4s− 6p3/2 0.8042(1) 5s− 6p3/2 1.9416(2) 6s− 6p3/2 28.527(2)
2s− 7p1/2 0.0897(1) 3s− 7p1/2 0.1948(1) 4s− 7p1/2 0.3813(2) 5s− 7p1/2 0.7669(3) 6s− 7p1/2 1.7844(3)
2s− 7p3/2 0.1268(1) 3s− 7p3/2 0.2754(1) 4s− 7p3/2 0.5391(1) 5s− 7p3/2 1.0842(1) 6s− 7p3/2 2.5221(4)
2s− 8p1/2 0.0722(1) 3s− 8p1/2 0.1522(1) 4s− 8p1/2 0.2818(2) 5s− 8p1/2 0.5120(4) 6s− 8p1/2 0.9892(6)
2s− 8p3/2 0.1020(1) 3s− 8p3/2 0.2152(1) 4s− 8p3/2 0.3985(2) 5s− 8p3/2 0.7239(3) 6s− 8p3/2 1.3985(3)
2s− 9p1/2 0.0598(1) 3s− 9p1/2 0.1236(2) 4s− 9p1/2 0.2209(4) 5s− 9p1/2 0.3777(7) 6s− 9p1/2 0.657(1)
2s− 9p3/2 0.0845(1) 3s− 9p3/2 0.1748(1) 4s− 9p3/2 0.3124(2) 5s− 9p3/2 0.5344(4) 6s− 9p3/2 0.9290(5)

2p1/2 − 3d3/2 2.5084(0) 2p1/2 − 4d3/2 0.9608(1) 2p1/2 − 5d3/2 0.5596 2p1/2 − 6d3/2 0.3837 2p1/2 − 7d3/2 0.2867
2p3/2 − 3d3/2 1.1219(1) 2p3/2 − 4d3/2 0.4297(1) 2p3/2 − 5d3/2 0.2503 2p3/2 − 6d3/2 0.1716 2p3/2 − 7d3/2 0.1282
2p3/2 − 3d5/2 3.3657(2) 2p3/2 − 4d5/2 1.2892(2) 2p3/2 − 5d5/2 0.7508 2p3/2 − 6d5/2 0.5148 2p3/2 − 7d5/2 0.3846
3p1/2 − 3d3/2 5.8534(7) 3p1/2 − 4d3/2 3.8426(3) 3p1/2 − 5d3/2 1.6090(1) 3p1/2 − 6d3/2 0.9661(0) 3p1/2 − 7d3/2 0.6736(0)
3p3/2 − 3d3/2 2.6177(3) 3p3/2 − 4d3/2 1.7187(3) 3p3/2 − 5d3/2 0.7196(1) 3p3/2 − 6d3/2 0.4321(0) 3p3/2 − 7d3/2 0.3012(0)
3p3/2 − 3d5/2 7.853(1) 3p3/2 − 4d5/2 5.1560(8) 3p3/2 − 5d5/2 2.1588(2) 3p3/2 − 6d5/2 1.2962(0) 3p3/2 − 7d5/2 0.9038(0)
4p1/2 − 3d3/2 0.9972(0) 4p1/2 − 4d3/2 12.0562(8) 4p1/2 − 5d3/2 5.4853(5) 4p1/2 − 6d3/2 2.3276(2) 4p1/2 − 7d3/2 1.4058(1)
4p3/2 − 3d3/2 0.4458(1) 4p3/2 − 4d3/2 5.3917(4) 4p3/2 − 5d3/2 2.4536(5) 4p3/2 − 6d3/2 1.0410(2) 4p3/2 − 7d3/2 0.6288(1)
4p3/2 − 3d5/2 1.3375(2) 4p3/2 − 4d5/2 16.175(1) 4p3/2 − 5d5/2 7.360(1) 4p3/2 − 6d5/2 3.1231(4) 4p3/2 − 7d5/2 1.8863(2)
5p1/2 − 3d3/2 0.3563(0) 5p1/2 − 4d3/2 2.2833(1) 5p1/2 − 5d3/2 19.905(1) 5p1/2 − 6d3/2 7.430(1) 5p1/2 − 7d3/2 3.1418(4)
5p3/2 − 3d3/2 0.1593(0) 5p3/2 − 4d3/2 1.0208(2) 5p3/2 − 5d3/2 8.9016(6) 5p3/2 − 6d3/2 3.3237(9) 5p3/2 − 7d3/2 1.4052(2)
5p3/2 − 3d5/2 0.4779(0) 5p3/2 − 4d5/2 3.0628(5) 5p3/2 − 5d5/2 26.705(2) 5p3/2 − 6d5/2 9.971(2) 5p3/2 − 7d5/2 4.2158(6)
6p1/2 − 3d3/2 0.2013(1) 6p1/2 − 4d3/2 0.8078(2) 6p1/2 − 5d3/2 4.0169(4) 6p1/2 − 6d3/2 29.455(2) 6p1/2 − 7d3/2 9.6778(2)
6p3/2 − 3d3/2 0.0900(0) 6p3/2 − 4d3/2 0.3612(0) 6p3/2 − 5d3/2 1.7959(1) 6p3/2 − 6d3/2 13.1728(9) 6p3/2 − 7d3/2 4.3290(6)
6p3/2 − 3d5/2 0.2701(1) 6p3/2 − 4d5/2 1.0837(1) 6p3/2 − 5d5/2 5.3883(1) 6p3/2 − 6d5/2 39.518(2) 6p3/2 − 7d5/2 12.9870(8)

4f7/2 − 3d5/2 9.4461(4) 4f5/2 − 3d5/2 2.1122(1) 4f5/2 − 3d3/2 7.9031(4) 5f7/2 − 3d5/2 3.0718 6f7/2 − 3d5/2 1.6663(6)
4f7/2 − 4d5/2 14.707(1) 4f5/2 − 4d5/2 3.2885(3) 4f5/2 − 4d3/2 12.304(1) 5f7/2 − 4d5/2 12.9685(1) 6f7/2 − 4d5/2 4.7877(3)
4f7/2 − 5d5/2 1.5595(0) 4f5/2 − 5d5/2 0.3487(0) 4f5/2 − 5d3/2 1.3048(0) 5f7/2 − 5d5/2 27.790(2) 6f7/2 − 5d5/2 17.1194(1)
4f7/2 − 6d5/2 0.5297(1) 4f5/2 − 6d5/2 0.1184(0) 4f5/2 − 6d3/2 0.4432(1) 5f7/2 − 6d5/2 3.4248(1) 6f7/2 − 6d5/2 43.316(3)
4f7/2 − 7d5/2 0.2873(1) 4f5/2 − 7d5/2 0.0642(0) 4f5/2 − 7d3/2 0.2403(1) 5f7/2 − 7d5/2 1.1788(1) 6f7/2 − 7d5/2 5.8748(4)
4f7/2 − 8d5/2 0.1888(1) 4f5/2 − 8d5/2 0.0422(0) 4f5/2 − 8d3/2 0.1580(1) 5f7/2 − 8d5/2 0.6406(2) 6f7/2 − 8d5/2 2.0345(5)
4f7/2 − 9d5/2 0.1375(1) 4f5/2 − 9d5/2 0.0307(0) 4f5/2 − 9d3/2 0.1151(1) 5f7/2 − 9d5/2 0.4209(2) 6f7/2 − 9d5/2 1.1060(5)

II. ALL-ORDER MBPT CALCULATIONS OF

ENERGIES

Energies of nlj states are evaluated for n ≤ 10 and
l ≤ 3 using the single-double all-order (SD) method dis-
cussed in Ref. [67], in which all single and double excita-
tions of Dirac-Fock (DF) wave functions are iterated to
all orders. Results of our energy calculations are sum-
marized in Table I. Columns 2–8 of Table I give the
lowest-order DF energies E(DF), the all-order SD ener-
gies in the column labeled E(SD), and the part of the
third-order energies missing from E(SD) in the column

labeled E
(3)
extra. The first-order and second-order Breit

corrections B(1) and B(2) and an estimated Lamb shift
contribution, ELS, are listed in columns 5-7. The sum of

these contributions E
(SD)
tot , listed in the eighth column of

Table I, is the final all-order result. The Lamb shift cor-
rection for ns states is estimated by scaling the 2s Lamb
shift (Xα = 2/3 case) given by Sapirstein and Cheng [68]
with 1/n3. The 2s Lamb shift from [68] is consistent
with values found in Refs. [69, 70]. For states with l > 0,
the Lamb-shift is estimated to be smaller than 0.01 cm−1

using scaled Coulomb values and can be omitted at the
present level of precision.

As expected, the largest correlation contribution to the
valence energy comes from the second-order term E(2).
Therefore, we calculate this term with higher numerical
accuracy. The second-order energy includes partial waves
up to lmax = 8 and is extrapolated to account for con-
tributions from higher partial waves (see, for example,
Refs. [71, 72]). As an example of the convergence of E(2)

with the number of partial waves l, consider the 2s state.
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TABLE III: Transition rates Ar (s−1), oscillator strengths (f), and line strengths S (a.u.) for transitions in Be+ calculated

using our recommended values of reduced electric-dipole matrix elements Z(final) and their uncertainties. Our relativistic values
are averaged over j. The relative uncertainties in the values of transition rates, oscillator strengths, and line strengths are the
same. They are listed in the column labeled “Unc.” in percentages. Numbers in brackets represent powers of 10. Wavelengths
λ (Å) are from NIST data [63].

Transitions λ Ar f S Unc. Transitions λ Ar f S Unc.
Å s−1 a.u. % Å s−1 a.u. %

2 2S − 2 2P 3131.5 1.130[8] 4.983[-1] 1.027[ 1] 0.015 2 2P − 7 2D 943.52 5.947[7] 1.323[-2] 2.465[-1] 0.036
2 2S − 3 2P 1036.3 1.719[8] 8.305[-2] 5.666[-1] 0.027 2 2P − 8 2D 925.18 3.915[7] 8.372[-3] 1.530[-1] 0.045
2 2S − 4 2P 842.03 9.793[7] 3.123[-2] 1.731[-1] 0.015 2 2P − 9 2D 913.01 2.716[7] 5.656[-3] 1.020[-1] 0.058
2 2S − 5 2P 775.36 5.497[7] 1.486[-2] 7.586[-2] 0.033 3 2P − 3 2D 64177 7.879[4] 8.109[-2] 1.028[ 2] 0.014
2 2S − 6 2P 743.57 3.310[7] 8.229[-3] 4.029[-2] 0.078 3 2P − 4 2D 4362.1 1.082[8] 5.141[-1] 4.430[ 1] 0.025
2 2S − 7 2P 725.71 2.131[7] 5.049[-3] 2.413[-2] 0.093 3 2P − 5 2D 3047.5 5.560[7] 1.290[-1] 7.767[ 0] 0.013
2 2S − 8 2P 714.60 1.445[7] 3.319[-3] 1.561[-2] 0.126 3 2P − 6 2D 2618.9 3.159[7] 5.414[-2] 2.800[ 0] 0.007
2 2S − 9 2P 707.20 1.023[7] 2.301[-3] 1.072[-2] 0.184 3 2P − 7 2D 2414.1 1.960[7] 2.855[-2] 1.361[ 0] 0.007
3 2S − 3 2P 12096 1.261[7] 8.301[-1] 6.613[ 1] 0.015 3 2P − 8 2D 2297.6 1.300[7] 1.714[-2] 7.779[-1] 0.007
3 2S − 4 2P 3275.6 1.415[7] 6.828[-2] 1.473[ 0] 0.040 4 2P − 4 2D 151450 2.544[4] 1.458[-1] 4.361[ 2] 0.014
3 2S − 5 2P 2454.6 1.064[7] 2.882[-2] 4.658[-1] 0.009 4 2P − 5 2D 9479.4 2.148[7] 4.822[-1] 9.029[ 1] 0.025
4 2S − 4 2P 30326 2.742[6] 1.135[ 0] 2.266[ 2] 0.015 4 2P − 6 2D 6281.4 1.329[7] 1.310[-1] 1.626[ 1] 0.014
4 2S − 5 2P 7403.3 2.561[6] 6.312[-2] 3.076[ 0] 0.041 4 2P − 7 2D 5219.7 8.448[6] 5.752[-2] 5.929[ 0] 0.014
5 2S − 5 2P 61090 8.523[5] 1.431[ 0] 5.755[ 2] 0.015 4 2P − 8 2D 4703.8 5.659[6] 3.128[-2] 2.907[ 0] 0.014
2 2P − 3 2S 1776.2 4.082[8] 6.437[-2] 2.259[ 0] 0.027 5 2P − 5 2D 295600 9.323[3] 2.036[-1] 1.189[ 3] 0.014
2 2P − 4 2S 1197.2 1.427[8] 1.022[-2] 2.415[-1] 0.027 5 2P − 6 2D 17511 6.247[6] 4.788[-1] 1.657[ 2] 0.028
2 2P − 5 2S 1048.2 6.729[7] 3.694[-3] 7.649[-2] 0.042 5 2P − 7 2D 11174 4.299[6] 1.342[-1] 2.962[ 1] 0.014
2 2P − 6 2S 984.03 3.714[7] 1.797[-3] 3.493[-2] 0.042 5 2P − 8 2D 9050.8 2.940[6] 6.018[-2] 1.076[ 1] 0.025
2 2P − 7 2S 949.80 2.270[7] 1.023[-3] 1.919[-2] 0.045 3 2D − 4 2P 4829.5 8.941[6] 1.875[-2] 2.982[ 0] 0.024
3 2P − 4 2S 5272.1 9.690[7] 1.346[-1] 1.401[ 1] 0.027 3 2D − 5 2P 3234.5 3.800[6] 3.575[-3] 3.807[-1] 0.009
3 2P − 5 2S 3242.7 4.135[7] 2.172[-2] 1.392[ 0] 0.015 4 2D − 5 2P 10468 4.600[6] 4.535[-2] 1.564[ 1] 0.024
3 2P − 6 2S 2698.3 2.204[7] 8.018[-3] 4.273[-1] 0.027 3 2D − 4 2F 4674.7 2.212[8] 1.015[ 0] 1.562[ 2] 0.007
3 2P − 7 2S 2455.7 1.322[7] 3.985[-3] 1.933[-1] 0.027 3 2D − 5 2F 3198.1 7.307[7] 1.568[-1] 1.651[ 1] 0.020
4 2P − 5 2S 11660 3.042[7] 2.068[-1] 4.764[ 1] 0.027 3 2D − 6 2F 2729.7 3.457[7] 5.408[-2] 4.860[ 0] 0.056
4 2P − 6 2S 6758.9 1.466[7] 3.345[-2] 4.467[ 0] 0.015 3 2D − 7 2F 2508.2 1.946[7] 2.569[-2] 2.121[ 0] 0.056
4 2P − 7 2S 5417.8 8.482[6] 1.244[-2] 1.331[ 0] 0.015 3 2D − 8 2F 2382.7 1.216[7] 1.449[-2] 1.137[ 0] 0.070
5 2P − 6 2S 21807 1.177[7] 2.798[-1] 1.206[ 2] 0.027 3 2D − 9 2F 2303.7 8.156[6] 9.084[-3] 6.889[-1] 0.084
5 2P − 7 2S 12122 6.151[6] 4.520[-2] 1.082[ 1] 0.015 4 2F − 5 2D 10138 8.275[5] 9.109[-3] 4.257[ 0] 0.007
2 2P − 3 2D 1512.4 1.106[9] 6.320[-1] 1.888[ 1] 0.013 5 2F − 6 2D 18666 6.394[5] 2.386[-2] 2.053[ 1] 0.017
2 2P − 4 2D 1143.0 3.759[8] 1.227[-1] 2.770[ 0] 0.018 6 2F − 7 2D 30960 4.123[5] 4.232[-2] 6.040[ 1] 0.020
2 2P − 5 2D 1026.9 1.758[8] 4.631[-2] 9.395[-1] 0.038 7 2F − 8 2D 47704 2.599[5] 6.334[-2] 1.393[ 2] 0.047
2 2P − 6 2D 973.25 9.707[7] 2.298[-2] 4.416[-1] 0.031 8 2F − 9 2D 69588 1.663[5] 8.626[-2] 2.767[ 2] 0.010

Calculations of E(2) with lmax = 6 and 8 yield E(2)(2s) =
-637.021 and -638.021 cm−1, respectively. Extrapolation
of these calculations yields -638.814 and -638.873 cm−1,
respectively. Thus, in this particular case, we have a nu-
merical uncertainty in E(2)(2s) of 0.059 cm−1. It should
be noted that the 1.85 cm−1 contribution from partial
waves with l > 8 for the 2s state is the largest among
all states considered in Table I; a smaller (1.00 cm−1)
contribution is obtained for two other n = 2 states and
much smaller contributions (0.01–0.32 cm−1) were found
for the n = 3 states.

Owing to numerical complexity, we restrict l ≤ lmax =
6 in all third-order and all-order calculations. As noted
above, the second-order contribution dominates, there-
fore, we can use the extrapolated values of E(2) described
above to account for the contributions of the higher par-
tial waves. Since the asymptotic l-dependence of the
second- and third-order energies are similar (both fall off

as l−4), we use the second-order remainder as a guide to
estimate the remainder in the third-order contribution.
The term E

(3)
extra in Table I, which accounts for that part

of the third-order MBPT energy missing from the SD
expression for the energy, is smaller than the total third-
order contribution E(3) by an order of magnitude for the
states considered here.

Recommended energies from the National Institute
of Standards and Technology (NIST) database [73] are
given in the column labeled ENIST. Differences be-
tween our the all-order calculations and experimental

data δE(SD) = E
(SD)
tot − ENIST, are given in the δE(SD)

column of Table I.

The first-order and second-order Breit corrections B(1)

and B(2) given in columns 5 a 6 of Table I are obtained
with the Dirac-Fock potential were the Breit interaction
was omitted. We evaluate Coulomb and Breit- Coulomb
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TABLE IV: Oscillator strengths (f) for transitions in Be+

calculated using our recommended values of reduced electric-
dipole matrix elements Z(final) and their uncertainties. Our
relativistic values f(nlj, n′l′j′ are averaged over j and j′.
Oscillator strengths calculated by Hylleraas bases functions
[8, 14], FCCI[25] and MCHF[23] methods are compared with
our results.

Transitions Present [8] Theory

2 2S − 2 2P 0.49830(7) 0.49806736(6) 0.498067381(25)[14]
2 2S − 3 2P 0.08305(2) 0.08316525(18) 0.08136 [25]
3 2S − 3 2P 0.8301(1) 0.8297696(15)
2 2P − 3 2S 0.06437(2) 0.06434157(29)
2 2P − 4 2S 0.010216(3) 0.01021583(30)
3 2P − 4 2S 0.13457(4) 0.1345245(13)
2 2P − 3 2D 0.63195(8) 0.6319828(11) 0.63199[23]
3 2P − 3 2D 0.08109(1) 0.08103350(17)
3 2D − 4 2F 1.0146(1) 1.01460194(11)

corrections through second order perturbatively in such
approach. In the second more accurate approach, we in-
clude both Coulomb and Breit contributions to the Breit-
Dirac-Fock (BDF) potential and then treat the residual
Breit and Coulomb interactions perturbatively. In this
approximation the first-order Breit corrections B(1) is
equal to zero. The value of the second-order Breit cor-
rections BB(2) given in column 11 of Table I is smaller
than the value of B(2) (column 6) because the random-
phase-approximation (RPA) diagram was removed from
the B(2) correction (see Sect. III of Ref. [74] for detail).
Such RPA contribution is explicitly included by the use
of the BDF potential. We find that the difference be-
tween the all-order contributions calculated with DF and
BDF potentials is very small, less than 0.01%. We did
not recalculate the extra third order correction since its
contribution is small. The largest difference between two
approximations is in the Breit correction as well as in the
DF and BDF (E(DF) E(BDF)) energies.

The three terms E(BDF), EBSD, and BB(2) evalu-
ated using the Breit-Dirac-Fock potential are displayed
in columns 8, 9, and 10 of Table I. The final all-order
result EBSD

tot given in column 11 of of Table I) is obtained

as a sum of the E(BDF), EBSD, BB(2), E
(3)
extra, and ELS

terms. Differences between our the all-order calculations
and experimental data δE(BSD) = E

(BSD)
tot − ENIST, are

given in the δE(SD) column of Table I. We find that
the higher-order Breit corrections that are included us-
ing the BDF potential are negligible for Be+, since the
results given in two last columns are almost identical.

III. ELECTRIC-DIPOLE MATRIX ELEMENTS,

OSCILLATOR STRENGTHS, TRANSITION

RATES, AND LIFETIMES IN LI-LIKE BE+

A. Electric-dipole matrix elements

In Table II, we list our recommended values for 190
E1 ns − n′p, np − n′d, and nf − n′d transitions. The
absolute values in atomic units (a0e) are given in all
cases. We refer to these values as the recommended ma-
trix elements. We note that we have calculated 489 E1
matrix elements that included all dipole transitions be-
tween the ns, npj , ndj , and nfj , states with n ≤ 10
for our calculation of the polarizabilities and hyperpo-
larizability. We only list the matrix elements that give
significant contributions to the atomic properties calcu-
lated in the other sections. To evaluate the uncertainties
of these values, we carried out several calculations by dif-
ferent methods of increasing accuracy: lowest-order DF,
second-order relativistic many-body perturbation theory
(RMBPT), third-order RMBPT, and all-order methods.
The many-body perturbation theory (MBPT) calcula-
tions are carried out following the method described in
Ref. [75]. The third-order RMBPT includes random-
phase-approximation terms (RPA) iterated to all orders,
Brueckner orbital (BO) corrections, the structural radi-
ation, and normalization terms (see [75] for definition of
these terms). Comparisons of the values obtained in dif-
ferent approximations allow us to evaluate the size of the
second, third, and higher-order correlation corrections.

The evaluation of the uncertainty of the matrix ele-
ments in this approach was described in detail in [76–
78]. Four all-order calculations were carried out. Two of
these were ab initio all-order calculations with (SDpT)
and without (SD) the inclusion of the partial triple ex-
citations. We have developed some general criteria to
establish the final values for all transitions and evalu-
ate uncertainties owing to the need to analyze a very
large number of transitions. The scaling procedure and
evaluation of the uncertainties are described in detail in
[76–78]. We note that it is a rather complicated proce-
dure that involves complete recalculation of the matrix
elements with new values of the valence excitation coeffi-
cients. The scaling factors depend on the correlation en-
ergy given by the particular calculation and are different
for the SD and SDpT calculations, therefore these val-
ues have to be scaled separately. The results were listed
in Refs. [76–78] with subscript “sc”. To limit the size
of the table, we displayed here only final results Z(final)

with uncertainties.

The values of uncertainties in Li-like Be+ are smaller
than the values of uncertainties in Ca2+ [76], K-like
Sc2+[78], Rb-like Sr + [79], and neutral Rb [77], as ex-
pected. The relative uncertainties of the final values are
to be 0.01% - 0.001%. We note that some other contribu-
tions (such as Breit and QED corrections) may start to
contribute at this level. The present uncertainties repre-
sent our best estimate of the uncertainty of the Coulomb
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TABLE V: Comparison of the Be+ lifetimes (in nsec) with other theory and experiment. Uncertainties are given in parenthesis.
References are given in square brackets.

Level Present Theory Ref. Expt. Level Present Theory [37]
2p1/2 8.850(2) 8.853 [27] 8.1(4)[58] 7s1/2 17.918(4) 18.02
2p3/2 8.850(2) 8.847 [27] 7p1/2 29.78(3) 29.19
3s1/2 2.451(1) 2.450 [27] 3.3(3)[58] 7p3/2 29.78(2)
3p1/2 5.417(1) 5.418 [27] 7d3/2 10.522(1) 10.61
3p3/2 5.417(2) 5.416 [27] 6.7(8)[56] 7d5/2 10.518(4)
3d3/2 0.904(1) 0.904 [27] 7f5/2 23.60(1) 23.49
3d5/2 0.901(1) 0.905 [27] 0.92(6)[57] 7f7/2 23.60(1)

4s1/2 4.174(1) 4.131 [27] 4.4(3)[58] 8s1/2 26.17(1) 26.22
4p1/2 8.072(3) 8.030 [37] 8.5(9)[56] 8p1/2 42.47(5) 41.57
4p3/2 8.086(1) 8p3/2 42.66(4)
4d3/2 2.067(1) 2.081 [37] 2.3(2)[58] 8d3/2 15.58(1) 15.71
4d5/2 2.066(1) 8d5/2 15.58(1)
4f5/2 4.531(1) 4.522 [37] 4.9(2)[57] 8f5/2 35.01(1) 34.77
4f7/2 4.525(1) 8f7/2 35.03(1)

5s1/2 7.194(2) 7.213 [37] 9s1/2 36.78(2) 36.81
5p1/2 12.935(6) 12.76 [37] 9p1/2 58.86(14) 57.25
5p3/2 12.918(4) 9p3/2 58.86(7)
5d3/2 3.950(1) 3.971 [37] 3.5(4)[56] 9d3/2 22.05(1) 22.22
5d5/2 3.938(2) 9d5/2 22.01(1)
5f5/2 8.739(2) 8.739 [37] 9.0(8)[56] 9f5/2 49.71(2) 49.18
5f7/2 8.734(1) 9f7/2 49.73(2)

6s1/2 11.673(2) 11.70 [37] 10s1/2 49.89(7) 50.02
6p1/2 20.04(2) 19.71 [37] 10p1/2 78.9(7 ) 76.66
6p3/2 20.05(1) 10p3/2 78.6(2)
6d3/2 6.701(2) 6.754 [37] 7.3(8)[56]
6d5/2 6.700(2)
6f5/2 14.959(6) 14.93 [37]
6f7/2 14.948(6)

correlation corrections. Our final results and their un-
certainties given in Table II are used to calculate the
recommended values of the transition rates, oscillator
strengths, and lifetimes as well as evaluate the uncer-
tainties of these results.

B. Transition rates, oscillator strengths, and line

strengths

We combine recommended NIST energies [73] and our
final values of the matrix elements listed in Table II to
calculate transition rates Ar and oscillator strengths f .
The transition rates are calculated using

Aab =
2.02613× 1018

λ3

S

2ja + 1
s−1, (1)

where the wavelength λ is in Å and the line strength S
= (Z(final))2 is in atomic units.
Most of the previous results presented for the transi-

tion rates, oscillator strengths, and line strengths in Be+

were obtained in non-relativistic approximation [14, 18,
24–27, 29, 37, 38, 48, 49, 53, 54, 57, 62]. A fraction
of those results were used in recently published compi-

lation [63]. In order to compare our results with rec-
ommended NIST values of the transition rates, oscilla-
tor strengths, and line strengths for Be+, we average
over j and j′ our results Ar(nlj, n

′l′j′), f(nlj, n′l′j′), and
S(nlj, n′l′j′) obtained in relativistic approximation. We
obtain the 190 averaged transitions instead of 489 tran-
sitions with fixed j. The average over j transition rates,
oscillator strengths, and line strengths are listed in Ta-
ble III. In this table, we display the same transitions
that were listed in the NIST compilation [63]. The rela-
tive uncertainties in the values of transition rates, oscil-
lator strengths, and line strengths are the same, since all
of these properties have the same dependence on the E1
matrix elements. The uncertainties in percent are given
in column “Unc.” of Table III. The values of the relative
uncertainties are less than 0.1% for all transitions dis-
played in Table III. Wavelengths listed in Table III for
references are taken from Table 7 of NIST compilation
[63].

We do not incorporate the recommended value of tran-
sition rates, oscillator strengths, and line strengths from
[63] in Table III to save space. Comparison of those re-
sults with our results given in Table III shows excellent
agreement. The difference is about 0.01% - 0.1% for half
of the transitions displayed in Table III. The difference
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TABLE VI: Contributions to multipole polarizabilities of the
2s state of Li-like Be+ in a3

0. Uncertainties are given in paren-
thesis. (a) Includes estimate of relativistic effects.

Contr. αE1

2p1/2 7.847(2)
2p3/2 15.692(3)
(3− 26)pj 0.889
Tail 0.003
Core 0.052
Total 24.483(4)

Ref. [9](a) 24.489(4)
Ref. [8] 24.4966(1)

Contr. αE2

3d3/2 18.374(4)
4d3/2 1.744(1)
(5− 26)d3/2 1.362
3d5/2 27.561(6)
4d5/2 2.616(1)
(5− 26)d5/2 2.044
Tail 0.025
Core 0.015
Total 53.741(7)

Ref. [8] 53.7659(2)

Contr. αE3

4f5/2 80.963(16)
5f5/2 29.633(6)
6f5/2 13.872(3)
(7− 19)f5/2 25.899(3)
(20− 26)f5/2 45.578
(27− 30)f5/2 3.483
4f7/2 107.952(22)
5f7/2 39.512(8)
6f5/2 18.497(4)
(7− 19)f5/2 36.612(4)
(20− 26)f5/2 59.691
(27− 30)f5/2 3.651
Tail 0.010
Core 0.011
Total 465.36(3)

Ref. [8] 465.7621(1)

is larger than 2% for three transitions (2s− 7p, 2s− 9p,
and 3d − 9f) which have the smallest values of the line
strengths.
Oscillator strengths for transitions in Be+ calculated

using Hylleraas bases functions [8] are compared with our
results in Table IV. Our results of oscillator strengths
are calculated using the recommended values of reduced
electric-dipole matrix elements Z(final) and their un-
certainties given in Table II. Our relativistic values
f(nlj, n′l′j′) are averaged over j and j′ to make compar-
ison with results from Ref. [8]. The smallest difference
is 0.0002% for the 3d − 4f transition, while the largest
difference (0.14%) is for the 2s−3p transition. Less than
0.01% differences are observed for the 2p−3d and 2p−4d
transitions. The differences are about 0.03% - 0.07% for

the 2s−2p, 2p−3s, 3s−3p, 3p−3d, and 3p−4s transitions.
These differences are in part explained by relativistic ef-
fects omitted in Ref. [8].

C. Lifetimes in Be+

We calculated lifetimes of the ns (n = 3 − 10), npj
(n = 2− 10), ndj (n = 3− 9), and nfj (n = 4− 9) states
in Be+ using out final values of the transition rates listed
in Table III. The uncertainties in the lifetime values are
obtained from the uncertainties in the transition rates
listed in Table III. We list the lifetimes of the 52 levels
in Table V. We also evaluate the lowest-order DF life-
times to estimate the size of the correlation effects. The
difference between the lowest-order values and our final
lifetimes are 3% - 5%.
The present values displayed in Table V are compared

with beam-foil experimental measurements by Andersen
et al. [58], Bromander [57], and Hontzeas et al.[56]. The
accuracy of the measurements was about 5% - 10%.
Our lifetime values are also compared with theoreti-

cal lifetimes obtained by multiconfiguration Breit - Pauli
(BP) approach by Froese Fisher et al. [27]. In the MCHF
method, the radial functions were used to construct the
CSFs (configuration state functions). Once radial func-
tions were determined, a configuration interaction cal-
culation can be performed over the set of configuration
states, where the interaction matrix was evaluated with
respect to the BP Hamiltonian. New, efficient programs
based on the combination of second quantization in cou-
pled tensorial form, and a generalized graphical tech-
nique were used for performing angular integrations for
the evaluation of matrix elements [27]. Numerical values
of the lifetimes evaluated in [27] for eight levels are listed
in column “Theory” of Table V. We find excellent agree-
ment (about 0.03% difference) between our results and
results from [27]. The disagreement is larger (1%-3%)
between our lifetime values and theoretical results given
by Theodosiou [37]. Lifetimes in [37] were calculated us-
ing the Coulomb approximation with a Hartree-Slater
core (CAHS) approach. Since those results are non-
relativistic lifetime values, we placed in column “Theory”
of Table V only one number for nlj level with smaller
value of j. The contribution of relativistic effects leads
to the 0.05% - 0.2% difference between the nlj lifetime
values with different j for fixed nl states.

IV. STATIC MULTIPOLE POLARIZABILITIES

OF THE 2s STATE

The static multipole polarizability αEk of Li-like Be+

in its ground state can be separated into two terms; a
dominant first term from intermediate valence-excited
states, and a smaller second term from intermediate core-
excited states. The later term is smaller than the for-
mer one by several orders of magnitude and is evaluated
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TABLE VII: The α0 scalar and α2 tensor polarizabilities for Be+ ion in a3
0. Uncertainties are given in parenthesis. X(a)[b]

means the X×10b with uncertainty “a” in the last digit of X.

Scalar polarizabilities α0

2s 3s 4s 5s 6s 7s 8s 9s
24.483(4) 588.7(1) 5002(1) 25400(4) 94411(14) 284420(40) 736200(100) 1698300(360)

2p1/2 3p1/2 4p1/2 5p1/2 6p1/2 7p1/2 8p1/2 9p1/2
2.025(2) 1491.3(3) 14816(3) 78545(17) 296710(70) 899600(200) 2333800(500) 5387800(1200)

2p3/2 3p3/2 4p3/2 5p3/2 6p3/2 7p3/2 8p3/2 9p3/2
2.029(2) 1492.9(3) 14832(3) 78630(16) 297120(60) 900900(200) 2337100(500) 5396900(1100)

3d3/2 4d3/2 5d3/2 6d3/2 7d3/2 8d3/2 9d3/2
-8.469(2)[2] 2.090[5] 1.392(1)[6] 5.778(4)[6] 1.826(2)[7] 4.763(7)[7] 1.118(2)[8]

3d5/2 4d5/2 5d5/2 6d5/2 7d5/2 8d5/2 9d5/2
-8.476(2)[2] 2.100[5] 1.397(1)[6] 5.757(4)[6] 1.826(2)[7] 4.762(7)[7] 1.118(2)[8]

Tensor polarizabilities α2

2p3/2 3p3/2 4p3/2 5p3/2 6p3/2 7p3/2 8p3/2 9p3/2
5.848(2) 8.540(1) -105.3(7) -760(4) -3050(14) -9166(43) -23050(100) -51420(400)

3d3/2 4d3/2 5d3/2 6d3/2 7d3/2 8d3/2 9d3/2
6.523(2)[2] -3.696(1)[4] -2.526(2)[5] -1.058(1)[6] -3.358(4)[6] -8.759(14)[6] -2.058(6)[7]

3d5/2 4d5/2 5d5/2 6d5/2 7d5/2 8d5/2 9d5/2
9.330(2)[2] -5.300(2)[4] -3.620(2)[5] -1.504(1)[6] -4.796(6)[6] -1.251(2)[7] -2.940(8)[7]

here in the random-phase approximation [80]. The dom-
inant valence contribution is calculated using the sum-
over-state approach

αEk
v =

1

2k + 1

∑

n

|〈nlj‖r
kCkq‖2s〉|

2

Enlj − E2s
, (2)

where Ckq(r̂) is a normalized spherical harmonic and
where nlj is npj , ndj , and nfj for k = 1, 2, and 3,
respectively [81]. The reduced matrix elements in the
dominant contributions to the above sum are evaluated
using out final values of the dipole matrix elements and
NIST energies [73]. The uncertainties in the polarizabil-
ity contributions are obtained from the uncertainties in
the matrix elements. The final values for the quadrupole
and octupole matrix elements and their uncertainties are
determined using the procedure that was described above
for the dipole matrix elements.
We use recommended energies from [73] and our final

matrix elements to evaluate terms in the sum with n ≤
10, and we use theoretical SD energies and wave functions
to evaluate terms with 10 ≤ n ≤ 26. The remaining con-
tributions to αEk from orbitals with 27 ≤ n ≤ 70 are
evaluated in the RPA approximation since the contribu-
tions from these terms are smaller than 0.01% in all cases.
These terms are grouped together as “Tail”. In the case
of αE3, we find that the contribution (1.5%) from the
(27-30)nfj part of sum over j is substantial, and we use
theoretical SD energies and wave functions to evaluate
terms with 10 ≤ n ≤ 30.
We evaluate core contributions in the random-phase

approximation [80] for E1, E2, and E3 polarizabilities.
Our result for core E1 polarizability is the same as in [80].

The core polarizabilities are small in comparison with the
valence ones and their uncertainties are negligible.

Contributions to dipole, quadrupole, and octupole po-
larizabilities of the 2s ground state are presented in Ta-
ble VI. The first two terms in the sum-over-states for
αE1 contribute 96.4% of the total. The remaining 3.6%
of αE1 comes from the (3-26)npj states. The first four
terms in the sum-over-states for αE2 contribute 93.7% of
the totals. The remaining 6.3% of αE2 contribution is
from the (5-26)ndj states. However, the first six terms
in the sum-over-states for αE3 contribute only 62.4% of
the totals. The remaining 37.6% of αE3 contribution was
divided into three parts: (7-19)nfj (13.4%), (20-26)nfj
(22.6%), and (27-30)nfj (1.5%).

Final results for the multipole polarizabilities of the
Li-like Be+ ground state are compared in Table VI with
high-precision calculations given by Tang et al. [8]. Cal-
culations were performed using variationally determined
wave functions with Hylleraas basis set expansions. Au-
thors underlined that the values reported were the re-
sults of calculations close to convergence [8]. We found
excellent agreement between our final results and results
obtained by Hylleraas basis set: the difference is 0.055%,
0.046%, and 0.086% for the αE1, αE2, and αE3 polariz-
abilities, respectively.

V. SCALAR AND TENSOR EXCITED STATE

POLARIZABILITIES

The valence scalar α0(v) and tensor α2(v) polarizabil-
ities of an excited state v of Li-like Be+ are given by
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TABLE VIII: Contributions to the α0(nd5/2) scalar and α2(nd5/2) tensor polarizabilities for Be+ ion in a3
0. Uncertainties are

given in parenthesis. The dominant contributions to the polarizabilities are listed separately with the corresponding absolute
values of electric-dipole reduced matrix elements given in columns labeled Dfinal. The experimental NIST transition energies
(cm−1) are given in columns ∆E. The remaining contributions to valence polarizability are given in the next row after the
dominant contribution. X(a)[b] means the X×10b with uncertainty “a” in the last digit of X value.

Level Contr. ∆E Zfinal α0(nd5/2) α2(nd5/2)
3d5/2 3d5/2 − 3p3/2 -1557.81 7.853(1) -9.654(2)[2] 9.654(2)[2]

3d5/2 − np3/2 -1.75 1.75
3d5/2 − 4f5/2 21391.49 2.1122(1) 5.086(1) 5.812(1)
3d5/2 − nf5/2 6.10[-1] 6.98[-1]
3d5/2 − 4f7/2 21391.62 9.4461(4) 1.017[2] -3.633([1]
3d5/2 − nf7/2 1.22[1] -4.36

Total -8.476(2)[2] 9.330(2)[2]

4d5/2 4d5/2 − 4p3/2 -660.12 16.175(1) -9.665(2)[3] 9.665(2)[3]
4d5/2 − np3/2 -1.65 1.65
4d5/2 − 4f5/2 25.15 3.2885(3) 1.049[4] 1.198[4]
4d5/2 − nf5/2 2.38[1] 2.72[1]
4d5/2 − 4f7/2 25.28 14.707(2) 2.086[5] -7.451(1)[4]
4d5/2 − nf7/2 4.75[2] -1.70[2]

Total 2.100[5] -5.300(2)[4]

5d5/2 5d5/2 − 5p3/2 -338.20 26.705(2) -5.142(1)[4] 5.142(1)[4]
5d5/2 − np3/2 2.41[1] -2.41[1]
5d5/2 − 5f5/2 13.60 6.2139(5) 6.924(1)[4] 7.913(2)[4]
5d5/2 − nf5/2 7.61[1] 8.70[1]
5d5/2 − 5f7/2 13.67 27.790(2) 1.378(1)[6] -4.920(2)[5]
5d5/2 − nf7/2 1.52(0)[3] -5.44[2]

Total 1.397(1)[6] -3.620(2)[5]

6d5/2 6d5/2 − 6p3/2 -195.54 39.518(2) -1.948[5] 1.948[5]
6d5/2 − np3/2 1.61[2] -1.61[2]
6d5/2 − 6f5/2 8.05 9.6857(6) 2.842(2)[5] 3.248(1)[5]
6d5/2 − nf5/2 2.04[2] 2.33[2]
6d5/2 − 6f7/2 8.08 43.316(3) 5.663(4)[6] -2.022(1)[6]
6d5/2 − nf7/2 4.07[3] -1.45[3]

Total 5.757(4)[6] -1.504(1)[6]

7d5/2 7d5/2 − 7p3/2 -123.05 54.635(3) -5.916(1)[5] 5.916(1)[5]
7d5/2 − np3/2 6.24[2] -6.24[2]
7d5/2 − 7f5/2 5.14 13.7530(7) 8.974(9)[5] 1.026(1)[6]
7d5/2 − nf5/2 4.77[2] 5.45[2]
7d5/2 − 7f7/2 5.14 61.506(3) 1.795(2)[7] -6.410(6)[6]
7d5/2 − nf7/2 9.54[3] -3.41[3]

Total 1.826(2)[7] -4.796(6)[6]

8d5/2 8d5/2 − 8p3/2 -82.40 72.062(4) -1.537[6] 1.537[6]
8d5/2 − np3/2 1.88[3] -1.88[3]
8d5/2 − 8f5/2 3.54 18.430(1) 2.340(3)[6] 2.674(3)[6]
8d5/2 − nf5/2 1.01[3] 1.15[3]
8d5/2 − 8f7/2 3.54 82.423(6) 4.680(7)[7] -1.671(2)[7]
8d5/2 − nf7/2 2.02[4] -7.22[3]

Total 4.762(7)[7] -1.251(2)[7]

9d5/2 9d5/2 − 9p3/2 -57.84 91.799(6) -3.553(1)[6] 3.553(1)[6]
9d5/2 − np3/2 4.79[3] -4.79[3]
9d5/2 − 9f5/2 2.50 23.722(2) 5.489(11)[6] 6.273(12)[6]
9d5/2 − nf5/2 1.97[3] 2.26[3]
9d5/2 − 9f7/2 2.50 106.089(7) 1.098(2)[8] -3.921(8)[7]
9d5/2 − nf7/2 3.95[4] -1.41[4]

Total 1.118(2)[8] -2.940(8)[7]



11

TABLE IX: Contributions to the 2s1/2 dipole hyperpolariz-

abilities γ0 of Be+ in a.u. Uncertainties are given in paren-
thesis. Sums in Eqs. (16) and (17) are evaluated for nm =
2-26, nk = 2-26, and nn = 3-26. Values for ‘Tail’ is a contri-
bution from DF results evaluated with ni = 27-70. The γvc
contribution is obtained from including 1s states in the sum
in Eq. (16).

Contr γ
(DF)
0 (2s) γ

(final)
0 (2s)

1
18
T (s, p1/2, p1/2) 35.247 32.605(53)

−
1
18
T (s, p1/2, p3/2) 70.487 68.886(92)

− 1
18
T (s, p3/2, p1/2) 70.487 68.886(92)

1
18
T (s, p3/2, p3/2) 140.965 137.669(109)

T (spp) 317.186 308.046(178)
γvc -0.399 -0.399
Tail -0.096 -0.096

Total 316.691 307.551

1
18
T (d3/2, p1/2, p1/2) 208.678 202.031(121)

1

18
√

10
T (d3/2, p1/2, p3/2) 41.731 40.403(18)

1

18
√

10
T (d3/2, p3/2, p1/2) 41.731 40.403(18)

1
180

T (d3/2, p3/2, p3/2) 8.345 8.080(3)
1
30
T (d5/2, p3/2, p3/2) 450.761 438.434(148)

T (dpp) 751.246 729.351(192)
γvc 0.0 0.0
Tail 1.800 1.800

Total 753.042 730.151(192)

α0 × β 2041.637 1995.743(382)

Total -971.904 -958.041(463)

γ0 -11663 -11496(6)
Ref. [8] -11521.30(3)

α0(v) =
2

3(2jv + 1)

∑

nlj

|〈v||rC1||nlj〉|
2

Enlj − Ev
(3)

α2(v) = (−1)jv

√

40jv(2jv − 1)

3(jv + 1)(2jv + 1)(2jv + 3)

×
∑

nlj

(−1)j
{

jv 1 j
1 jv 2

}

|〈v||rC1||nlj〉|
2

Enlj − Ev
. (4)

The excited state polarizability calculations are car-
ried out in the same way as the calculations of the mul-
tipole polarizabilities discussed in the previous section.
We summarize our results for the scalar α0 and tensor
α2 polarizabilities of Be+ in Table VII. In this table,
we list our final values for the polarizabilities of the ns,
np1/2, np3/2, nd3/2, and nd5/2 states with n < 10. The
uncertainties of all values are given. If no uncertainty is
listed, is it zero for the significant figures that are quoted.
We note again that we could only evaluate dominant un-
certainties due to missing Coulomb correlation effects.
The polarizability values rapidly increase with increas-

ing n, but the rate of increase depends on l. The ratio of

the α0(3l) and α0(2l) is substantially different for l = s
and l = p. This difference in ratios decreases with n.
The ratio of the α0(3s) and α0(2s) is equal to 24, while
the ratios of the α0(3p) and α0(2p) is 740. The ratio
of the α0(4s) and α0(3s) is equal to 8.5, while the ratio
of the α0(4p) and α0(3p) is only slightly different (9.9).
The ratios of α0(nl) and α0(n − 1)l) for the l = s and
l = p are equal to 5.1 and 5.3 for n = 5 and 3.7 - 3.8
for n = 6. There are no differences in the α0(nl) and
α0((n−1)l) ratios for the l = s and l = p in the case of n
= 7, 8, and 9. The ratios of the α0(nl) and α0((n− 1)l)
are similar for the nd states; 3.2, 2.6, and 2.3 for n = 7,8,
and 9, respectively; it is only slightly different for tensor
polarizabilities. The values of α2(4l) and α2(3l) have dif-
ferent sign and their ratios are equal -12 for to l = p and
-57 for l = d. Significant cancellations among different
contributions are observed that leads to similar values
for the α2(3p3/2) and α2(2p3/2) tensor polarizabilities.
These cancelations were previously observed for α2(nl)
polarizabilities in Sr+ [79], Rb [77], and Ca+ [76].

We illustrate the importance of different contributions
and evaluation of uncertainties for the scalar and tensor
nd5/2 polarizabilities in Table VIII. Uncertainties are
given in parenthesis. The dominant contributions to the
polarizabilities are listed separately with the correspond-
ing absolute values of electric-dipole reduced matrix ele-
ments given in column labeled Zfinal. The experimental
NIST transition energies [73] are given in column ∆E.
The dominant contributions for the α0(nd5/2) scalar and
α2(nd5/2) polarizabilities are from the nd5/2 − np3/2,
nd5/2−nf5/2, and nd5/2−nf7/2 transitions. The remain-
ing contributions to valence polarizability are given in the
next row after the dominant contribution. For example,
the dominant contribution to the α0(4d5/2) polarizabil-
ity are from the three matrix elements: 4d5/2 − 4p3/2,
4d5/2−4f5/2, and 4d5/2−4f7/2. These give 99.7% in the
final value of the α0(4d5/2) polarizability. The 0.3% re-
maining contribution comes from the sum over n = 2, 3,
5–26 for 4d5/2−np3/2 contribution and sum over n=5–26
for the 4d5/2−nf5/2 and 4d5/2−nf7/2 contribution. The
contributions from the core and tail (n > 26) terms are
very small (less than 0.1 in a30) and are omitted from the
table.

The dominant contribution to the nd5/2 polarizabil-
ities comes from the transitions with the largest val-
ues of dipole matrix elements among the 71 matrix el-
ements that are included in evaluation of these polar-
izabilities. The ratio of the Zfinal(nd5/2 − nf7/2) and

Zfinal(nd5/2 − nf5/2) is equal to 4.47 for n = 3 − 9.
Therefore, the contribution of the nd5/2 − nf5/2 tran-
sition is smaller by a factor of 20 in comparison with the
contributions from the nd5/2 − nf7/2 transition There
are almost no differences in the ∆E(nd5/2 − nf5/2)
and ∆E(nd5/2 − nf7/2) energy transitions, while the
∆E(nd5/2 −np3/2) energy transition is larger by a a fac-
tor of 23-26 than the ∆E(nd5/2−nfj) energy transitions.
That leads to the smaller contribution by a factor of 23-
26 from the nd5/2−np3/2 transitions in comparison with
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the nd5/2 − nf7/2 transitions. As a result, the dominant
nd5/2 − nf7/2 transition is the largest contributor to the
values of the nd5/2 polarizabilities. This transition con-
tributes 99.3% - 98.2% to the value of the the α0(nd5/2)
(n =4-9) polarizabilities. Distribution of contributions to
the tensor polarizability is different in comparison with
the scalar one due to different angular factors (compare
Eq. (3) and Eq. (4)). The nd5/2−np3/2 and nd5/2−nd5/2
contributions have different sign in comparison with the
nd5/2 − nd7/2) contributions. As a result, the dominant
nd5/2 −nd7/2 contributions are larger than the final ten-
sor α2(nd5/2) polarizabilities by a factor of 1.41-1.33 for
n = 4− 9, respectively.
We find that it is very important to use the accurate

values of the energy transitions to evaluate the polariz-
ability values. We use the recommended NIST data [73]
that are given for Be+ with two significant figures after
the decimal point in cm−1 for the most of the levels.

The transition energy for the dominant nd5/2 − nd7/2
transition decreases with n from 25.28 cm−1 for n = 4
up 2.50 cm−1 for n = 9. Therefore, the uncertainties in
the energy values can not longer be assumed to be neg-
ligible for these transitions. We take the experimental
transition energy uncertainties to be 0.005 cm−1 based
on the number of significant figures given in the NIST
database. The uncertainty in these small energy inter-
vals dominates the uncertainty in the polarizabilities for
the nd states with n > 4. More accurate measurement
of the transition energies are needed to improve the pre-
cision of these polarizabilities.

VI. SCALAR HYPERPOLARIZABILITY OF

BE+

Non-relativistic scalar hyperpolarizability γ0 was defined by Tang et al. [3]. Using the same procedure, we derive
the following equation for the relativistic scalar hyperpolarizability γ0:

γ0(n0l0j0) =
24

√

(2j0 + 1)

∑

nmlmjm

∑

nnlnjn

∑

nklkjk)

Π0(j0, jm, jn, jk)×Υ(n0l0j0, nmlmjm, nnlnjn, nklkjk) (5)

where

Π0(j0, jm, jn, jk) =
∑

K1

(−1)j0−jn+2K1 (2K1 + 1)
(2K1 + 1)
√

(2j0 + 1)

(

1 1 K1

0 0 0

)2 {
1 1 K1

j jn jm

}{

1 1 K1

J jn jk

}

(6)

and

Υ(n0l0j0, nmlmjm, nnlnjn, nklkjk) = I(n0l0j0, nmlmjm, nnlnjn, nklkjk)− (7)

− (−1)
2j0−jm−jk δ(j0, jn)

〈n0l0j0 |rC1|nmlmjm〉
2

(E(nmlmjm)− E(n0l0j0))

〈n0l0j0 |rC1|nklkjk〉
2

(E(nklkjk)− E(n0l0j0))2
.

The most complicated part in the calculation of γ0(n0l0j0) is in the evaluation of sum over
I(n0l0j0, nmlmjm, nnlnjn, nklkjk):

I(n0l0j0, nmlmjm, nnlnjn, nklkjk) (8)

=
〈n0l0j0 |rC1|nmlmjm〉 〈nmlmjm |rC1|nnlnjn〉 〈nnlnjn |rC1|nklkjk〉 〈nklkjk |rC1|n0l0j0〉

[E(nmlmjm)− E(n0l0j0)] [E(nnlnjn)− E(n0l0j0)] [E(nklkjk)− E(n0l0j0)]
.

The angular part of γ0(n0l0j0) is defined as:

Π0(j0, jm, jn, jk) =
∑

K1

(−1)j0−jn+2K1
(2K1 + 1)
√

(2j0 + 1)

(

1 1 K1

0 0 0

)2 {
1 1 K1

j jn jm

}{

1 1 K1

J jn jk

}

. (9)

The sum over K1 includes only two terms K1 =0 and K1 = 2. This allows the following simplification of the
Π0(j0, jm, jn, jk) equation
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Π0(j0, jm, jn, jk) = (−1)
j0−jn 1

√

(2j0 + 1)

(

1 1 0
0 0 0

)2 {
1 1 0
j0 jn jm

}{

1 1 0
j0 jn jk

}

(10)

+ (−1)
j0−jn 5

√

(2j0 + 1)

(

1 1 2
0 0 0

)2 {
1 1 2
j0 jn jm

}{

1 1 2
j jn jk

}

=
1

3
(−1)

2jn+jm+jk 1

3

1

(2j0 + 1)3/2
δ(j0, jn) + (−1)

j0−jn 2

3

1
√

(2j0 + 1)

{

1 1 2
j0 jn jm

}{

1 1 2
j0 jn jk

}

.

Finally, we obtain:

ΠK1=0
0 (j0, jm, jn, jk) = (−1)

jm−jk 1

9

1

(2j0 + 1)3/2
δ(j0, jn) (11)

ΠK1=2
0 (j0, jm, jn, jk) = (−1)

j0−jn 2

3

1
√

(2j0 + 1)

{

1 1 2
j0 jn jm

}{

1 1 2
j0 jn jk

}

(12)

Let us consider the most important case for the alkali-metal atomic systems n0l0j0 = n0s1/2. We can rewrite Eq. (5)
in the following way:

γ0(n0s1/2) = 12× T (spp) + 12× T (dpp)− 12× α0(n0l0j0)× β0(n0l0j0), (13)

where α0(n0l0j0) is scalar dipole polarizability and β0(n0l0j0) is the first order nonadiabatic correction to dipole
polarizability [8]:

α0(n0l0j0) =
1

3

∑

nlj

〈n0l0j0 |rC1|nlj〉
2

E(nlj)− E(n0l0j0)
(14)

β0(n0l0j0) =
1

6

∑

nlj

〈n0l0j0 |rC1|nlj〉
2

(E(nlj)− E(n0l0j0))
2 (15)

The values of the T (spp) and T (dpp) are defined as

T (s, pj, pj′) =
∑

nm

∑

nn

∑

nk

〈

n0s1/2 |rC1|nmpj
〉 〈

nmpj |rC1|nns1/2
〉 〈

nns1/2 |rC1|nkpj′
〉 〈

nkj
′ |rC1|n0s1/2

〉

[

E(nmpj)− E(n0s1/2)
] [

E(nns1/2)− E(n0s1/2)
] [

E(nkpj′)− E(n0s1/2)
] (16)

and

T (dj′′ , pj , pj′) =
∑

nm

∑

nn

∑

nk

〈

n0s1/2 |rC1|nmpj
〉

〈nmpj |rC1|nndj′′ 〉 〈nndj′′ |rC1|nkpj′〉
〈

nkj
′ |rC1|n0s1/2

〉

[

E(nmpj)− E(n0s1/2)
] [

E(nns1/2)− E(n0s1/2)
] [

E(nkpj′)− E(n0s1/2)
] . (17)

Numerical results for Li-like Be+ are given in Table IX.
Sums in Eqs. (16) and (17) are evaluated for nm = 2-26,
nk = 2-26, and nn = 3-26. The ‘Tail’ contribution from
ni = 27-70 is evaluated in the DF approximation. The
γvc contribution is obtained from including 1s states in
the sum in Eq. (16). Final result for the γ0(2s) hyper-
polarizability is obtained using Eq. (13) and numerical
values given in Table IX.

The difference between γfinal
0 (2s) and γ

(DF)
0 (2s) is

about 1.5%, so the overall correlation contribution is
small. In the last row of Table IX, we display the γ0(2s)

value evaluated using Hylleraas basis functions [8]. Our
γfinal
0 (2s) value is in excellent agreement with that result.

The difference is about 0.22%.

VII. CONCLUSION

A systematic study of Be+ atomic properties is car-
ried out using high-precision relativistic all-order method
where all single, double, and partial triple excitations
of the Dirac-Fock wave function are included to all or-
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ders of perturbation theory. Energies, multipole matrix
elements, line strengths, oscillator strengths, transition
rates, lifetimes, scalar and tensor polarizabilities of the
ns, npj , ndj , and nfj (n ≤ 9) states are calculated. Addi-
tionally, we evaluated the ground state hyperpolarizabil-
ity in Li-like Be+. The uncertainties of our calculations
are evaluated for most of the values listed in this work.
These calculations provide recommended values critically
evaluated for their accuracy for a number of Be+ atomic

properties useful for a variety of applications.
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