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We present a scheme to enhance precision of parameter #stiflARPE) in noise systems via employing
dynamical decoupling pulses. The exact analytical expedsr the estimation precision of unknown param-
eter is obtained by using the transfer matrix and time-dépenKraus operators. We show that PPE in noise
systems can be preserved in the Heisenberg limit by coimtgadff dynamical decoupling pulses. It is found that
larger number of pulses and longer reservoir correlatime ttan remarkably protect the PPE.

PACS numbers: 03.65.Ta, 06.20.Dk, 03.65.Yz

I. INTRODUCTION berg level estimation cannot be achieved, since the entan-
gled states are very sensitive to the action of environment

The ultra-precise estimation of parameters plays an impoi25: 27, 29, 30]. In Ref [4] the authors have studied the QFI of
tant role in quantum metrology such as quantum frequencfpreenberger-Horne-Zeilinger (GHZ) state under threecpi
standards, measurement of gravity accelerations, clook sy tYPes noise sources [i.e., Amplitude-damping channel (ADC
chronization [1-5], and so on. In the quantum metrologyPhase-damping channel and Depolarizing channel ] by means
field, quantum Fisher information (QFI) [6—13] is a key con- Of Kraus operators, respectively. They found when the de-
cept, which gives a theoretical-achievable limit on thecpre coherence strength is figiently large, in all these channels
sion when estimating an unknown paramager According ~ Precision higher than SQL level cannot be achieved. There-

to the quantum Cramér-Rao theorem [9, 14], the mean squaf@re. itis important to find strategies to suppress decatuere
fluctuation of becomes in order to obtain the ultra-precise measurement.

1 In quantum information theory, there are two main classes
A > Apocg = ————, (1) of ideas to overcome decoherence: passive techniques, in
VVF(9) which quantum information is encoded within decoherence
. free subspace [31, 32] which does not decoherent because of
wherev represents the number of the independent measurea,song of symmetry: and active approaches, such as quantum
ments and-(¢) is QFI with respect to the unknown parameter oo correction [33] and dynamical decoupling (DD) tech-
¢ nigques [34-45]. In Ref [3], the author used the decoherence
_ 2 free subspace to suppress the collective dephasihgiohs

Fle(9)] = Trip(@)Lgl, ) which are stored in a linear Paul trap and proved that quantum
wherel is the so-called symmetric logarithmic derivative de- enhancement can readily be achieved in the presence of noise
termined by equatiorf?% _ %[p(tlJ)L(p + Lyp(9)]. Equa- DD strategies as another protocol to protect quantum infor-

i 1) imolies that | Fisher inf i hi hmation, aim at averaging the unwanted interaction with the
lon ( .) IMples that large FIsher information means a Mg, i.onment to zero by means of dynamical control field. DD
precision of estimation. Thus increasing the Fisher inform

. . . ; methods have been studied in connection to a wide range of
tion has important theoretical and practical value to enkan

the precision of parameter estimation (PPE)[15]. applications and become particularly popular in area ohgua

R i ks h d trated that entanal tum information. In Ref [10], the authors investigated how
ecently, many works have demonstrate at entanglefl oytract maximum information from the noise quantum sys-

states can improve the precision of parameter estlmati’ﬁm_ [.1 tem, in their work the DD scheme was considered for recov-

réring the lost information of a single qubit in a heat bath of

can be improved to the Heisenberg limit (HL) (proportional bosons

to 1/N), whereN is the particle number. Thus limit is bet- _ )
ter resolution than the best estimation limit with sepazabl In this paper we propose a scheme to enhance PRE in
states, called the standard quantum limit (SQL) (proppaio dubit noise systems employing DD pulses. By the use of the
to 1/ VN)[22, 23, 28]. tran_sfer matrix a_nd exact t|_me—dependent Kraus opera/tmzr_s,_
Until recently, most of the work in quantum metrology attain the analytic expressions of the QFI and error preisi
involved isolated systems undergoing unitary evolutioh [1 N the presence of DD pulses. We show that the use of the DD
However, under realistic physical conditions, the unasbld ~ PUIS€ sequences is verffective to protect PPE and it is found
interaction with the environment leads to decoherence. In &1at the HL can be achieved in the presence of noise as long
recent paper [1], Escher and coworkers proposed a generdf the number of pulses is large enough.
framework for quantum metrology of noisy systems, and ob- The paper is organized as follow. In Sec. II, we derive
tained useful analytic bounds for optical interferometngla time-dependent Kraus operators of ADC case in the presence
atomic spectroscopy. It is found that in the presence of deef DD pulses, and present exact solutiom\bfjubit reduced
coherence, even with the use of entanglement the Heisemensity matrix. In Sec. lll, we study thedfects of the DD



pulses on protecting PPE, and indicate that the precision on B. Mode Solution
HL can be achieved even in noise systems. Finally, a summary
is provided in the last section. At zero-temperature, Hamiltonian (6) can be exactly solved

under the single excitation approximation of the environtne
Here, we first assume the initial state of the system plus envi
ronment is of the form

[¥(0)) = [Ce(O)le) + C4(0)0)] 10%e, ™

I_n this section, we investigate the dynamicsl\bhu_bit in which evolves after timeinto the state
noise system under DD-pulse sequences. We consider the in-
dependent reservoir case in which each qubit interacts with |(t)) = [Ce(t)|e> + Cg(t)|g)] [O)e + ZC,— ®lnILpe, (8)
a reservoir. Suppose there is no interaction betweerNthe ]
pairs of ‘qubit-reservoir’ system, the dynamics of the whole
system can be obtained simply from the evolution of the indi
vidual pairs.

I1. DYNAMICSOF N-QUBIT IN NOISE SYSTEM UNDER
DD PUL SE SEQUENCES

‘wherel|1;) denotes that only thgth mode of the bath is ex-
cited. Note that the basig)|0)e does not evolve under the
rotating-wave approximation.

Substituting Egs. (6) and (8) into Schrodinger equatiom, w

A Controlled Hamiltonian can obtain the following coupled equations

o _ . o Celt) = —ianCe(t) - i )" g~ (),
HamiltonianH (t) of one single qubit interacting with its f
own reservoir with controlled pulses is given b - . . L
P given by Cit) = —iw,Ci(t) - ig;(~1)HCe(). 9)
H =Hs(t) + Hg + Hi, (3)  To obtainCe(t) andC;(t), we can go to the rotating frame,

definece(t) = Ce(t)e®!, ¢j(t) = Cj(t)e“: [44], and get
Celt) = —i ) gj(-1)Tldlalc),
j

with
Hg = Z walaj, H = Z gi(o-al +0.a).  (4)
: ’ ¢i(t) = —igj(-1)itei@-@tey). (10)

Assuming that;(0) = C;(0) = 0, we can get a closed equation
for ce(t), namely

the Hamiltonian of reservoir and qubit-reservoir intei@ct
And the Hamiltonian of the qubit is
Hs(t) = Hs+ Hc(t)

_ W, T
= 7UZ+§nZ:;6(t—nT)GZ, (5)

t
Golt) = - fo it F(t — tr)ce(ty) (11)

and the correlation functiof(t — t;) is related to the spectral
densityJ(w) of the reservoir. Assuming that the qubit is in

whi_ch consists of two parts. The first term is thg free Har_nil—resonance with the cavity mode, the spectral density is the
tonian, the second term is the control part, which comprise$ ;rantzizan spectral distribution [46]

a train of instantaneous pulses (the width of each pulse is
suficiently short), wherd is the time interval between two Iw) = 1 VoA 2 (12)
consecutive pulses. Thefect of each pulse on the qubit is C 21 (- )2+ A2’
simply a rotation around theaxis with 11, which is described
by the operatod. = —io;.

ChoosingU(t) = Texp|-i fot dt’H(t")], then the @ective
HamiltonianHgg of the total system in the present of control
pulses is given by

whereA reflects the spectral width of the coupling, which is
connected to the reservoir correlation timeby 1z = A~ and

Yo is related to the decay of the excited state of the atom in the
Markovian limit connected to the relaxation timig = )61.
Then, we have

He

UT(Hg + Hs+ H)U(t)
wle) (el + Y wala + » gj(-1)'(0-a] + 0,a), ft—t) = %(—1)“‘]*[%])/0/\ e, (13)
i j

(6)  Here, the factor41)[#1*[#] is induced by the sequence af
_ _ pulses. Ifn=0 (T - o), we have lin_,.(—1)F+] = 1.
wheren = [t/T] is the number of pulses qlenoted by the in-" \whent e [nT, (n + 1)T), the general solution of Eq. (11)
teger part ot /T. To get the above equation, we have used.gn pe derived as (see Appendix A for details)

the relationo,0. 0, = —0,. and omitted a constant for conve-
nience. From the above equation we can see clearly that the(t) _ e M2[2A0F1(N) + (L + AAn)F2(N)]ce(0), A = 2y,
~ | e?/2[A, cosh@nd) + By sinh(And)]ce(0), A # 2y,

control pulses only change the signgyfperiodically, leading be
to(H) = 0. (14)



whered = {/A2 - 2pA andA, = (t—nT)/2. The codicients I11. PPE ENHANCEMENT BY m—PUL SE SEQUENCES
F1 andF, are given as

Now we study how to protect the QFI and improve the es-

2 n_ nn n n 2
Foo A“T(p} - p7) Fo= py + p_ + /\TTFl (15) timation precision of unknown parametgr induced by the

' 4\ (AT)2+4 7 ? 2 noise channeady. The schematic we propose is shown in Fig.
1, which consists oN qubits in independent reservoirs. Each
with p. = 3[1 + V/(AT)? + 4]. Later, we main study the case qubit interacts with a reservoir which leads decoherenee pr
of A # 2y. In this case the constant dieientsA, andBn  cess. In order to suppress decoherence and enhance the pre-
(n> 1) in the presence of control pulses can be attained as cision of estimation, a sequence afpulses are applied to
each qubit simultaneously. The Hamiltonian of each qubit-
(A”) = Mn(AO)’ (16)  reservoir system has given in Eg. (3).
Bn Bo To obtain the maximal QFI, the input state is initially pre-

with the initial valuesA; = 1 andBy = A /d [46], correspond- pared in the GHZ state

ing to the case in absence of pulses. And the transfer matrix 1 &N &N
in the presence of control pulses is given by 4in(0) = ﬁ (|O> +11) )’ (23)
M= cosh(t) sinh(7) 17 whereg;|0y = |0), g7/1) = —|1). Such a state is a maximally
~\ & cosh(r) - sinh(t) # sinh(t) - cosh(r) |’ (17)
where we have introduced= Td/2. Through diagonalizing ﬁi;fﬁ D
the transfer matrix, we can obtain
ALl
A, = amﬂ + a,mﬂ, B, = BerQ + B,mﬂ, (18) Reservoir .
where LLLlLL
Reservoir .
a, = %[11 cosh(t) /@], m.= %sinh(r) +0, >
Reservoir
B: = a.[m. —cosh)]/sinh(1), (19)

with ® = /1+ [% sinh(r)]z. Furthermore, for finite time:

andA in the limitn — oo (T — 0), we have cosfr) ~ 1 FIQ. 1:_ (Color online_) Th(_e Schemati(_: representation of mmr_
d si N then we arrive at, ~ (1+ )\_T)n and estlmatlgn for aN-qubit n0|se.system in the presence of dynamical
and sink(t) =~ T, N ~ 2 decoupling. The total evolution procedure can be descrilyethe
Bn~ 2 [An - AT (’\TT - 1) ] Therefore, we can obtai(t) ~  tensor producg}".
ce(0), which means the decoherendkeet can be nearly com-
pletely suppressed in this case. entangled state, which can improve the precision/d,1.e.
By defining decay rat&(t) = % € [0,1], we can now theHL. _ _
express the reduced density matpit) of the qubit system  According to Eq. (22), the reduced density matrix of the

in the form of Kraus operators [26](see Appendix B) total system at timereads [4]
Ps(9.1) = D Ki(9.DPS(OK(9.1) = &4 (1) s(O)].  (20) ps(t) = % [£5)10X0)™ + E4())(0)(A)™
| +E D)™ + E,)ILXN]

with ¢ = wpt. The time-dependent Kraus operators can be

expressed as = PLOP2, (24)
i6/2 o) where&y (t) represents the noise channel with DD pulses for
Ki(g,t) = €%“k(t)lexe +e'?“lg)al, a single qubit. And
Ka($,1) = V1-k(®)%?/%g)el. (21)
N-1
which corresponds to the ADC model. Whe(t) — 1, we _ 1 £2N8-M 1 _ k()21 1050 N-M)1y¢7/®M
o3 D) s 619542 andKa(®.0) o O. p1 mzl (02 [1- k(0)?] 100N 1L,
With the help of these Kraus operators, the time evolution 1

of N-qubit reduced density operator can be given by p2 = 5 [K(t)ZNIOXOI®N +[1+ 1 - kAN 1N

+ k(ON (e™N10y 2PN + N?j1y0eN) | (25)
pt)= > [eliKu®]p@[elKi 0],  (22) ( )

oy The diagonal matriyp; is independent of parameter, thus

we only need to considgr, when estimating the value of pa-
whereK, (t) denotes the Kraus operators for tkrequbit. rameterg. In order to estimaté, we first calculate the QFI.
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FIG. 2: (Color online) Mean QFFF_(a) as a function of timgst with
N = 5, (b) with respect to pulse numberat a given timgyt = 10
andN = 20.

To calculate the QFI, we first diagonalize tipedependent
density matrixo, asp> = ¥ pit) |¢h) (|, where{|g)} are

the eigenstates qf, with eigenvaluegp;}. In this diagonal
representation, the explicit expression of the QFI is givgn
(as shown in Appendix C)

ANk ()N
[1+(1-k®IN+K(®)N]2

Flo(o,1)] = (26)

4

K(t) can be obtained in the present of DD pulses whes co
(T — 0), as analyzed in the previous section. And the preci-
sion on HL can be achieved in this limit. In order to observe
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FIG. 3: (Color online) Comparing the values 8., at fixed time
yot = 10 with differentA (a) with respect to the number of qubits
and (b) control pulses. Shaded area: Region between HL and SQL.

the dfect of DD pulses on the estimation precision clearly, in
Fig. 2 and Fig. 3 we have plotted mean @Fl= F/N and
estimation precision\¢n,in With respect to the evolution time
t, the number of pulses and qubitaN, with different values
of A corresponding to the correlation times(= A1) of the

According to the quantum Cramér-Rao bound, minimal’€Servoir.

variance of the estimation of the parameperan be obtained
as

Al = b = LA KO k@

VFIp(@, 1] 2Nk ()™

Here, we have set the measurement times- 1. Equa-
tions (26) and (27) are functions of decay raf¢) and num-

Figure 2(a) shows the time evolution of mean @Fivhich
is a suficient condition for entanglement whén> 1 [4, 24].
The different curves are obtained foffdirent values ok and
number of pulseg, when fixingN = 5. We notice a very dif-
ferent behavior withrf = 20) and without§ = 0) pulses, for
different values oA. In the absence of control pulsegeach
to zero quickly forA = w. And control pulses do improve
the situation, but does not recover the lost information com

ber of qubitsN. From the above equations, we can find in pletely. In contrast, the situation is more betterfoe 0.04yp,

the initial time k(0) = 1, presented=[p(¢,0)] = N? and
Admin(t) = 1/N, which is the HL on precision of estimation.
In this case, the large number of particdshelps improve
the precision of estimation. However,kft) — 0 (i.e., with-
out DD pulses and — ), F[p(¢,t)] — O, the QFI-based
parameterp lost completely, and the parametgican not be
estimated in this case, i.A@min(t) — . Worse of all, with
the increase oN, the values of §(t)]N decay rapidly. Thus,
there exist competitive relation betweex(f)]N andN. To
take the advantage of large number of partitlesve need to
suppress the decay af(t). Luckily, the nearly unit value of

since exist a longer correlation tinmtg of the reservoir. In this
case most of the lost information is recovered by applyirg th
sequence oft pulses.

To investigate theféect of the reservoir correlation tinmg
on the éficiency of control pulses. In Fig. 2(b) we compare
the values oF for different values ok at a fixed timgpt = 10
as a function of the number of pulsesvhenN = 20. We
can find that the smaller, the less number of control pulses
is needed to recover the lost information. For instance, for
A = 0.04y, about 20 pulses, the QFI can recover to its initial
valueF = N = 20, while for case oA = y more than 100



pulses are needed. Acknowledgments
A comparison of the values df¢, at fixed timeyt = 10
with respect to the number of qubits and control pulses Q. S. Tan thanks W. Zhong and X. Xiao for valuable dis-

for different values oA has been shown in Fig. 3. The lower cussions. X. Wang acknowledges support from the NFRPC

and upper boundaries of the shade regions are the HL and tlierough Grant No. 2012CB921602 and the NSFC through

SQL, respectively. With the increase of the number of qubitsGrants No. 11025527 and No. 10935010. L. M. Kuang ac-

N , the theoretical error limit values of estimation (both SQL knowledges support from the 973 Program under Grant No.

and HL) decrease monotonically. 2013CB921804, the NSF under Grant No. 11075050, and the
Figure 3(a) indicates thak¢mi, reflects diferent depen- PCSIRTU under Grant No. IRT0964, and the HPNSF under

dence on the number of qubiks for different values ofA. ~ Grant No. 11JJ7001.

The precision of HL level can be achieved with increashl of

for A = 0.1y at fixed timeyt = 10 andn = 20. However,

the behavior is completely fierent forA = y. In the case of Appendix A: Derivation of Eq. (14)

A = W, the precision higher than SQL can be reached only for

the case oN < 16, and the error value increase rapidly when

N > 16. This means that lardé¢ may increase the error value

of estimation in this case at fixed

The values ofA@min at fixed timeyt = 10 as a function

In this Appendix, we present details of the derivation of
Eq. (14).
Whent € [nT, (n+ 1)T), Eq. (11) can be rewritten as

of pulse numben are also given in Fig. 3(b). We can see oA [ v )
as long as the number of control pulses is large enough the Ce(t) = -5 f (~1)THF e A ey () ot
precision can be improved to the nearby HL foffelienceA . 0 .
However, the largek the more pulses are needed to reach the WA n 1)1 kT AU (1t
same precision of estimation. In a word, the DD scheme is - _T(_ ) Z(_ ) (k)T € Ce(t’)
fully effective as long a¥ < 1s(= A7%). . k=1
o [ e, (A1)
nT
IV. CONCLUSION wheren = [%], k = [tT—'], and the symbolA] represents the

e Vtgq(t)dt’
.

largest integer not greater tharWe differentiate with respect
, tot and obtain
In conclusion, we have proposed a scheme to enhance PPE
in noise systems by employing dynamical decoupling pulses. Yo n KT )
In our schemé\ qubits are embedded into independent reserée(t) —T(—l)n {—)\ [Z(—l)klf eVt eg(t’)dt’
voirs. The unknown parametér to be estimated is induced k=1 (k=1)7
by the channefy (t). Resorting to the transfer matrix method 0 ! n
and time-dependent Kraus operators, the exact analytical e +(-1) f +(-1) Ce(t)}
pression for the estimation precision ¢fhas been derived. 3 A
Using of this expression, we have demonstrated that PRE in = —AG(t) - VLce(t)_ (A2)
gubits noise systems can be preserved in the HL by control- 2
ling of dynamical decoupling pulses. It has_ been fou_nd t_hatrhis equation is an ordinaryfliérential equation which is lo-
larger number of pulses apd longer reservoir correlatio ti cal in time, and contains oniga(t), é(t) andce(t).
can.protegt PPE morefec.'uvely. In the following, we solve the solution af(t) in two dif-
Finally, it should be pointed out that these results we havgerent casesA = 2y andA # 2.
obtained in this paper are based on ideglulses, which can (i) The Case of A = 2. In this case, we havd =

be treated a® functions. This means that théfects of the 5 —5— _ )
duration time and errors of the pulses are neglected. How; A®-2)A = 0, whent € [T, (n+ 1)T) the general solu

ever, experimentally, this idealized situation maybe patis- tion of ce(t) can be derived as

tic. The real pulses are always of finite amplitude and ofdinit

length [41, 42]. These imperfect pulses will accumulate an _a

extra phase, which increases with the number of pulses and Ce(t) = (Cut + Cp)e" 7, (A3)
affects the PPE. To reduce the error as much as possible, we .
can apply the optimizedt pulse sequences[40]. Although itis andC, andC; are given as
more sophisticated in form, the same PPE can be attained with

less number of pulses. Therefore, less amount of phaseserror

is accumulated. Detailed consideration of these impadts wi C, = et [ce(nT) + Ace(nT)] ,
be interesting. We hope that the scheme proposed in present 2
paper might have promising applications in quantum inferma AT AnT

tion processing and quantum metrology. C =e> [—nTce(nT) * (1 - T)Ce(nT)] - (Ad)



Then we have

Gt) | _ giem( 1+ AT ¢ —nT Ce(NT,)
Glt) | = _AZ(t;nT) 1- /\(t—znT) ce(nT.)
e (1AM ¢ T Ce(NT2)
=€ 2 ( _/\Z(t;rzﬂ) 1 A )UZ(Ce(nT))’
(A5)
where
CNT) | _ gato( 15T T ) (cdn-1T]
&(nT) argoar )% edn- T )
(A6)

Here we have used the boundary conditiapgnT.) =
Ce(nNT,), €(NT.) = —Ce(nT,) and gy is the pauli matrix. Us-
ing the recurrence relation, we can easily obtain the fathgw
expression after an-pulse sequence:

Cl(n- ]\ _ gar a(1+5T T )'(cl0)
"Z(ce[(n—l)T_])‘ ("Z)( a3 1—%)( 0 )
(A7)

here we have used the initial conditiog(0) = 0. Thus, we
have

Ce(l) ) _
Ce(t)
The transfer matrix

1+41T T
m( )
4 2

1+t _nT ce(0)

-

€ t/z( _A%enm) 1 _ ATy XMn( 0 )
4 2

(A8)

(A9)

can be diagonalized &8 'MP = Diag[p,, p_] with p. =
%[/\T + 1/(AT)2 + 4]. Where matrixe® andP! are given as

T -T
= (o 3R
o1 _ 1 ( 1JAT)Z+4+1 T](Alo)
TVATZ+4l -3 JOTP+4-1T)

Then, we have

n_ pi O 1 _ [ M1 M2
M —P(O pE)P _(le mzz), (A11)
where
_opi+pt p} — p° _ T(p? -p?)
M1 = + y M2 = ———,
2 JATZ+4 JAT)Z+4
M, = PP PPt _AZT(pR - p")

N 0 N

(A12)

Hence, Eq. (A. 8) can be rewritten as

A(t=nT)
Ce(t) | _ garz[ 1+ Z%
Ce(t) _A (t4nT)

% My M2 | Ce(0)
Mp1 Mg 0 )

Therefore, the population of excite state in the preseneef d

coupling pulses can be obtained as

t—nT )
A(t=nT)
1- 2

(A13)

M] mll} Ce(0).
(A14)
Wherem,; andmy; are replaced byi(n) andF,(n) in Eq.
(14), respectively.
(if) The Case of A # 2y. In this case, we havd =
VAZ = 2pA # 0, and the general solution gf(t) can be de-
rived as

Ce(t) = €A/ [An cos!‘(@) +B, sinh(w)] ce(0),

Celt) = e?V/? {(t —NT)mp + |1+

2
(Al15)
with
Ar = €7 c(nT), |
B, = &7 [ACES‘T*) + ZCQ((;'T*)}. (A16)
Whent € [(n— 1)T, nT), we also have
cet) = e™/? {An—l COS%W)
+Bp-1 sinh(%)} . (AL17)

Using the boundary conditiorte(nT.) =
Ce(NT.) = —C(NT,), we have

An:
Bn =

Ce(nT,) and

An-1 cosh(t) + B,_1 sinh(1),
% [An_1 cosh(T) + B_1 sinh(1)]
—[An-18inh(1) + Bn_1 cosh(T)] .

Thanks to the recurrence relations of constanfiomientsA,
andB,, we can obtain Eq. (16). The transfer matft can
be diagonalized a8~*MP = Diag[m, m_]. The matrixP and
P! are given as

(A18)

5 _ ( sinh(1) sinh(1) )
~ \ my —cosh(t) m. - cosKr) |’
-1 1 ( m_ — cosh(1) —sinh(T)

- cosh(t) - m, sinh(1)

Ce ) . (A19)
det

Then, we have

r)=?1'5 )" (e

hence Eq. (18) is attained.

(A20)



Appendix B: Noise channel E,(t)

Here, we will give a derivation of Eq. (20). Corresponding

The corresponding eigenvalues and eigenvectors are giwen b

1
to Eq. (8), we can rewritten the finial state of the system plus P12(t) = i [1 + kN 4 (1- kN

environment as

= V(1 + kN + (1- K2N)2 - 4kN(1- k2N,

W) = [e"eat)le) + Co(0)9)] 0 (C3)
+ ) eI e. (B1)
i and
Then the reduced density matrix of the qubit system can be _
read as lyn()y = sina()[1)®N +e™? cosa(t) |0)°",
t)) = cosa(t)|1)®N — e N sina(t) 0N, (C4
ps(t) = Tre(I¥(t) (¥ (1)) 420 O W, 9
_ [ CAHOk()?  eCo(0)Co(O)K(t)
= | €9C OGOk (1) 1- CEOK () where
_ ewz( PO PaOK(D) ) g90./2 -
Poe(0)K (t) 1 - pee(O)K(t) a(t) = arctan r———— o (C5)
= e%/2%" Ep(0)E /2 with = = LT+ k2 + (1- KIN)2 = aKN(L = K2V,
i ) In this diagonal representation, the matrix elements of the
= Z Ki(¢, t)p(O)Ki‘(qb, t) = E4(1)p(0), (B2)  symmetric logarithmic derivative (SLD) is
i
2|0 »
where L = <w;,|. ijf!wJ). (C6)
Ex(t) = K(IOXO0I+ 11X, Eaft) = v1- k(t)?I1X0},(B3) Y
andK;(¢,t) have given in Eqg. (21). ThenL(t) is obtained explicitly as
Appendix C: Quantum Fisher information 2iNK™
PP $Q L) = T ey Wl — lwall. - (CT)
In this Appendix, we will calculate the QFI, which have
given in Eq. (26). In the basis ¢@)®N and|1)®N, p,(t) canbe  Thus the QFI can be calculated as
written as
1( k2N e iNG | N _ 1 2.2
pa(t) = > ( @NO KN 14 (1 k)N ) (C1) F = ETr [sz +L pz]
AN?k (t)N
In order to calculate the QFI, we first diagonalzt) as (C8)

pa(t) = D PO () (Wi(t)] - (C2)

T I+ - KOV KON
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