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The Gottesman-Knill theorem allows for the efficient sintigia of stabilizer-based quantum error-correction
circuits. Errors in these circuits are commonly modeledegothrizing channels by using Monte Carlo methods
to insert Pauli gates randomly throughout the circuit. 8ithh convenient, these channels are poor approxi-
mations of common, realistic channels like amplitude dammpiHere we analyze a larger set of efficiently
simulable error channels by allowing the random insertibany one-qubit gate or measurement that can be
efficiently simulated within the stabilizer formalism. Ouew error channels are shown to be a viable method
for accurately approximating realistic error channels.

A system interacting with its environment will eventu- In this paper, we go beyond simulating errors with the con-
ally reach thermal equilibrium. For finite temperatureg th ventional Pauli depolarizing channel (PC). Rather than re-
equilibrium state will be a distribution of energy eigensta  stricting to Pauli errors, we allow any subset of efficiently
weighted by Boltzmann factors. As a result the process ofimulable gate errors to occur. In particular, we look at-sub
thermalization is generally non-unital. A unital processpm  sets generated by including all Clifford group operatoid/an
a completely mixed state to a completely mixed state and i®auli measurements to the PC. We show that adding Clifford
compatible with thermalization only in the limit of infinite errors and/or measurement errors always results in more ac-
temperature or complete degeneracy of the energy eigeastat curate approximations and significant improvements fortmos

A quantum computer is a system that is often out of ther 1O channels.

mal equilibrium with its environment. Interactions witheth The stabilizer formalism allows for efficient classical sim
environment can lead to errors in the computation. Faultulation of quantum circuits when the initial state can be de-
tolerant quantum error correction is one method for mitigat ~ scribed by the measurement of a set of commuting Pauli oper-
these errors with the advantage that provable arbitraryp-qua ators and the gates in the circuit are Clifford operatorsctvh
tum computation is possible given constraints on the erromap Pauli operators to Pauli operators by conjugation [15].
rates and the error locality [1]. There are many possiblererr Single-qubit Clifford operators preserve the symmetryhef t
correcting codes ranging from concatenated [2-5] to subsyhiral octahedron [17]. This includes the identifyyotations
tem [6] to topological codes [7-10]. Itis typical to use sieru  about the vertices by (Pauli operators)y;; rotations about
tion to determine the error correcting properties [11-¥3].  the vertices byr/2 (S-like operators)S,,; rotations about the
though simulation of quantum systems is difficult, simaati midpoint of each edge by (Hadamard-like operators}f.;

of error correction can be done efficiently for stabilizedes  and rotations about each face centeeby3, R;.

v;/]herTf'Fhedprocess of error correction only includes gates in One can create an error process which is the weighted ran-

the Clifford group [14, 15]. dom application of these 24 unitary operators. We call this
A standard error model is a depolarizing channel where &lass of error models the Clifford Channel (CC) [18]. Most

Pauli operator, chosen from a probability distributionas  simulations of error correction circuits have used Payticde

plied at every possible error position [16]. The depolagzi larizing channel (PC), which is a subset of CC consisting of

channel efficiently simulates common laboratory processesnly the random application dfor Pauli operators.

such as dephasing. It also serves as a good approximation for

unital channels and is appropriate for qubits with degemera of non-unital operations involving Pauli measurements, and

energy eigenstates. In hature, it is also common to encount%ptionally, conditional application of Clifford gates lgason
interactions with the environment where the process of ther

malization leads to non-unital error channels. One exam Ithose measurements. In this paper, we limit ourselves to the
: S ’ PlEet of operators that corresponds to measuring a Pauli-opera

) : . . &b and then conditionally applying a Pauli matrix such #iat
enough time, all density matrices map to a single pure Staleyates map to the same state. We call these channels measure-
If an error channel is far from unital then simulating it with ment induced translations Fér each eigenstateof a Pauli

Pauli errors gives large approximation errors, thus making operator, we define the cﬁanr@l by two Kraus operators:

hard to extract useful results. Exo = [N\ andEy; = |A)(A\]. Notice that the effect of
these two operators is to discard the state and replacéi)by

We add these channels to our model with probability The

effect on a state, when represented on the Bloch sphere, is to
translate it toward)\). This allows us to generate non-unital

The stabilizer formalism also allows for efficient simudati
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error channels that can be efficiently simulated. The exddnd want our model to be an upper bound to the error induced

models including measurement are labeled PMC and CMCon the system. Therefore, we perform the distance mini-

Table | describes the content of each channel class in tefms mization with the constraint that for every initial puretsta

the underlying channel set and the number of free parameteri$s trace distance to the resulting state after the targeistr
formation is not greater than its trace distance to the tesul
ing state after the model approximatidnt”(p, Targetp)) <

TABLE . Four error models compatible with the stabilizerrfal- D' (p,Model(p)). The trace distance is calculated using the

sm. expressionD'" (p, ) = itr|p — o|. We use the Hilbert-
Schmidt distance for the analysis here due to ease of com-
Channel Cla# Channel Set |Parameteds putation, but the method works for any distance measure or
PC {I,0i} 3 constraint [26].
PMC {I,0:,E\} 9 o1
cc  |[{1,04 8., He, Ry} 23 ewre N
cMC ({1,041, S0, He, Ry, 60 29 PMC 10
0.08} 1
In nature, there are many error channels that cannot be ex- /
actly represented in the stabilizer formalism. We examines 0.06} 1‘ 05 TG
two channels: the amplitude damping channel (ADC), anc}g \
dephasing about an arbitrary axis in the x-y plane (Epl < 0,04k £ \ 05 |
The ADC, represented in Equation 1, is the prototypicalnon- | & | e
unital error channel [19]. It describes the energy disgipat B

of a two-level quantum system. However small, it is present 0.02}
in any non-degenerate physical system.

Ea0 = 10)(0] + vT—=7[1)(1] 1) 0 0.2 04 0.6 0.8 1

ADC =&, = {EAl — A0 Damping strength, y

. . ) FIG. 1. (color online) Minimum Hilbert-Schmidt distancetlveen
The dimensionless parameter which can take any real g approximate error models and the ADC as a function.oFor
value between 0 and 1 can be related to the total energy lost tp > 0.5, in order to satisfy the trace distance constraint, Bed?

the environment. Numerous codes have have been developsdits in highly inaccurate approximations. The inset figsitews
specifically to combat ADC, but studying the effects of this the contraction of the Bloch sphere for the ADC, PC, and PMC fo
error channel on a circuit has yielded only a handful of tssul v = 0.25 (see text).

[20-23]. All of the results assumeto be small in order to

expand the Kraus operators in a Taylor series expansiog usin Figure 1 shows the results of the approximation of the ADC
the Pauli operator basis. with the PC and PMC error models. Numerical minimization

: I : led that the channels with additional Clifford opersit
Unlike the ADC, the PgJC, which is represented in Equa- revea . , L
tion 2, is unital. Yet unless the angleis a half-integer multi- the CC and the CMC, did not improve the approximations

ple of 7, the depolarization occurs along a non-Pauli axis, anci"c.h'eved by the PC and the PMC, respectively. As the non-
the quality of the PC approximation will vary with unital character of the ADC becomes more pronounced, the

unital error models result in a less accurate approximation

When~y > 0.5 the trace distance constraint forces the unital

error models to generate an approximation that resultsén a r

Epy1 = /Py [cos(¢) X + sin(¢) Y] orientation of the mapped density matrices with respediego t
(2) initial Bloch sphere. At this point, the unital approxinatis

Here the parametef represents the angle of the polarization become very inaccurate.

axis with respect to the X axis anpg the probability of error.

Emy(): 1_p¢I

Pol,C = &,y {

The addition of the measurement-induced translations con-
To study how closely our error models approximate targesiderably improves the approximation. In this case, the PMC
error channels, we compute the distance between the processd CMC yield valid approximations for the whole range of
matrix of our error model and the process matrix of the tar-y, The PMC and CMC can match the ADC perfectly only
get error. As a distance measure on a single qubit, we emplayr v = 0, which corresponds té, andy = 1, which corre-
the normalized Hilbert-Schmidt distance between the @®ce sponds to the measurement-induced translafjoninterest-
matrices associated with each channel [281'°(x1,x2) =  ingly, despite the large amount of operators in the CMC error
$llx1 — xzllis and||Allus = \/tr(ATA). For a multi-qubit model, the best approximation only emplaysnd&,. This
study of non-unital errors, a more natural distance measurallowed us to perform the minimization symbolically to ob-
is the diamond norm [25]. Here we minimize the Hilbert- tain a simple analytical expression for the distanogy. =
Schmidt distance over the parameter space of the model. \/\@(7 — 1)(y + 2/T — v — 2), and for the Kraus operators in
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the approximation{/T—~1, \/7(0){(0, \/7|0)(1|}. In  each point corresponds to a numerical minimization. Bezaus
the limit of small~ the distance of the PC (red points) and of the unital nature of this channel, it is the addition of the
the PMC (green points) both scale quadratically withAf- Clifford operators rather than the measurement operdiats t
ter Taylor-expanding the distance expression for the PMLC animprove the approximation. For both the PC and the PMC,
fitting the PC distance numerically in termsfit was found  the distance between R@ and the best approximation was
that the ratio of the quadratic coefficients wia8. This num-  found to beDES = 1p? sin®(2¢) for p < 2/3. When the Clif-
ber, which can be interpreted as the ratio of the two distanceford operators are included in the approximate channel, the
in the limit of small damping lim (DE2/Dpyc), shows the  distance is reduced tBES = 1p?(sin(2¢) + cos(24) — 1)?

y—0

improved performance of the PMC over the PC. To furthef® » < 6/7and0 < ¢ < m/4. Not only does the distance
appreciate this improvement, notice that the distance dew decrease with the addition of the Clifford operators; the pe

the ADC and the Identity channel also scales quadraticalljied of the distance function is reduced frdjito 7, because
in the limit of smally. In this caselim (DFS/DHS ) = 5 etween every two Pauli axes there is a Clifford axis. Notice
’v—>0 '

) ~_ the great improvement in the CC approximation with respect
At smally the distance between the ADC and the Identity ists the PC one. At the worst point of the CC (which in this
of comparable magnitude to the distance between the ADGnterval occurs ap = /8, 37/8), the PC is 8.7 times worse.

and PC approximation. The fact that the quadratic coefficienzor the PC(CC) approximation whern> 2/3(6/7), the trace
is smaller for the Identity might lead one to believe that, fo distance constraint cannot be satisfied.

small v, the Identity is a better approximation than the PC,
but, of course, the Identity is not a valid option as itdoesno 0.5
satisfy the trace distance constraint.

The results obtained by including or notincluding measure- (4
ment operators are best illustrated in the inset of Figure 1.
Here we examine, foy = 0.25, the closest PC and PMC ap- =
proximation under the constraint. The figure shows a cross- 0.3
section of the Bloch sphere (black dotted) and its transfierm
tion by the ADC (black solid) and the closest approximate
PC (red) and PMC (green). The non-unital PMC preserve§ 0.2
the asymmetry of the transformation along the z-axis. Notic
that for these error channels the deformed Bloch spherillis st 01k
symmetric with respect to rotations around

anc

As mentioned before, the distance constraint guarantees
that for every initial pure state its distance to the reaglttate 0
after the target transformation is not greater than itsadist
to the resulting state after the model approximation. Fahn bo
the ADC and its approximations the largest discrepancy be-

. d h he initial 1 FIG. 2. (color online) Minimum Hilbert-Schmidt distancetlveen
tween input and output occurs when the initial statéljs several approximate error models and the polarizationgadomaxis

The distance constraint has a nice geometric interpretatio , he x-y plane of the Bloch sphere as a function of the pation
provided that the error is sufficiently low. As shown in the angle. Although not shown, the results for PMC and CMC are the
inset of Figure 1, both the green and the red curvesligle  same as the results for PC and CC, respectively. The distacete
the black solid curve and further away from the initial state quadratically with p, so the results are normalized by p

(black dotted curve). For the PMC approximation, this inter
pretation is satisfied for any value of However, for the PC
approximation this interpretation fails fer > 0.5 when, as
mentioned before, the best approximation results in ageeri

¢ / radians

Despite the large number of operators in the CMC, the best
approximation uses a small number of them: [, Z, and the

tation of the mapped density matrices with respect to thaelini two axes closest to the pole_lrlza_tlon_ axis. If we only e'T”P'OY

Bloch sphere. Furthermore, the PMC approximation satisfiepau“ axes, the best approximation in Kraus representéion
'SP - o P z‘/l— —py—p. 1 X Y, Z}, where

the distance constraint for any input state, whether pure o P 5 Py =P=1, \/l)_; s Py Y P22, .

mixed. It is impossible to satisfy this condition for the PC Px = Pc0s*(#), py = psin“(¢), andp. = pcos(¢) sin(¢).

or any unital approximation: simply consider the maximally If we employ the whole Clifford group, the best ap-

mixed state, which is mapped to itself by a unital channelProximation in the intervald < ¢ < /4 is given

but mapped to a different state by a non-unital one. In fact; YivI=pr—p2—p3l, 1 X, D2 Hxy, D32},

by this same argument, it is clear that the distance constrai WhereH xy = %(X+Y)'p1 = 3p[2 cos(2¢) —sin(2¢)+1],

is impossible to satisfy for every initial state, pure or gix p, = %p[g sin(2¢) — cos(2¢) + 1], and p3 =
when the approximation channel has a different fixed point,/z—1 :

. Yo 2 2¢) —1].
from the target transformation. 5 Pleos(20) +sin(29) — 1]

The inset in Figure 2 illustrates the closest PC (red) and
C (blue) approximations to the R@ (black solid) with
p = 0.25 and¢ = /8. For the PC approximation, the great-

Figure 2 shows the results of the approximation of theC
Pol,C by the error models introduced earlier. Once again
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est discrepancy between the input and output states occucseases, both the mean and the median distance between each

whenp = 1[I+cos(2%) X +sin (2T) Y]. Forthe CC approx- model and the random error decreases and the distributions

imation, this occurs whep = %[I—i—cos (%’r) X +sin (%ﬂ) Y]. become more compact, as symmgrized i_n Table Il. For this

h that the additi f the measurement-induc data, the improvement of adding either Clifford gates, QC, o

tra\r/1vselat?<;/r$sszi§3 thz Clﬁ'fsr d Iolggrgtors imprO\ljes the alpp:Jo easurement-induced translation operators, PMC, ovesPC i
comparable. The total set of operators leads to an order of

imation of two specific error channels. To determine howmagnitude improvement over the PC. In the case of the CMC,
the method works for general errors, we generated 1000 ran-

dom process matrices and computed the distance of the beBBLE Il. Summary of the approximations obtained with eac¢h o
approximation that each one of the 4 approximate channelée 4 error models.

could make. For the 1-qubit case, a process matrixdisat
Hermitian positive matrix\/ with 4 constraints in the normal-

|Channe'| Distance meabistance mediabistance variano|e

ized Pauli basistr(M) =2, Re(My;) = -Im(Ma3) , Re(Moz) PC 1.7 x 1072 1.4 x 1072 1.4x107*
= Im(Mi3) , and ReMos) = -Im(M2). To generate this ma- PMC || 34x10° | 24x10°? 11%10°°
trix we first create d x 4 diagonal matrixD with real, positive cC 98 x 103 75 % 103 70x10-°
diagonal entries that add to 2. We then createxa4 random ove T 11 x10-2 19 % 102 9.9 % 10-°

unitary matrixCU and apply this unitary transformation ioto
obtainM = UDUT, which is positive with trace 2. We then
enforce the last 3 constraints mentioned earlier and kezp th
random process if the matrix is still positive. for the 1000 random channels tested, the number of non-zero

parameters used in the approximations varied from 4 to 29
with a median of 12. This is in contrast to the ADC and the

0.05 ‘ ;
. FPC PMC Pol,C where only 1 and 3 parameters, respectively, are re-
0.04 . 1r 1 quired due to the symmetry of the error channels.
0.03F . ° 1k , We have presented an extension to the random Pauli error
T model which is still compatible with efficient simulationiog
0.02 - 1 the Gottesman-Knill theorem and leads to a computationally

tractable description of realistic error models like arale

damping. Our method can be extended to multi-qubit chan-
‘ nels but the optimization becomes more difficult as the num-

CMC ber of Clifford operators grows quickly with. In many cases,

0.01F°

HS Distance (Error, Approximation)

0.04F . 1t ] symmetries of the underlying error channels will minimitze t
number of Clifford operators that must be considered. We als

0.03 1r 1 note that conditional measurements followed by Cliffortega

O can be used to generate a classical Toffglifieasurement
B I SO il T followed by conditional CNOT) and to mimic thermalization
0.01 1 ; fe T . 1L | processes for spin interactions (measurement of ZZ folibbwe

by a conditional spin flip). We plan to examine the perfor-
mance of quantum error correcting codes under a wider range
of non-unital error channels. Based on the relative digtanc
of the PMC and PC approximations to the ADC for small er-
rors, we expect that the CMC approximation of a non-unital
channel will yield a nontrivial change in the code threshafid
order unity relative to the PC approximation.
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2VERNIENG:
0.05 0.1

0.15 0.2 0.05 0.1 0.15 0.2 0.25
HS Distance (Error, I)

FIG. 3. (color online) Hilbert-Schmidt distance betweea tandom
error channels and the best approximations attained with eedel
as a function of the distance between the error channel anertbr-
free channel (). The slope of a line joining the origin and a point
represents the distance of the best approximation to tratredative
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