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The Gottesman-Knill theorem allows for the efficient simulation of stabilizer-based quantum error-correction
circuits. Errors in these circuits are commonly modeled as depolarizing channels by using Monte Carlo methods
to insert Pauli gates randomly throughout the circuit. Although convenient, these channels are poor approxi-
mations of common, realistic channels like amplitude damping. Here we analyze a larger set of efficiently
simulable error channels by allowing the random insertion of any one-qubit gate or measurement that can be
efficiently simulated within the stabilizer formalism. Ournew error channels are shown to be a viable method
for accurately approximating realistic error channels.

A system interacting with its environment will eventu-
ally reach thermal equilibrium. For finite temperatures, the
equilibrium state will be a distribution of energy eigenstates
weighted by Boltzmann factors. As a result the process of
thermalization is generally non-unital. A unital process maps
a completely mixed state to a completely mixed state and is
compatible with thermalization only in the limit of infinite
temperature or complete degeneracy of the energy eigenstates.

A quantum computer is a system that is often out of ther-
mal equilibrium with its environment. Interactions with the
environment can lead to errors in the computation. Fault-
tolerant quantum error correction is one method for mitigating
these errors with the advantage that provable arbitrary quan-
tum computation is possible given constraints on the error
rates and the error locality [1]. There are many possible error
correcting codes ranging from concatenated [2–5] to subsys-
tem [6] to topological codes [7–10]. It is typical to use simula-
tion to determine the error correcting properties [11–13].Al-
though simulation of quantum systems is difficult, simulation
of error correction can be done efficiently for stabilizer codes
where the process of error correction only includes gates in
the Clifford group [14, 15].

A standard error model is a depolarizing channel where a
Pauli operator, chosen from a probability distribution, isap-
plied at every possible error position [16]. The depolarizing
channel efficiently simulates common laboratory processes
such as dephasing. It also serves as a good approximation for
unital channels and is appropriate for qubits with degenerate
energy eigenstates. In nature, it is also common to encounter
interactions with the environment where the process of ther-
malization leads to non-unital error channels. One example
is spontaneous emission or amplitude damping where, given
enough time, all density matrices map to a single pure state.
If an error channel is far from unital then simulating it with
Pauli errors gives large approximation errors, thus makingit
hard to extract useful results.
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In this paper, we go beyond simulating errors with the con-
ventional Pauli depolarizing channel (PC). Rather than re-
stricting to Pauli errors, we allow any subset of efficiently
simulable gate errors to occur. In particular, we look at sub-
sets generated by including all Clifford group operators and/or
Pauli measurements to the PC. We show that adding Clifford
errors and/or measurement errors always results in more ac-
curate approximations and significant improvements for most
error channels.

The stabilizer formalism allows for efficient classical sim-
ulation of quantum circuits when the initial state can be de-
scribed by the measurement of a set of commuting Pauli oper-
ators and the gates in the circuit are Clifford operators, which
map Pauli operators to Pauli operators by conjugation [15].
Single-qubit Clifford operators preserve the symmetry of the
chiral octahedron [17]. This includes the identity,I; rotations
about the vertices byπ (Pauli operators),σj ; rotations about
the vertices byπ/2 (S-like operators),Sv; rotations about the
midpoint of each edge byπ (Hadamard-like operators),He;
and rotations about each face center by2π/3, Rf .

One can create an error process which is the weighted ran-
dom application of these 24 unitary operators. We call this
class of error models the Clifford Channel (CC) [18]. Most
simulations of error correction circuits have used Pauli depo-
larizing channel (PC), which is a subset of CC consisting of
only the random application ofI or Pauli operators.

The stabilizer formalism also allows for efficient simulation
of non-unital operations involving Pauli measurements and,
optionally, conditional application of Clifford gates based on
those measurements. In this paper, we limit ourselves to the
set of operators that corresponds to measuring a Pauli opera-
tor and then conditionally applying a Pauli matrix such thatall
states map to the same state. We call these channels measure-
ment induced translations. For each eigenstate,|λ〉, of a Pauli
operator, we define the channelEλ by two Kraus operators:
Eλ0 = |λ〉〈λ| andEλ1 = |λ〉〈λ⊥|. Notice that the effect of
these two operators is to discard the state and replace it by|λ〉.
We add these channels to our model with probabilitypλ. The
effect on a state, when represented on the Bloch sphere, is to
translate it toward|λ〉. This allows us to generate non-unital
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error channels that can be efficiently simulated. The extended
models including measurement are labeled PMC and CMC.
Table I describes the content of each channel class in terms of
the underlying channel set and the number of free parameters.

TABLE I. Four error models compatible with the stabilizer formal-
ism.

Channel Class Channel Set Parameters

PC {I, σi} 3

PMC {I, σi, Eλ} 9

CC {I, σi, Sv,He, Rf} 23

CMC {I, σi, Sv,He, Rf , Eλ} 29

In nature, there are many error channels that cannot be ex-
actly represented in the stabilizer formalism. We examine
two channels: the amplitude damping channel (ADC), and
dephasing about an arbitrary axis in the x-y plane (PolφC).
The ADC, represented in Equation 1, is the prototypical non-
unital error channel [19]. It describes the energy dissipation
of a two-level quantum system. However small, it is present
in any non-degenerate physical system.

ADC = EA =

{

EA0 = |0〉〈0| + √
1− γ |1〉〈1|

EA1 =
√
γ |0〉〈1|

(1)

The dimensionless parameterγ, which can take any real
value between 0 and 1 can be related to the total energy lost to
the environment. Numerous codes have have been developed
specifically to combat ADC, but studying the effects of this
error channel on a circuit has yielded only a handful of results
[20–23]. All of the results assumeγ to be small in order to
expand the Kraus operators in a Taylor series expansion using
the Pauli operator basis.

Unlike the ADC, the PolφC, which is represented in Equa-
tion 2, is unital. Yet unless the angleφ is a half-integer multi-
ple ofπ, the depolarization occurs along a non-Pauli axis, and
the quality of the PC approximation will vary withφ.

PolφC = Exy
{

Exy0 =
√

1− pφ I

Exy1 =
√
pφ [cos(φ)X + sin(φ)Y ]

(2)
Here the parameterφ represents the angle of the polarization
axis with respect to the X axis andpφ the probability of error.

To study how closely our error models approximate target
error channels, we compute the distance between the process
matrix of our error model and the process matrix of the tar-
get error. As a distance measure on a single qubit, we employ
the normalized Hilbert-Schmidt distance between the process
matrices associated with each channel [24],DHS(χ1, χ2) =
1

8
‖χ1 − χ2‖2HS and‖A‖HS =

√

tr(A†A). For a multi-qubit
study of non-unital errors, a more natural distance measure
is the diamond norm [25]. Here we minimize the Hilbert-
Schmidt distance over the parameter space of the model. We

want our model to be an upper bound to the error induced
on the system. Therefore, we perform the distance mini-
mization with the constraint that for every initial pure state
its trace distance to the resulting state after the target trans-
formation is not greater than its trace distance to the result-
ing state after the model approximation,Dtr(ρ,Target(ρ)) ≤
Dtr(ρ,Model(ρ)). The trace distance is calculated using the
expressionDtr(ρ, σ) = 1

2
tr|ρ − σ|. We use the Hilbert-

Schmidt distance for the analysis here due to ease of com-
putation, but the method works for any distance measure or
constraint [26].

FIG. 1. (color online) Minimum Hilbert-Schmidt distance between
two approximate error models and the ADC as a function ofγ. For
γ > 0.5, in order to satisfy the trace distance constraint, the PC re-
sults in highly inaccurate approximations. The inset figureshows
the contraction of the Bloch sphere for the ADC, PC, and PMC for
γ = 0.25 (see text).

Figure 1 shows the results of the approximation of the ADC
with the PC and PMC error models. Numerical minimization
revealed that the channels with additional Clifford operators,
the CC and the CMC, did not improve the approximations
achieved by the PC and the PMC, respectively. As the non-
unital character of the ADC becomes more pronounced, the
unital error models result in a less accurate approximation.
Whenγ > 0.5 the trace distance constraint forces the unital
error models to generate an approximation that results in a re-
orientation of the mapped density matrices with respect to the
initial Bloch sphere. At this point, the unital approximations
become very inaccurate.

The addition of the measurement-induced translations con-
siderably improves the approximation. In this case, the PMC
and CMC yield valid approximations for the whole range of
γ. The PMC and CMC can match the ADC perfectly only
for γ = 0, which corresponds toI, andγ = 1, which corre-
sponds to the measurement-induced translationE0. Interest-
ingly, despite the large amount of operators in the CMC error
model, the best approximation only employsI andE0. This
allowed us to perform the minimization symbolically to ob-
tain a simple analytical expression for the distance,DHS

PMC =
1

2
(γ − 1)(γ + 2

√
1− γ − 2), and for the Kraus operators in



3

the approximation,
{√

1− γ I ,
√
γ |0〉〈0| , √γ |0〉〈1|

}

. In
the limit of smallγ the distance of the PC (red points) and
the PMC (green points) both scale quadratically withγ. Af-
ter Taylor-expanding the distance expression for the PMC and
fitting the PC distance numerically in terms ofγ, it was found
that the ratio of the quadratic coefficients was7.3. This num-
ber, which can be interpreted as the ratio of the two distances
in the limit of small damping,lim

γ→0

(DHS
PC/D

HS
PMC), shows the

improved performance of the PMC over the PC. To further
appreciate this improvement, notice that the distance between
the ADC and the Identity channel also scales quadratically
in the limit of smallγ. In this case,lim

γ→0

(DHS
I /DHS

PMC) = 5.

At small γ the distance between the ADC and the Identity is
of comparable magnitude to the distance between the ADC
and PC approximation. The fact that the quadratic coefficient
is smaller for the Identity might lead one to believe that, for
small γ, the Identity is a better approximation than the PC,
but, of course, the Identity is not a valid option as it does not
satisfy the trace distance constraint.

The results obtained by including or not including measure-
ment operators are best illustrated in the inset of Figure 1.
Here we examine, forγ = 0.25, the closest PC and PMC ap-
proximation under the constraint. The figure shows a cross
section of the Bloch sphere (black dotted) and its transforma-
tion by the ADC (black solid) and the closest approximate
PC (red) and PMC (green). The non-unital PMC preserves
the asymmetry of the transformation along the z-axis. Notice
that for these error channels the deformed Bloch sphere is still
symmetric with respect to rotations aroundz.

As mentioned before, the distance constraint guarantees
that for every initial pure state its distance to the resulting state
after the target transformation is not greater than its distance
to the resulting state after the model approximation. For both
the ADC and its approximations the largest discrepancy be-
tween input and output occurs when the initial state is|1〉.
The distance constraint has a nice geometric interpretation,
provided that the error is sufficiently low. As shown in the
inset of Figure 1, both the green and the red curves lieinside
the black solid curve and further away from the initial states
(black dotted curve). For the PMC approximation, this inter-
pretation is satisfied for any value ofγ. However, for the PC
approximation this interpretation fails forγ > 0.5 when, as
mentioned before, the best approximation results in a reorien-
tation of the mapped density matrices with respect to the inital
Bloch sphere. Furthermore, the PMC approximation satisfies
the distance constraint for any input state, whether pure or
mixed. It is impossible to satisfy this condition for the PC
or any unital approximation: simply consider the maximally
mixed state, which is mapped to itself by a unital channel,
but mapped to a different state by a non-unital one. In fact,
by this same argument, it is clear that the distance constraint
is impossible to satisfy for every initial state, pure or mixed,
when the approximation channel has a different fixed point
from the target transformation.

Figure 2 shows the results of the approximation of the
PolφC by the error models introduced earlier. Once again,

each point corresponds to a numerical minimization. Because
of the unital nature of this channel, it is the addition of the
Clifford operators rather than the measurement operators that
improve the approximation. For both the PC and the PMC,
the distance between PolφC and the best approximation was
found to beDHS

PC = 1

2
p2 sin2(2φ) for p ≤ 2/3. When the Clif-

ford operators are included in the approximate channel, the
distance is reduced toDHS

CC = 1

6
p2(sin(2φ) + cos(2φ) − 1)2

for p ≤ 6/7 and0 < φ < π/4. Not only does the distance
decrease with the addition of the Clifford operators; the pe-
riod of the distance function is reduced fromπ

2
to π

4
, because

between every two Pauli axes there is a Clifford axis. Notice
the great improvement in the CC approximation with respect
to the PC one. At the worst point of the CC (which in this
interval occurs atφ = π/8, 3π/8), the PC is 8.7 times worse.
For the PC(CC) approximation whenp > 2/3(6/7), the trace
distance constraint cannot be satisfied.

FIG. 2. (color online) Minimum Hilbert-Schmidt distance between
several approximate error models and the polarization along an axis
in the X-Y plane of the Bloch sphere as a function of the polarization
angle. Although not shown, the results for PMC and CMC are the
same as the results for PC and CC, respectively. The distances scale
quadratically with p, so the results are normalized by p2.

Despite the large number of operators in the CMC, the best
approximation uses a small number of them: I, Z, and the
two axes closest to the polarization axis. If we only employ
Pauli axes, the best approximation in Kraus representationis
{√

1− px − py − pz I ,
√
px X ,

√
py Y,

√
pz Z

}

, where
px = p cos2(φ), py = p sin2(φ), andpz = p cos(φ) sin(φ).
If we employ the whole Clifford group, the best ap-
proximation in the interval0 ≤ φ ≤ π/4 is given
by

{√
1− p1 − p2 − p3 I ,

√
p1 X ,

√
p2 HXY ,

√
p3Z

}

,
whereHXY = 1√

2
(X+Y ), p1 = 1

3
p[2 cos(2φ)−sin(2φ)+1],

p2 = 1

3
p[2 sin(2φ) − cos(2φ) + 1], and p3 =

√
2−1

6
p[cos(2φ) + sin(2φ)− 1].

The inset in Figure 2 illustrates the closest PC (red) and
CC (blue) approximations to the PolφC (black solid) with
p = 0.25 andφ = π/8. For the PC approximation, the great-
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est discrepancy between the input and output states occurs
whenρ = 1

2
[I+cos(3π

4
)X+sin (3π

4
)Y ]. For the CC approx-

imation, this occurs whenρ = 1

2
[I+cos (5π

8
)X+sin (5π

8
)Y ].

We have seen that the addition of the measurement-induced
translations and the Clifford operators improves the approx-
imation of two specific error channels. To determine how
the method works for general errors, we generated 1000 ran-
dom process matrices and computed the distance of the best
approximation that each one of the 4 approximate channels
could make. For the 1-qubit case, a process matrix is a4 × 4
Hermitian positive matrixM with 4 constraints in the normal-
ized Pauli basis:tr(M) = 2, Re(M01) = -Im(M23) , Re(M02)
= Im(M13) , and Re(M03) = -Im(M12). To generate this ma-
trix we first create a4×4 diagonal matrixD with real, positive
diagonal entries that add to 2. We then create a4 × 4 random
unitary matrixU and apply this unitary transformation toD to
obtainM = UDU †, which is positive with trace 2. We then
enforce the last 3 constraints mentioned earlier and keep the
random process if the matrix is still positive.

FIG. 3. (color online) Hilbert-Schmidt distance between the random
error channels and the best approximations attained with each model
as a function of the distance between the error channel and the error-
free channel (I ). The slope of a line joining the origin and a point
represents the distance of the best approximation to that error relative
to the magnitude of the error.

Figure 3 illustrates the distance between each random er-
ror channel and the best approximation as a function of the
distance between the error channel and the identity channel.
Notice that as the number of operators in the error models in-

creases, both the mean and the median distance between each
model and the random error decreases and the distributions
become more compact, as summarized in Table II. For this
data, the improvement of adding either Clifford gates, CC, or
measurement-induced translation operators, PMC, over PC is
comparable. The total set of operators leads to an order of
magnitude improvement over the PC. In the case of the CMC,

TABLE II. Summary of the approximations obtained with each of
the 4 error models.

Channel Distance meanDistance medianDistance variance

PC 1.7× 10
−2

1.4× 10
−2

1.4× 10
−4

PMC 3.4× 10
−3

2.4× 10
−3

1.1× 10
−5

CC 9.8× 10
−3

7.5× 10
−3

7.0× 10
−5

CMC 1.1× 10
−3

4.2× 10
−4

2.2× 10
−6

for the 1000 random channels tested, the number of non-zero
parameters used in the approximations varied from 4 to 29
with a median of 12. This is in contrast to the ADC and the
PolφC where only 1 and 3 parameters, respectively, are re-
quired due to the symmetry of the error channels.

We have presented an extension to the random Pauli error
model which is still compatible with efficient simulation using
the Gottesman-Knill theorem and leads to a computationally
tractable description of realistic error models like amplitude
damping. Our method can be extended to multi-qubit chan-
nels but the optimization becomes more difficult as the num-
ber of Clifford operators grows quickly withn. In many cases,
symmetries of the underlying error channels will minimize the
number of Clifford operators that must be considered. We also
note that conditional measurements followed by Clifford gates
can be used to generate a classical Toffoli (Z measurement
followed by conditional CNOT) and to mimic thermalization
processes for spin interactions (measurement of ZZ followed
by a conditional spin flip). We plan to examine the perfor-
mance of quantum error correcting codes under a wider range
of non-unital error channels. Based on the relative distance
of the PMC and PC approximations to the ADC for small er-
rors, we expect that the CMC approximation of a non-unital
channel will yield a nontrivial change in the code thresholdof
order unity relative to the PC approximation.
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