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The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase was first predicted in 2D superconductors
about 50 years ago, but so far unambiguous experimental evidences are still lacked. The recently
experimentally realized spin-imbalanced Fermi gases may potentially unveil this elusive state, but
require very stringent experimental conditions. In this Letter, we show that FFLO phases may be
observed even in a 3D degenerate Fermi gas with spin-orbit coupling and in-plane Zeeman field. The
FFLO phase is driven by the interplay between asymmetry of Fermi surface and superfluid order,
instead of the interplay between magnetic and superconducting order in solid materials. The pre-
dicted FFLO phase exists in a giant parameter region, possesses a stable long-range superfluid order
due to the 3D geometry, and can be observed with experimentally already achieved temperature
(T ∼ 0.05EF ), thus opens a new fascinating avenue for exploring FFLO physics.

PACS numbers: 67.85.Lm, 03.75.Ss, 74.20.Fg

The Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase,
characterized by Cooper pairs with finite total momen-
tum and spatially modulated order parameters, was pre-
dicted to exist in certain region of 2D superconductors
in high Zeeman fields [1–3]. This fascinating state arises
from the interplay between magnetic and superconduct-
ing order, and now is a central concept for understand-
ing many exotic phenomena in different physics branches
[4–12]. Despite tremendous experimental and theoreti-
cal efforts in the past five decades, there is still no un-
ambiguous experimental evidence for FFLO states [11].
The experimental difficulty may arise from several differ-
ent aspects, such as the depairing of Cooper pairs due
to orbital or Pauli effects in strong magnetic fields and
unavoidable disorder effects in solid state materials.

The recent experimental realization of spin-imbalanced
Fermi gases [13–17] provides a new excellent platform for
exploring FFLO physics. In Fermi gases, the effective
Zeeman field is generated through the population imbal-
ance between two spins, therefore the orbital effects (e.g.,
vortices induced by the magnetic field) are absent even
in 3D. The Fermi gases are also free of disorder and all
experimental parameters are highly controllable. These
advantages have sparked tremendous recent interest in
exploring FFLO physics in spin-imbalanced Fermi gases
[18–28]. However, the FFLO phase only exists in a nar-
row parameter regime in 3D due to the Pauli depairing
effect[18, 22, 23]. Furthermore, the free energy differ-
ence between the FFLO state and the BCS superfluid is
extremely small. As a result, only the transition from
the BCS superfluid to the normal gas [13–15] has been
observed in 3D spin-imbalanced Fermi gases. Current
experimental and theoretical efforts on the FFLO state
have focused on low dimensions system [29–33], where
quantum and thermal fluctuations may become crucial
and the physics is much more complicated [34–36].

In this Letter we show that a large and stable param-
eter region for FFLO states can be realized even in a 3D
degenerate Fermi gas by including two experimentally
already developed [37–39] elements: spin-orbit (SO) cou-
pling and an in-plane Zeeman field. Recently the BCS-
BEC crossover physics of SO coupled Fermi gases with
perpendicular Zeeman fields has been intensively inves-
tigated with the goal of realizing topological superflu-
ids [40–43] and the associated Majorana fermions [44–
46]. However, regular BCS superfluids, instead of FFLO
states, are energetically preferred for perpendicular Zee-
man field. We show that this issue can be resolved by
using an in-plane Zeeman field, which, together with the
SO coupling, yields an asymmetric Fermi surface so that
the FFLO state can emerge naturally. We emphasize
that here the FFLO phase is driven by the asymme-
try of the Fermi surface, instead of population imbal-
ance. More importantly, we find that the energy differ-
ence between the FFLO ground state and the possible
BCS superfluid excited state is dramatically increased
(to ∼ 0.04EF per particle), therefore the FFLO state
is experimentally more accessible with the realistic tem-
perature in 3D (T ∼ 0.05EF ). Because of the 3D geom-
etry, the quantum and thermal fluctuations are strongly
suppressed[34–36] therefore greatly simplifies the FFLO
physics. Finally, we argue that our system has no direct
solid state analogy and the new route represents a more
efficient way to create and observe FFLO phases.

Thermodynamical potential: Consider a 3D degen-
erate Fermi gas in the presence of a Rashba type of
SO coupling and an in-plane Zeeman field. The parti-
tion function of the system can be expressed as Z =
Tre−β(H−µN) =

∫

Dψe−S , with the action S =
∫

ψ†(∂τ+

H0)ψ + gψ†
↑ψ

†
↓ψ↓ψ↑. Here

∫

=
∫ β

0
dτd3r, ψ† = (ψ†

↑, ψ
†
↓),

H0 = p2

2m−µ−hσx+α(pxσy−pyσx), m is the mass of the
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FIG. 1: (Color online). BCS-BEC crossover phase diagrams
in the presence of SO coupling and in-plane Zeeman field. (a)
Without SO coupling. The circle symbol represents the data
from the quantum Monte Carlo calculation [52]. (b) and (c)
With αKF = 0.5EF and αKF = 1.0EF . (d) In the unitary
regime.

atom, µ is the chemical potential, g is the s-wave interac-
tion strength, α is the Rashba SO coupling strength, and
h is the in-plane (same as the SO coupling) Zeeman field.
In experiments, the SO coupling and the in-plane Zeeman
field can be realized using the tripod scheme where three
Raman lasers couple three hyperfine ground states with
a common excited state [47–49]. Note that an in-plane
Zeeman field is generated naturally in the tripod scheme
[47–49], while a perpendicular Zeeman field requires ad-
ditional lasers [50] (thus more difficult in experiments).
In the FFLO state the Cooper pairs have finite total

momentum, i.e., ∆(r) = 〈ψ↓ψ↑〉 = ∆eiQ·r, where Q is
the FFLO vector. We adopt a spatial uniform order pa-
rameter ∆ in our calculation through a transformation
of the field ψ → ψeiQ·r/2, yielding a new Hamiltonian
eiQ·r/2H0(p)e

iQ·r/2 = H0(p+Q/2) = H̄0, hence

S =

∫

ψ†(∂τ + H̄0)ψ − |∆|2/g +∆ψ†
↑ψ

†
↓ +∆†ψ↓ψ↑ (1)

in the new field basis. Integrating out the Fermi field, we
obtain Z =

∫

D∆exp(−Seff), with the effective action

Seff

β
= −

|∆|2

g
−

∑

λ,k,iωn

lnβ(iωn − Eλ)

2β
+
∑

k,σ

ξQ
2
−k,σ

2
, (2)

where ξQ

2
−k,σ = (Q2 − k)2/2m − µ, Eλ (λ = 1, 2, 3, 4)

are the eigenstates of the effective Hamiltonian (under

the basis (ψQ/2+p,↑, ψQ/2+p,↓, ψ
†

Q/2−p,↓, −ψ
†

Q/2−p,↑)
T )

Heff(k,Q) =

(

H0(
Q

2 + k) ∆

∆† −σyH
∗
0 (

Q

2 − k)σy

)

. (3)
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FIG. 2: (Color online). Illustration of the physical mechanism
of the FFLO state in the presence of an in-plane Zeeman field
and SO coupling. Solid and dashed contours are two Fermi
surfaces. The solid arrows are the pseudospins. The solid
line connecting two pseudospins represents the Cooper pair
with total momentum Q (dashed arrow). (a) Without SO
coupling, the Fermi surfaces are two concentric spheres. (b)
With SO coupling, the Fermi surfaces are anisotropic along
the ky axis due to the Rashba SO coupling and the x-axis
Zeeman field.

In Eq. (2) the bare interaction strength g should be
regularized in terms of the s-wave scattering length as
[41, 43], 1

4π~as

= 1
g +

∑

k
1

2ǫk
, where ǫk = k2

2m .

The ground state phase diagram of the system (i.e., ∆,
µ, Q) is determined by the saddle point of the thermo-
dynamical potential ∂Ω

∂∆ = 0 and ∂Ω
∂Q = 0, as well as the

atom number conservation[51], n =
∑

σ=↑,↓ nσ = −∂Ω
∂µ ,

where Ω = Seff/β. The energy unit is chosen as the
Fermi energy EF for an non-interacting gas without SO
coupling and Zeeman field. The length unit is K−1

F . We
restrict to T = 0 throughout this work. Generally the
vector Q has three different components, and the total
five unknown parameters put a great burden for numer-
ically solving the above equations self-consistently be-
cause the landscape of Ω is an extremely complex func-
tion of these parameters whose global minimum (instead
of a local minimum) is hard to find. For the x-axis Zee-
man field and the Rashba-type SO coupling the defor-
mation of the Fermi surface is along the y-axis, therefore
the FFLO vector is expected to be along the y axis, i.e.,
Q = (0, Q, 0). We have numerically confirmed that there
is no large FFLO region when Q is along the x and z di-
rections. There are three possible phases in this system:
BCS superfluid (∆ 6= 0, Q = 0) (we still use BCS for
convenience although we really consider the BCS-BEC
crossover physics), FFLO (∆ 6= 0, Q 6= 0), and normal
gas (∆ = 0 and Q = 0). In the FFLO phase, we also cal-
culate the energy difference between the FFLO ground
state and the possible BCS superfluid excited state (by
enforcing Q = 0) to check the stability of the FFLO state
against the finite temperature effect.

Phase diagram and mechanism for FFLO phase: In
Fig. 1, we plot the phase diagrams of the Fermi gas
with respect to h, 1/KFas, and αKF . Without SO cou-
pling (Fig. 1a), our result agrees well with that in pre-
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FIG. 3: (Color online). Population imbalance P = δn/n as a
function of the scattering interaction (a) and the SO coupling
strength (b).

vious literatures using the mean-field approximation [18]
or quantum Monte Carlo [52]. We see the FFLO phase
exists only within an extremely small regime in the phase
diagram. Furthermore, the energy difference per particle
between the FFLO state and the possible BCS super-
fluid state is extremely small (see Fig. 4d), therefore the
Fermi gas may not relax to the FFLO state considering
the realistic temperature in experiments [13], even if the
FFLO state is the true ground state. With increasing
SO strength, the parameter region of the FFLO phase is
greatly enlarged. In Fig. 1d, we see that the critical Zee-
man field for the transition between the BCS superfluid
and FFLO phase is greatly reduced, but always larger
than zero because of the required time-reversal symme-
try breaking for the FFLO phase.

The enlarged parameter region for the FFLO state in
Fig. 1 can be understood from the deformation of the
Fermi surface due to the SO coupling and the in-plane
Zeeman field. Without the SO coupling, the Zeeman field
(no matter which direction) yields two concentric spheres
(Fig. 2a) of the Fermi surface, and only singlet pair-
ing between different pseudospins (i.e., two eigenstates of
H0) is allowed due to the SU(2) symmetry of the Hamil-
tonian. With increasing Zeeman fields, the Fermi surface
mismatch increases the energy cost of the BCS superfluid.
In a strong Zeeman field the superfluid has to break the
spatial symmetry to lower the accumulated energy, there-
fore the FFLO state emerges, but only survives in a small
parameter region due to the Pauli depairing effect. Such
depairing effect in strong Zeeman fields can be circum-
vented using the SO coupling, which allows both singlet
and triplet pairings [41, 53, 54] (the later is insensitive
to the depairing effect) because the pseudospin state is
a spin mixed state with strong momentum dependence
[40]. In the presence of SO coupling and an in-plane
Zeeman field, the Fermi surfaces become anisotropic and
the center of the Fermi surface is also shifted accordingly
(Fig. 2b). Therefore the regular BCS superfluid, which is
preferred for a symmetric Fermi surface, is greatly sup-
pressed, and the FFLO state becomes energetically fa-
vorable in a much wider parameter region, as observed
in Fig. 1. Note that without SO coupling (Fig. 2a), the

system has the rotation symmetry, therefore Q can be
along any direction. The SO coupling breaks the rota-
tion symmetry, and forces Q to along the direction of the
asymmetric axis (thus Q is unique).

The FFLO phase is induced by the interplay between
asymmetry of Fermi surface and superfluid order, instead
of the interplay between magnetism and superconducting
order in solid materials. In our model the only spin polar-
ization is along the σx axis (i.e., 〈σz〉 = 0, 〈σy〉 = 0), thus
we define the the population imbalance as P = δn/n with
δn = 〈σx〉. In Fig. 3, we plot P with respect to 1/KFas
and αKF . Without SO coupling, the BCS superfluid
breaks down at P ∼ 0.669, in consistent with previous
results [13, 18]. When the SO coupling is applied, the
FFLO phase can emerge with a much smaller population
imbalance (P ∼ 0.1 - 0.2). From Fig. 3, we see that the
SO coupling generally enhances the population imbalance
in the normal phase, however the emergence of the FFLO
does not ocuur in this large population imbalance region.
Therefore the FFLO phase cannot originate from the in-
terplay between magnetism and superconducting order
which is the major driving force for tranditional FFLO
superfluid in the spin-polarized Fermi gas (withoug SO
coupling) and 2D solid state materials.

Stability and measurement of of FFLO phase: To char-
acterize the FFLO state, in Figs. 4, we plot the chemical
potential µ and the order parameter ∆ in the BCS-BEC
crossover. For comparison, we also plot µ and ∆ for the
possible BCS superfluid state (by enforcing Q = 0). In
the weak BCS limit ∆ is exponentially small, therefore
a small population imbalance can destroy the superfluid
[14]. In the BEC side, the fermions form tightly bound
molecules and the influence of Zeeman field and SO cou-
pling is negligible. Therefore the only relevant parameter
regime for the observation of FFLO states should be near
the unitary regime. In the FFLO regime, ∆ for the FFLO
state is smaller than that for the assumed BCS superfluid
to reduce the FFLO energy. In Fig. 4c, we plot Q versus
the scattering interaction, which also confirms that the
SO coupling can greatly increase the parameter region
for the FFLO phase.

An experimentally observable FFLO state requires a
large energy difference between the FFLO ground state
and the possible BCS superfluid excited state so that
the FFLO state can survive at finite temperature. In
Fig. 4d, we plot the free energy difference per parti-
cle between FFLO state and the BCS superfluid, δF =
(FFFLO − FBCS) /nEF , with F = Ω + µn. The stability
of the FFLO state has not been emphasized in previous
literatures [19, 22–24, 26–28]. For FFLO states without
SO coupling we find δF ∼ 10−4EF , which is much smaller
than the experimental coldest temperature (T ∼ 0.05EF )
[13, 55]. Therefore the FFLO state cannot be observed
even the exact parameter region has been reached. While
in our model the energy difference per particle is greatly
enhanced to ∼ 0.04EF , which makes the FFLO state ac-
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FIG. 4: (Color online). BEC-BCS crossover in the presence
of SO coupling and an in-plane Zeeman field. h = 0.5EF

and αKF = 0.0 and 1.0EF . In (a) and (b), the solid line
and dashed dotted line are obtained by minimizing the total
free energy with respect to ∆, µ and Q, while the dashed
line and dashed double dotted line are obtained by enforcing
Q = 0 (thus no FFLO states). (c) Plot of Q as a function
of the scattering interaction. (d) The free energy (F = Ω +
µn) difference between the FFLO state and the possible BCS
superfluid.

cessible with realistic experimental temperature. Such
a large energy difference is another major advantage of
our scheme over previous Zeeman field [18–23] or optical
lattice [24, 26–28] schemes.
So far we only consider the FFLO state using a sim-

plified pairing ∆(r) = ∆eiQ·r, while the true pairing of
the FFLO state may be complicated. Because the FFLO
state depends strongly on the nesting of the Fermi sur-
face, the order parameter may be composed of multiple
vectors [6, 56], i.e., ∆(r) = ∆(Q1,Q2, · · · ) (e.g., the LO
state with Q and −Q), whose stability depends strongly
on the detailed structure of the Fermi surface and thus
cannot been fully ruled out [56]. However, the major
findings of our work are intact even for very complex
pairings because different choices of the order parameter
are mainly used to further reduce the total energy of the
FFLO state, thus further enhance our major findings.
The FFLO wavevector Q may be measured directly

using the time-of-flight images [24, 57], where momen-
tum distribution shows a peak at r = ~Qt/m. Because
Q is unique in our system, repeated measurements can
be used to determine Q precisely. The superfluidity of
the FFLO states can be demonstrated through the rota-
tion of the system, where the generated vortices provides
unambiguous signature of superfluidity [58]. Near the
boundary of different phases the vortices may be unstable
due to strong damping effects [13], however in the middle
of the FFLO phase (only possible with a large parameter

region for the FFLO state), we expect the damping effect
to be small, similar as that in the BCS superfluid state.

Comparision to solid state systems : We emphasize
that our system has no direct solid state analogy al-
though we note that FFLO states were also studied re-
cently in 2D spin-orbit coupled superconductors with in-
plane magnetic fields [59–61]. Our scheme is different
from these 2D superconductors in the following aspects:

(I) Different driving mechanism: in 2D superconduc-
tors, FFLO phases are mainly induced by strong mag-
netic field and the role of SO coupling is to enhance the
second critical magnetic field Hc2 between superconduct-
ing and normal states [59, 60]. While in our 3D Fermi
gases, FFLO phases are induced by the asymmetric Fermi
surface, and are present even with a weak Zeeman field
(see Fig. 1d) and a small population imbalance (see Fig.
3). (II) 3D vs 2D: It is well known that in 2D and at fi-
nite temperature the mean field theory does not work and
there is no long range superconducting order (including
FFLO) due to phase fluctuations [34–36]. In contrast,
the mean-field theory works well, at least qualitatively,
in 3D degenerate Fermi gases, which can support long-
range FFLO order at finite temperature. (III) BCS-BEC
crossover vs weak BCS limit: Our study focuses on the
BCS-BEC crossover (strong coupling) physics (see Figs.
1, 3, and 4), in contrast with the weak BCS limit in 2D
superconductors[59–61]; In our model the strong coupling
regime can be achieved via Feshbach resonance[62]. (IV)
Different experimental concerns: cold atomic gases are
disorder free and FFLO phases can be observed directly
in time-of-flight images; while in 2D superconductors dis-
order effects are important [60] and FFLO states can only
be observed indirectly.

In summary, we show that the combination of SO
coupling and in-plane Zeeman field can lead to a large
and stable parameter region for the experimentally long-
sought FFLO state even for 3D degenerate Fermi gases.
Considering the recent experimental progress on the gen-
eration of the SO coupling in Bose and Fermi gases, our
work provides a new exciting research direction for the
study of SO coupled Fermi gases as well as the FFLO
physics, which is essential for the understanding of im-
portant phenomena in many branches of physics, ranging
from solid state superconductors to astrophysics.
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