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Quantum interference effects on ground-state optomechanical cooling
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We propose a fast ground-state optomechanical cooling scheme by use of the two-mode optical cavity with
a quarter-wave plate put inside. Two cavity modes are orthogonally polarized and one cavity mode dissipates
to the external environment at the fast rate while the other dissipates at the slow rate. The quarter-wave plate
provides linear mixing interaction between these two cavity modes. The cooling process is dominated by scat-
tering process via the fast-decay channel, which is significantly enhanced as compared with that obtained in the
resolved-sideband optomechanical cooling scheme. Meanwhile, the heating process is significantly suppressed
by exploiting the destructive quantum interference between the two cavity modes with the help of quarter-wave
plate.

PACS numbers: 42.50.Wk, 03.65.Ta, 07.10.Cm

I. INTRODUCTION

Quantum optomechanical techniques provide a universal
tool to study macroscopic mechanical systems that operate in
quantum regime, with no significant thermal noise remaining.
Thus, it is essential to cool the systems down to the quantum
limit. Extraordinary efforts have been made to achieve the
ground-state cooling of optomechanical systems over the past
decade using radiation pressure force [1–3]. Also many appli-
cations of the optomechanical systems have been intensively
exploited, such as the enhancement of the sensitivity of dis-
placement measurements [4], the probe of the ultimate quan-
tum mechanical limits at the nanoscale [5] and high-fidelity
optomechanical quantum state transfer [6]. Among these op-
tomechanical cooling techniques, cavity optomechanics be-
comes a potential candidate in many applications. This is be-
cause for example optical resonantor or electromagnetic res-
onator such as a superconducting LC circuit, provides the pos-
sibility to realize the resonant interactions with a very large
enhancement of the interaction [7]. Recently, the cooling of
the mechanical resonator via the radiation pressure force has
been experimentally demonstrated in the resolved-sideband
regime [8, 9], where the system is implemented in the high-
finesse cavity, corresponding to decay rateκ lower than the vi-
brational motion of the cavity with frequencyν. For example,
the decay rate and vibration frequency areν/2π ∼ 70MHz
andκ/2π ∼ 5MHz respectively in the resolved-sideband op-
tomechanical cooling experiment [9], and the theoretical pre-
dicted cooling limit is〈n〉 ≈ κ2/16ω2

m with the cooling rate
proportional toκ.

The efficiency of the cooling dynamics is influenced be-
cause of the low cooling rate proportional to the small de-
cay rateκ in the resolved-sideband cooling scheme. Elsteet
al. [10] and Xuerebet al. [11] have respectively pointed out
that via the destructive interference of quantum noise, ground-
state cooling can be obtained outside the resolved-sideband
limit in the microwave and optical domain. Moreover, the
quantum interference due to mechanical effect can be utilized
to alter the properties of the optomechanical system, such as
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the pump-probe response [12, 13]. Because of the significance
of interference in quantum system, we propose the optome-
chanical cooling scheme by exploiting the interference effects
to improve the cooling efficiency in the different way. Our
scheme is based on interference effects between the cavity
fields, very similar to the electromagnetically induced trans-
parency (EIT) cooling of atoms [14].

We consider an optomechanical cooling system consisting
of a two-mode optical cavity with a quarter-wave plate put in-
side. The two-mode optical cavity is the significant apparatus
in many aspects such as the optomechanical cooling scheme
of levitated spheres with doubly resonant fields [15]. In our
system, two cavity modes are orthogonally polarized and one
dissipates to the external environment at the fast rate while
the other dissipates at the slow rate, and the quarter-wave
plate provides the linear mixing interaction between thesetwo
modes. We show that the cooling process is dominated by
the dissipation via fast-decay channel, which is significantly
enhanced as compared with that obtained in the resolved-
sideband optomechanical cooling scheme. At the same time,
by exploiting the complete destructive quantum interference
between the two cavity modes with the help of the quarter-
wave plate, heating process relevant to the fast-decay ratecan
be significantly suppressed. Further, the correction on heating
rate relevant to the slow-decay rate is also discussed. Finally,
the fast ground-state optomechanical cooling of the mechani-
cal oscillator is achieved. The paper is organized as follows.
In Sec. II, the system is introduced and the master equation
for the vibrational motion of mechanical oscillator is derived,
the quantum interference effects on the cooling dynamics are
discussed in detail in Sec. III and the conclusion is presented
in Sec. IV.

II. THE DESCRIPTION OF THE MODEL AND
DERIVATION OF THE MASTER EQUATION

We consider the optomechanical system consisting of a
two-mode optical cavity with a quarter-wave plate put inside,
as shown in Fig.1. The two-mode optical cavity comprises
of two fixed end mirrors and a harmonically bound end mir-
ror allowed to oscillate under the action of radiation pres-
sure induced by the two intracavity light fields. These two
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intracavity modes are orthogonally polarized, which are re-
spectively driven by two laser fields with the equal frequency
ωL = ωL1 = ωL2 and Rabi frequenciesΩj(j = 1, 2). The
plate provides the linear mixing interaction between the two
cavity modes. In the rotating frame at the laser frequencies
ωL, the Hamiltonian is given by (~ = 1)

H = νb†b+
∑

j
[−∆ja

†
jaj +

Ωj

2
(aj + a†j)]

+ i
g

2
(a†1a2 − a†2a1) + ν

∑

j
ηja

†
jaj(b + b†), (1)

whereaj andb are the annihilation operators of thej-th cav-
ity mode of frequencyωj and phonon mode of frequencyν
that describes the harmonic vibration of the oscillator,∆j =
ωLj − ωj is the detuning of the cavity mode from the laser
field andg is the coupling strength of the linear mixing in-
teraction between the two intracavity modes depending on
the rotated angle of the plate with respect to the crystal neu-
tral axes. The optomechanical couplings via radiation pres-
sure forces are characterized by the dimensionless parameters
ηj = (ωj/ν)(lν/Lj), with lν = 1/

√
2mν the zero point mo-

tion of the mechanical resonator mode,m its effective mass
andLj thej-th effective optical wave length [16, 17]. For the
typical value of optomechanical parameters realized in exper-
iment isη ∼ 10−4. The optomechanical cooling induced by
two linearly coupled cavity modes can also be realized in the
similar system “membrane in the middle” [18].
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FIG. 1. (Color online) Schematic diagram of the optomechanical
system comprising of a two-mode optical cavity and a quarter-wave
plate put inside. The cavity consists of two fixed end mirrorsand a
harmonically movable end mirror and is driven by two laser fields.
The inserted plate provides a linear mixing between the two orthog-
onally polarized intracavity fields.

The losses of optical cavity fields are described Liouvillian
operatorsLaj

ρ, which are given in the form

Laj
ρ =

κj

2
(2ajρa

†
j − a†jajρ− ρa†jaj), (2)

with κj the decay rate of thej-th cavity mode. With respect
to the intrinsic dissipation of the mechanical oscillator,due to
the high mechanical quality factorQm which can exceed104,
it is adequate to neglect the heating process caused by the dis-
sipation of the oscillator in the following under the relations
Qm/n̄i ≫ 1 and n̄iωm/Qm ≪ κ (n̄i is the initial phonon
occupancy) [9].

Obviously, the density operator obeys the master equation

ρ̇ = −i[H, ρ] + La1
ρ+ La2

ρ. (3)

However it is difficult to exactly solve the master equation
because of the existence of the nonlinear terms. Hence we
apply the linearization approach [19] by assuming that each
operator in the system can be written as the sum of its mean
value and a small fluctuation:aj → αj + aj , b → β + b, with
αj = 〈aj〉, β = 〈b〉 and the redefined fluctuation operators
aj andb in the right hand side. The c-number componentsαj

andβ can be obtained from the Eq.(3) as

α̇1 = (i∆1 −
κ1

2
)α1 − iη1να1(β + β∗) +

g

2
α2 − i

Ω1

2
,

α̇2 = (i∆2 −
κ2

2
)α2 − iη2να2(β + β∗)− g

2
α1 − i

Ω2

2
,

β̇ = −(iν + γ)β − iη1ν |α1|2 − iη2ν|α2|2, (4)

in which the decoupling approximation such as〈aj(b+b†)〉 =
αj(β + β∗) is applied, andγ = ωm/Qm is damping rate of
the phonon mode. We focus on the regimeηj |αj | ≪ 1 and
the steady-state solutions for the Eqs.(4) to the lowest order in
the small parametersηj andγ are obtained as

α1 = [(∆2 + i
κ2

2
)
Ω1

2
+ i

gΩ2

4
]/f(∆1,∆2),

α2 = [(∆1 + i
κ1

2
)
Ω2

2
− i

gΩ1

4
]/f(∆1,∆2),

f(∆1,∆2) = (∆1 + i
κ1

2
)(∆2 + i

κ2

2
)− g2

4
,

β = −
∑

j
ηj |αj |2 . (5)

The termβ represents the slightly displacement from the equi-
librium position of the movable mirror. In the shifted rep-
resentation we include the radiation pressure-induced optical
resonance shift into the redefined effective detuning∆′

j =

∆j +2η2j |αj |2ν. However in the limitηj |αj | ≪ 1, ∆′
j ≈ ∆j .

The form of Liouvillian operators remains invariant and the
Hamiltonian changes into the form

H = H0 + V,

H0 = νb†b−
∑

j
∆ja

†
jaj ,

V = i
g

2
(a†1a2 − a†2a1) + ν

∑

j
ηj(αja

†
j + α∗

jaj)(b+ b†).

(6)

Under the assumption that the cavity fields weakly couple to
the harmonic motion of the oscillator such thatηjαjν are
smaller thanκ1 or κ2, the cavity variables arrive the steady
state much fast and can be adiabatically eliminated. It is fea-
sible to apply the second-order perturbation method with re-
spect to the small optomechanical coupling rateηjαiν [20–
22], and finally the reduced master equation for phonon mode
obeys the equation in the rotating frame of the vibrational fre-
quencyν

ρ̇b =
1
2A(−ν)(2bρbb

† − b†bρb − ρbb
†b)

+ 1
2A(ν)(2b

†ρbb− bb†ρb − ρbbb
†), (7)
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whereρb is the reduced density operator of the phonon mode
andA(±ν) are heating and cooling parameters respectively,
which can be calculated by using the quantum regression the-
orem [23, 24] and obtained as

A(±ν) = ν2
∑

j
κj

∣

∣T κj ,∓
a1

+ T κj ,∓
a2

∣

∣

2
, (8)

with

T κ1,∓
a1

=
η1(∆2 ∓ ν − iκ2

2 )[(∆2 + iκ2

2 )Ω1

2 + i gΩ2

4 ]

f(∆1 ∓ ν,∆2 ∓ ν)f(∆1,∆2)
,

T κ1,∓
a2

=
η2

g

2 [
gΩ1

4 + i(∆1 + iκ1

2 )Ω2

2 ]

f(∆1 ∓ ν,∆2 ∓ ν)f(∆1,∆2)
,

T κ2,∓
a1

=
η1

g

2 [
gΩ2

4 − i(∆2 + iκ2

2 )Ω1

2 ]

f(∆1 ∓ ν,∆2 ∓ ν)f(∆1,∆2)
,

T κ2,∓
a2

=
η2(∆1 ∓ ν − iκ1

2 )[(∆1 + iκ1

2 )Ω2

2 − i gΩ1

4 ]

f(∆1 ∓ ν,∆2 ∓ ν)f(∆1,∆2)
. (9)

The termsκj

∣

∣

∣
T κj ,∓
a1

+ T κj,∓
a2

∣

∣

∣

2

indicate the scattering pro-

cesses of photons into the external modes of electromagneti-
cal field via the decay channel with rateκj . The amplitudes
T κj ,∓
a1

(T κj,∓
a2

) describe optomechanical couplings to the cav-
ity modea1 (a2), which dissipates from the decay channel
κ1 or κ2 with the help of the quarter-wave plate. The scat-
tering processes are depicted in Fig.2. Note that the term is
the coherent sum of two individual amplitudes and they are
able to interfere with each other. If we remove the quarter-
wave plate, the amplitudesT κ1,∓

a2
, T κ2,∓

a1
become zero since

these two scattering processes are accomplished assisted by
the plate, and then the heating and cooling parameters are
changed into the sum of two independent termsκ1|T κ1,∓

a1
|2

andκ2|T κ2,∓
a2

|2, each of which corresponds to that obtained in
the resolved-sideband optomechanical cooling scheme [16].
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FIG. 2. (Color online) Schematic illustration of the scattering pro-
cesses in the shifted representation for the perturbative optomechan-
ical coupling.

From the master equation in Eq.(7), we can obtain the
steady-state vibrational phonon numbernf and the cooling
rateW as

nf =
A(ν)

W
, W = A(−ν)−A(ν). (10)

It is obvious that the final phonon numbernf is proportional
to the heating parameterA(ν) and inversely proportional to

the cooling rateW . In order to obtain the efficient ground-
state cooling for the mechanical oscillator,A(ν) should be
suppressed whileW should be enhanced.

III. QUANTUM INTERFERENCE EFFECTS ON THE
COOLING DYNAMICS

In order to understand the quantum interference effects on
the cooling dynamics, we consider the case that the cavity
modea1 decays at the fast rate whilea2 decays at the slow
rate, i.e. in the regimeκ1 ≫ κ2. The regime is practical in
the setup of the doubly resonant optical cavity, for examplein
the resolved-sideband cooling scheme the optical cavity isde-
signed to have two optical resonances, where the cooling cav-
ity field has the damping rate about10MHz while the readout
cavity field has the decay rate as high as GHz [9, 25]. From
Eqs.(8)-(9), scattering processes are mainly accomplished via
the fast-decay channel, and we now study main part of the
heating and cooling parametersA(m)(±ν) by neglecting the
termκ2–namely,κ2 = 0 and arrive

A(m)(±ν) = ν2κ1

∣

∣T κ1,∓
a1

+ T κ1,∓
a2

∣

∣

2
(11)

proportional to fast-decay rateκ1. Thus, the heating process
is suppressed when

∣

∣T κ1,−
a1

+ T κ1,−
a2

∣

∣

2
= 0, and after some

calculations the parameters should satisfy the relations

ν = (∆2 +
η2
η1

∆1),

(
g

2
)2Ω1 −∆1∆2Ω1 −

κ1

2

g

2
Ω2 = 0. (12)

The cooling parameterA(m)(−ν) becomes

A(m)(−ν) = 4ν4η21κ1
(∆2Ω1/2)

2 + (gΩ2/4)
2

|f(∆1 + ν,∆2 + ν)f(∆1,∆2)|2
.

(13)

The fast-decay rate can reach about two orders of magnitude
larger than that in the resolved-sidebandcooling scheme, lead-
ing to the enhancement of the cooling rate. Efficient coolingis
achieved by maximizing the rateA(m)(−ν) together with the
ratioA(m)(−ν)/A(ν), since1/nf ≈ A(m)(−ν)/A(ν) due to
the small heating rateA(ν) under the conditions in Eq.(12).
By inspection of Eqs.(8), (9) and (13), we find out that

1/nf ∝

∣

∣

∣

∣

f(∆1 − ν,∆2 − ν)

f(∆1 + ν,∆2 + ν)

∣

∣

∣

∣

2

, (14)

with

|f(∆1 + ν,∆2 + ν)|2

= [(∆1 + ν)(∆2 + ν)− g2/4]2 +
κ2
1

4
(∆2 + ν)2

= (∆2 + ν)2
[

κ2
1/4 +

(

(∆1 + ν)− g2

4(∆2 + ν)

)2
]

. (15)

Thereby from Eq.(15) the condition

(∆1 + ν)(∆2 + ν)− g2/4 = 0 (16)
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can minimize|f(∆1+ν,∆2+ν)|2. The contributionf(∆1−
ν,∆2 − ν) is off-resonant, and therefore weakly dependent
on ∆j . Thus the condition in Eq.(16) minimizes the steady
phonon number and simultaneously maximizes the cooling
rate.

We can take the parameterη1 = η2 = η = 5×10−4, ∆1 =
∆2 = ν/2, κ1 = 8/3ν, κ2 = 0.1ν, g = 3ν, Ω2 =
Ω1 = Ω to satisfy the conditions of Eqs.(12) and (16). For
the laser driving strengthΩ, it is feasible to take the value
500ν because the corresponding effective coupling strengths
between the cavity fields and mechanical oscillator depend
on η1|α1| ≈ 0.09 andη2|α2| ≈ 0.03, which are well in the
regimeηj |αj | ≪ 1. As compared the coupling strength with
decay rateκ1, the perturbation approach is validated since the
cavity variables reach the steady state much fast and can be
adiabatically eliminated. With this group of parameters we
calculate the cooling rate0.0221ν.

The elimination of the main part of heating parameter
A(m)(ν) can be explained from the scattering processes
sketched in Fig.2 with the interaction described by the Hamil-
tonian in Eq.(6). By neglecting the heating process via
the slow-decay cavity modea2, the main heating process
is caused by the dissipation from the excitation state of
cavity field a1 |1a1

, 0a2
, n + 1〉, where n is the phonon

number. It is obvious that there exist two transition paths
|0a1, 0a2, n〉 → |1a1, 0a2, n + 1〉 and |0a1, 0a2, n〉 →
|0a1, 1a2, n + 1〉 → |1a1, 0a2, n + 1〉 to lead the excitation
from the state|0a1, 0a2, n〉 into the state|1a1

, 0a2
, n+1〉. The

transition amplitude can be concretely expressed by using the
resolvent of the Hamiltonian [26] and given by

Tfi = 〈ϕf |
(

V + V
1

Ei −H0
V
)

|ϕi〉, (17)

where the final state is|ϕf 〉 = |1a1, 0a2, n+1〉 and the initial
state is|ϕi〉 = |0a1, 0a2, n〉. It can be verified that when the
parameters satisfy the relations in Eqs.(12) the transition am-
plitudeTfi becomes zero, which means that complete destruc-
tive interference occurs between the two transition paths,lead-
ing to the elimination of the excitation in state|1a1

, 0a2
, n+1〉.

We now turn to the correction on the heating parameter
A(c)(ν) caused via the dissipation of slow-decay cavity mode
a2, which takes the form

A(c)(ν) ≃ ν2κ2

∣

∣T κ2,−
a1

+ T κ2,−
a2

∣

∣

2
. (18)

Under the conditions in Eq.(12),ηj |αj | ≪ 1 and with the
relationsη1 = η2 = η andΩ1 = Ω2 = Ω, the termA(c)(ν)
becomes

A(c)(ν) = κ2ν
2
(Ω

2
η
)2 1 + (2ν/κ1)

2

∆2
1[(g/2)

2 +∆2
2]
, (19)

proportional to the slow-decay rateκ2, thus the final phonon
number is of the order of magnitudeκ2/κ1, which is verified
by the numerical plot of the final phonon number as a function
of detuning∆ in Fig. 3, in which the phonon number takes
the minimum value0.0168 around the detuning∆ = 0.5ν.

If we remove the quarter-wave plate, the scheme is changed
into the cooling of mechanical oscillator via the dynamical

backaction induced by two independent cavity fields. How-
ever, due to the existence of fast-decay cavity fielda1, which
dominates the heating and cooling processes, effective op-
tomechanical cooling can not occur outside the resolved-
sideband region, i.e.κ1 > ν. Suppose that cooling dynamics
is induced by the slow-decay cavity modea2, which is well
within the resolved-sideband cooling regime. When the laser
is tuned to mechanical oscillator’s lower sideband, cooling oc-
curs [16]. The heating and cooling parametersA(s)(±ν) can
be calculated from Eqs. (8)-(9) by settingg, κ1 = 0, which is
obtained as

A(s)(±ν) =
κ2ν

2(Ω2η2/2)
2

(∆2
2 + κ2

2/4)[(∆2 ∓ ν)2 + κ2
2/4]

, (20)

proportional to the rateκ2. When the detuning∆2 is tuned
to the value−ν, resolved-sideband optomechanical cooling
would occur. However, in order to validate the perturbation
approach, i.e. fulfilling the conditionη2α2ν ≪ κ2 where
the cavity variables can be adiabatically eliminated, we should
weaken the laser-driving strengthΩ2 taken above because of
κ2 ≪ κ1, which will reduce the effective coupling strength
between the cavity field and mechanical oscillator. Thus the
cooling rate will further slow down. For example in exper-
imental realization the cooling rate takes the value around
0.0035ν [9]. Therefore, by exploiting the quantum inter-
ference effects between two linearly coupled optical cavity
modes with the help of a quarter-wave plate we can obtain the
fast ground-state optomechanical cooling. Compared with the
“membrane in the middle” system [18], where the heating and
cooling region can be significantly altered by the interference
between the two coupled cavity modes with equal decay rate,
we focus on the improvement of cooling dynamics based on
the respective fast and slow decay rates and the interference
effects.

0.46 0.48 0.5 0.52 0.54 0.56
0.016

0.017

0.018

0.019

0.02

0.021

∆

n
f

FIG. 3. (Color online) The numerical calculation of final phonon
numbernf as a function the detuning∆ in unit of ν with the pa-
rameters:η1 = η2 = η = 5 × 10

−4,∆1 = ∆2 = ν/2, κ1 =

8/3ν, κ2 = 0.1ν, g = 3ν,Ω2 = Ω1 = Ω = 500ν.

IV. CONCLUSION

In summary, we have presented a fast ground-state optome-
chanical cooling scheme by use of the two-mode optical cav-
ity with a quarter-wave plate put inside. The two cavity modes
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are orthogonally polarized and one mode dissipates at the fast
rate while the other dissipates at the slow rate. The quarter-
wave plate provides linear mixing interaction between these
two cavity modes. The cooling is dominated by scattering
process via the fast-decay channel, which is significantly en-
hanced. Simultaneously, the heating process is suppressedby
exploiting the complete destructive interference betweenthe
two optical modes with the help of the quarter-wave plate.

In addition, the correction on the heating rate relevant to the
slow-decay channel is also discussed.
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