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The need to perform quantum state tomography on ever larger systems has spurred a search for
methods that yield good estimates from incomplete data. We study the performance of compressed
sensing (CS) and least squares (LS) estimators in a fast protocol based on continuous measurement
on an ensemble of cesium atomic spins. Both efficiently reconstruct nearly pure states in the 16-
dimensional ground manifold, reaching average fidelities F̄CS = 0.92 and F̄LS = 0.88 using similar
amounts of incomplete data. Surprisingly, the main advantage of CS in our protocol is an increased
robustness to experimental imperfections.
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Recovering a full description of a complex system from
limited information is a central problem in science and
engineering. In physics one often seeks to estimate an
unknown quantum state based on measurement data [1],
generally a formidable challenge for large systems given
that O(d2) real parameters are needed to describe arbi-
trary states in a d-dimensional Hilbert space. In quan-
tum information science, however, the states of interest
are nearly pure and can be described byO(d) parameters.
Algorithms that make use of this prior information to ob-
tain good estimates from a reduced number of measure-
ments fall under the general heading of compressed sens-
ing [2], a family of techniques used in signal processing
tasks that range from movie recommendation to earth-
quake analysis. Gross et al. [3, 4] have developed one
such algorithm that gives good estimates of nearly pure
quantum states in a d-dimensional Hilbert space from the
expectation values of O(d logd) orthogonal observables,
a substantial saving when d is large. This algorithm was
recently benchmarked against a standard maximum like-
lihood estimator in an experiment with photonic qubits
and the two were found to yield similar results [5]. Gen-
eralization to process tomography has led to similar im-
provements when the process is close to unitary [6].

In this work we study the laboratory performance of
quantum state reconstruction based on compressed sens-
ing (CS) and least-squares [7] (LS) estimators in the con-
text of continuous measurement. Our physical testbed
consists of the 16-dimensional hyperfine manifold of mag-
netic sublevels in the electronic ground state of atomic
cesium. The data required for quantum tomography is
gathered by performing a weak (nonprojective) contin-
uous measurement on an ensemble of atoms while dy-
namically evolving their state with known driving fields
[8–11]. This approach differs substantially from conven-
tional quantum tomography in that the measurement
record contains information about the expectation val-
ues of a continuum of nonorthogonal observables instead

FIG. 1. (Color online) Schematic of the experiment. An en-
semble of identically prepared cesium atoms is probed with
an optical beam and polarimeter to obtain a continuous mea-
surement of the spin observable fz in the f = 3 hyperfine
state. The atoms sit at the center of a plexiglass cube that
supports coil pairs used to apply bias and rf magnetic fields.
The upper corner is cut-away in the illustration to show the
atom cloud and vacuum cell. A horn antenna radiates the mi-
crowave field that is also required for full dynamical control.

of a discrete orthogonal set. We find that the CS and
LS estimators both achieve high fidelity reconstruction
of nearly pure states from similar amounts of incomplete
and noisy data, but CS appears to be significantly more
robust against imperfections in the experimental imple-
mentation. From a practical perspective our approach
offers the advantage of very fast data collection, as the
combination of continuous joint measurement and sta-
tistical averaging over many atoms allows us to obtain
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an informationally complete measurement record from a
single ensemble containing many copies of the quantum
state. This makes it feasible to measure and compare
the fidelity of the CS and LS algorithms across a large
sample of test states.

We begin our experiment (Fig. 1) with an ensem-
ble of ∼106 cesium atoms captured and cooled in a
magneto-optic trap and optical molasses, released into
free fall, and optically pumped into a pure hyperfine state
|f = 4,mf = 4〉. Dynamical evolution of the single-atom
quantum state is driven with a combination of four mag-
netic fields: a static bias field producing a Zeeman split-
ting of 1 MHz, two orthogonal rf fields oscillating at 1
MHz that drives Larmor precession independently in the
f = 3 and f = 4 hyperfine manifolds, and a µw field
resonant with the |f = 3,mf = 3〉 ↔ |f = 4,mf = 4〉
transition at ∼ 9.2 GHz [12]. Background magnetic fields
are suppressed to less than ∼ 60 µG, corresponding to
an uncertainty in the Zeeman splitting of ∼ 20 Hz [13].
Arbitrary pure test states can be prepared with fidelities
F ≥ 0.99, by evolving the initial state using rf and µw
fields of fixed amplitude and frequency, and with com-
puter optimized modulation of the phases [14]. Dur-
ing tomography the atoms are similarly driven with rf
and µw fields of fixed amplitude and frequency, and with
phases that are modulated in piecewise steps of 15µs and
10µs respectively. These phases are chosen at random to
generate a set of three phase modulation waveforms; this
one set is subsequently used in every trial of the experi-
ment.

Our continuous measurement is performed with a
probe beam tuned 730 MHz below the 6S1/2(f = 3) ↔
6P1/2(f = 4) transition of the D1 line where the light
shift has minimal effect on the dynamics in the hyper-
fine ground manifold. Rotation of the probe polarization
provides a measurement of the collective spin projection

of the atoms, Fz =
∑
i f

(i)
z , where z is the direction of

probe propagation and fz is a single-atom operator asso-
ciated with the angular momentum in the f = 3 hyper-
fine state. The atom-probe coupling is sufficiently weak
that the entangling effect of measurement backaction is
negligible, and the ensemble is well approximated by a
product state at all times. In this situation the measure-
ment record is of the form M(t) = K〈fz(t)〉 + σW (t),
were K is proportional to the optical depth of the en-
semble, and W (t) is Gaussian white noise with variance
σ2 representing probe shot noise [9]. In practice, the con-
tribution from probe shot noise is negligible compared to
systematic errors in the expectation value 〈fz(t)〉 caused
by imperfections in the dynamics.

In a given trial of the experiment, our objective is to
find an estimate ρ̄ of the initial state ρ0 based on the
experimentally observed M(t) and the known dynamics.
Working in the Heisenberg picture, we do this by dis-
cretizing the measurement record and associated time-
dependent observable into time series, Mi = M(ti) and

Oi = O(ti), where O0 = fz. We then estimate ρ̄ using
two algorithms:

Least Squares (LS) (1)

ρ̄ = arg minρ
∑
i

[Mi −KTr(ρOi)]2

subject to Tr(ρ) = 1 , ρ† = ρ , ρ ≥ 0

Compressed Sensing (CS) (2)

ρ̄ = arg minρTr(ρ)

subject to
∑
i

[Mi −KTr(ρOi)]2 ≤ ε , ρ† = ρ , ρ ≥ 0

Renormalize so Tr(ρ̄) = 1

In the CS algorithm, minimizing Tr(ρ) is a known heuris-
tic for minimizing the rank (maximizing the purity) of ρ
[15, 16]. The constant ε depends on measurement un-
certainty and is chosen empirically as discussed below.
In both cases ρ̄ must be normalized and physical, i.e.,
Hermitian with positive eigenvalues.

To solve these optimization problems, the unknown
state of the system is parametrized by the set of d2 real

numbers {rα}, such that ρ =
∑d2−1
α=0 rαEα, where {Eα}

is an orthonormal basis of Hermitian, traceless operators,
and E0 = I/

√
d. With this parametrization the distance

squared between observed and predicted measurements
can be expressed in terms of the unknown parameters

{rα} as ∆ =
∑
i[Mi−K

∑d2−1
α=0 rαTr(OiEα)]2. In CS we

minimize Tr(ρ) = r0
√
d subject to ∆ ≤ ε, while in LS we

minimize ∆ directly. Both algorithms present standard
convex problems [17], which we solve in MATLAB using
a freely available package [18].

From an experimental perspective, the main challenge
is to generate a set of observables {Oi} that are known
with sufficient accuracy. Under ideal conditions (no deco-
herence or experimental imperfections), theoretical sim-
ulation shows that sets {Oi} generated by different ran-
dom dynamics approach informational completeness in
roughly equal time. For our parameters (rf and µw am-
plitude and frequency) and phase modulation waveforms,
this takes a few ms. Once a set of parameters and wave-
forms have been chosen, careful modeling of the experi-
ment is required to determine the observables that are
actually measured in a particular run. This involves
independent determination of a number of experimen-
tal variables, and the numerical integration of a master
equation that accounts for decoherence and inhomoge-
neous driving fields (see [8] for details on modeling and
simulation). Figure 2 shows the observed and predicted
measurement records for two test states, and illustrates
the basic traits required for state estimation: the ob-
served and predicted measurement records are in excel-
lent agreement, and the measurement records from dif-
ferent states are distinct. Fundamentally, this is what
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FIG. 2. (Color online) (a) Observed (black dotted line) and predicted (red solid line) measurement records for the test state
|ψ0〉 = (|3, 3〉+ |3,−3〉)/

√
2. (b) Density matrices for the test state in (a), and for the reconstructed states obtained via CS and

LS. (c) Observed (black dotted line) and predicted (red solid line) measurement records for a random test state. (d) Density
matrices for the test state in (c), and for the reconstructed states obtained via CS and LS. All density maurice are shown in
the basis of hyperfine magnetic sublevels, |f,mf 〉, arranged in order {|3,−3〉...|3, 3〉, |4,−4〉...|4, 4〉}. Red (dark) color indicates
populations and blue (light) color indicates coherences; for the coherences only the absolute values are shown

allows the measurement records to serve as identifiable
quantum “fingerprints”.

For a more comprehensive evaluation of the LS and
CS estimators, we look at their performance averaged
over a set of 49 test states chosen randomly according
to the Haar measure [19]. One of the test states is se-
lected at random and used to establish a threshold for
CS by chosing the ε that maximizes the fidelity of the
state estimate for a measurement record of given length.
We find empirically that the best choice of ε increases lin-
early with the length of the measurement record, which
is expected because the distance measure ∆ grows in pro-
portion to the number of measurements included in the
summation. This calibration state is subsequently dis-
carded. The measurement records for the remaining test
states are analyzed using both CS and LS, and the re-
sulting estimates ρ̄ are compared to the known inputs
ρ0 = |ψ0〉〈ψ0|. We have found empirically that differ-
ent choices of calibration state do not lead to significant
changes in ε, or in the corresponding fidelities when the
remaining states are estimated. Figure 2b,d shows input
and reconstructed states for the measurement records in
Fig. 2a,c with fidelities FCS = 〈ψ0|ρ̄|ψ0〉 = 0.98(3) and
FLS = 0.97(3) for the first example, and FCS = 0.96(3)

and FLS = 0.90(3) for the second. Here and else-
where, numbers in parenthesis indicate the uncertainty
(one standard deviation) on the last digit. It is worth
noting that we generally achieve higher fidelity for states
that have support on only a few magnetic sublevels (e. g.,
the example in Fig. 2b), though the reasons for this are
not yet clear. Averaged over a sample of 48 Haar random
test states, we find F̄CS = 0.917(4) and F̄LS = 0.880(4).
The corresponding infidelities indicate that CS outper-
forms LS by 30% for this data set.

The performance of a state estimation algorithm is
measured not only by fidelity but also in terms of effi-
ciency, i.e., how much data is necessary to reconstruct
the quantum state. In conventional tomography the ef-
ficiency is quantified by the number of orthogonal ob-
servables and the number of measurements required per
observable. In contrast, our protocol measures a slightly
different observable every microsecond. In this situation
the set {Oi} spans the space of observables after a very
short time, but the degree of certainty with which we
have measured the corresponding expectation values in-
creases much more slowly. A reasonable way to quantify
efficiency is, therefore, to reconstruct the state based on
measurements at times t ≤ T , and observe how the fi-
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FIG. 3. (Color online) (a) Fidelity based on measurements at times t ≤ T only, as a function of T . Solid lines are the average
fidelity for a sample of 48 random test states reconstructed via CS (dark blue) or LS (light red), the dashed line is a fit to
the data for times T < 1 ms. Cross-hatched areas are ± one standard deviation for the fidelities of the test states; this is an
indication of the deviation from the average that typically occur in a single state reconstruction. (b) Same as (a), except that a
deliberate error was introduced in the theoretical model of the experiment. (c) Error penalty η(T ) = F̄a(T )− F̄b(T ) incurred
due to this error.

delity improves as T increases. Figure 3a shows our aver-
age fidelities F̄CS(T ) and F̄LS(T ), together with fits to an
exponential rise, F̄(T ) = (15/16)(1− exp[−T/τ ])+1/16,
for T < 1 ms. This data contains information about sev-
eral aspects of our protocol. First, for our parameters
the peak fidelities (quoted in the previous paragraph)
are reached at T ∼ 2 ms. Second, the CS and LS fi-
delities rise with similar time constants, τCS = 0.56(1)
ms and τLS = 0.57(2) ms. To put these values in per-
spective, it is instructive to compare to LS of a maxi-
mally mixed state. Applying our protocol to simulated
measurements [8], we see exponential rise in the average
fidelity for pure as well as maximally mixed states, but
with a time constant that is approximately four times
larger in the latter case. This indicates that both the CS
and LS algorithms make good pure-state estimates from
measurement records that contain much less information
than required to describe arbitrary mixed states. In the
case of LS we believe this happens due to the positivity
constraint ρ0 ≥ 0, which sharply limits the states con-
sistent with the measurement record in the vicinity of a
pure state [20, 21] - exactly the regime where CS is also
efficient.

The data in Fig. 3 also contains information about a
third aspect of CS and LS: robustness in the presence of
noise and imperfections. It is well known that experi-
mental imperfections can cause systematic errors in the
measurement settings and lead to poor quality tomogra-
phy as a result. Recent work has explored methods to
reject those data sets that are contaminated by errors
beyond quantum statistical uncertainty, using concepts
analogous to an “entanglement witness” [22] or other sta-

tistical fitness tests [23]. In our protocol, systematic er-
rors in the measurement settings appear when the actual
versus modeled dynamics lead to incorrect assumptions
about the measured {Oi}. Such incorrect modeling of
the true experimental conditions will results in fidelity
that decreases as a function of time as dynamical errors
are cumulative. LS is particularly vulnerable to system-
atic errors in the measurement settings {Oi} because it
minimizes the distance between observed and predicted
measurements, even when one or both cannot be trusted
beyond a certain level. By comparison, CS only requires
the distance to fall below some threshold ε, and can pro-
duce more reliable results by ignoring meaningless varia-
tions in either. This is supported by Fig. 3a, where the
CS and LS fidelities rise with similar time constants at
short times when the experiment is well modeled, peak
roughly simultaneously, and then plateau (CS) or decline
(LS) at later times.

The superior robustness of CS is even more pronounced
in poor quality data sets for which we achieve generally
poor state estimation, which typically occurs due to ac-
cidental miscalibration of one or more experimental vari-
ables. In practice it is difficult to generate poor qual-
ity data sets in a controlled manner, and it is better to
start from a high quality data set and deliberately intro-
duce a known error in the model. Figure 3b shows an
example in which we have left out an average that ac-
counts for spatial inhomogeneity of a parameter in the
experiment. Figure 3c shows the resulting error penalty
(increase in infidelity) when going from Fig. 3a to Fig.
3b, η(T ) = F̄a(T ) − F̄b(T ). In this example the error
penalty for CS is roughly a factor of 3 less than for LS
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at T ∼ 2 ms when peak fidelities are reached. Inaccurate
calibration of an inhomogeneity is one of the more likely
imperfections to occur in our experiment, but the trend
seen here occurs also when we introduce other types of
imperfections.

Our implementation of CS and LS in continuous-time
quantum tomography raises new questions about the rel-
ative performance of these algorithms in a realistic exper-
imental setting. We have seen that in our protocol, the
rate at which the fidelity of state estimation increases
is essentially the same for CS and LS, whereas the CS
estimator is more robust to experimental imperfections.
The role of positivity, the nature of experimental noise
and imperfections, and the overcompleteness of the mea-
surement settings [24] may all play important roles in
explaining these features and will be explored in future
research. Our continuous-time protocol also opens up
new directions for tomography in situations where the
state of the system is well known but the dynamics is
not. In that case the measurement record contains infor-
mation about the process, and could potentially be used
as the basis for new protocols aimed at fast Hamiltonian
tomography or other forms of parameter estimation [25–
28].
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