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We propose a theoretical scheme to realize a sensitive amplification of quantum discord (QD) between two
atomic qubits via a cavity-Bose-Einstein condensate (BEC)system which was used to realize the Dicke quantum
phase transition (QPT) for the first time [Nature464, 1301 (2010)]. It is shown that influence of the cavity-BEC
system upon the two qubits is equivalent to a phase decoherence environment. It is found that QPT in the
cavity-BEC system is the physical mechanism of the sensitive QD amplification.
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Quantum discord (QD) [1, 2] is considered to be a more
general resource than quantum entanglement in quantum in-
formation processing [3–8]. As a physical quantity to charac-
terize and quantify quantum correlation in a bipartite system,
QD is different from quantum entanglement. For example,
QD is nonzero in some separable states; QD can be increased
by local operations [9–11] while quantum entanglement can-
not. So compared with quantum entanglement, QD can give
rise to novel unexpected phenomena. For instance, nonzero
QD in some separable states is responsible for the quantum
computational efficiency of deterministic quantum computa-
tion with one pure qubit [3, 4, 12] and also has been consid-
ered as a useful resource in quantum locking [5] and quantum
state discrimination [6, 7]. On the other hand, any realistic
quantum systems interact inevitably with their surrounding
environments, which introduce quantum noise into the sys-
tems. It is an interesting topic to explore how to amplify QD
by quantum noise induced by environments. Lo Franco and
coauthors [13, 14] pointed out revival of quantum correlations
without system-environment back-action and found alternate
time regions of constant discord and decreasing and increas-
ing discord in a non-dissipative environment. Authors of the
present paper found that QD will be amplified for two non-
interacting qubits immersed in a common phase decoherence
environment [15]. Especially, when the two qubits are iden-
tical, the phase decoherence can induce a stable amplification
of the initially-prepared QD for certainX-type states. In this
paper, we propose a scheme to realize the controllable QD am-
plification of two atomic qubits by making use of an artificial
phase decoherence environment consisting of a cavity-Bose-
Einstein condensate (BEC) system.

The Dicke model [16, 17] describes a large number of two-
level atoms interacting with a single cavity field mode. When
atom-field coupling is increasing, the model predicts a quan-
tum phase transition (QPT) [18] from the normal phase, where
the atoms are in the ground state associated with vacuum field
state, to the super-radiant phase, where both the atoms and
field have collective excitations. Recently, a cavity-BEC sys-
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tem has been employed to realize the Dicke QPT experimen-
tally and to explore symmetry breaking at the Dicke QPT
[19]. Meanwhile, the QPT system usually displays ultra-
sensitivity in its dynamical evolution near the quantum critical
point [20–24], which has been confirmed by an NMR exper-
iment [25]. The purpose of this paper is to show that the QD
of two initially correlated atomic qubits can be sensitively am-
plified via the cavity-BEC system near the critical point. We
show that the cavity-BEC system can form an artificial phase
decoherence environment for the two atomic qubits, and the
QD of the two atomic qubits can be amplified by adjusting the
QPT parameter of the cavity-BEC system.

The physical system under our consideration is shown in
Fig. 1. A BEC withN identical two-level87Rb atoms is con-
fined in an ultrahigh-finesse optical cavity. The atoms inter-
act with a single cavity mode of frequencyωc and a trans-
verse pump field of frequencyωp. We consider a situation
where the frequenciesωc andωp are detuned far from the
atomic resonance frequencyωR of each atom in the BEC so
that the detunings far exceed the rate of atomic spontaneous
emission, the atoms only scatter photons either along or trans-
verse to the cavity axis. Before the pump field turns on, atoms
in the BEC are supposed to be in the zero-momentum state
|px, pz〉 = |0, 0〉. Once the pump field is turned on, some
atoms are excited into momentum state|px, pz〉 = |k, k〉 ≡
∑

υ1,υ2=±1 |υ1k, υ2k〉 due to the conservation of momentum,
wherek is the wave-vector, which is approximately equal to
that of the cavity and pump fields. We take~ = 1 through-
out the paper. Two momentum states|0, 0〉 and |k, k〉 are re-
garded as two-level states of the87Rb atom with energy sep-
arationω0 = k2/m with m being the mass of87Rb atom. De-

fine the collective operatorŝJz ≡
∑

i |k, k〉ii〈k, k|, Ĵ+ = Ĵ†− ≡
∑

i |k, k〉ii〈0, 0|with the indexi labeling the atoms, then cavity-
BEC can be described by the Dicke model [19, 26]

Ĥ1 = ωâ†â + ω0 Ĵz +
λ
√

N

(

â + â†
)

(Ĵ+ + Ĵ−), (1)

whereâ†(â) is the creation (annihilation) operator of the cavity
field. The effective frequencyω = −∆c + U0N/2 includes the
detuning∆c = ωp −ωc between the pump field and the cavity
field and the frequency shiftU0N/2 induced by the scattering
of the BEC. HereU0 = g2

0/∆ is the frequency shift induced by
a single atom with the maximal atom-cavity coupling strength
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FIG. 1: (Color online) Schematic of the physical system under con-
sideration: Two atomic qubitsA and B with energy separationωA

andωB are injected into the cavity in which an atomic BEC couples
to a single-mode cavity field and a transverse pump field.

g0 and detuning∆ = ωp − ωR, andλ =
√

Ng0Ωp/2∆ is the
coupling strength between the BEC and the cavity field with
Ωp denoting the maximal pump Rabi frequency which can be
adjusted by the pump-field power.

We consider such a situation that the two atomic qubits
pass through the cavity at the same time and interact with the
single-mode cavity field. The Hamiltonian of the two atoms
and the single-mode cavity field reads as

Ĥ2 = ωâ†â +
ωA

2
σ̂A

z +
ωB

2
σ̂B

z +
(

gAâ†σ̂A
− + gBâ†σ̂B

− + H.c.
)

,

(2)
where σ̂A(B)

z = |e〉A(B) 〈e| − |g〉A(B) 〈g| is Pauli operator
with |e〉A(B) and |g〉A(B) being the excited and ground states,

σ
A(B)
+ (σA(B)

− ) the raising operator (lowering operator),gA(B) the
coupling strength between the atomic qubit A(B) and the cav-
ity field, andωA(B) the energy separation. Here we have made
a rotating wave approximation. We consider the atom-cavity
dispersive regime in which the atomic qubit is far off-resonant
with the cavity field such that the detuning∆A(B) = ωA(B) − ω
is much larger than the corresponding coupling strengthgA(B).
In this regime, one can use the Fröhlich-Nakajima transfor-
mation [27, 28] to make the Hamiltonian in Eq. (2) become
the following expression

Ĥ
′

2 =
1
2
ω
′

Aσ̂
A
z +

1
2
ω
′

Bσ̂
B
z +
(

ω + δAσ̂
A
z + δBσ̂

B
z

)

â†â, (3)

whereω
′

A(B) = ωA(B) + δA(B) with δA(B) = g2
A(B)/∆A(B) be-

ing the frequency shift induced by the scattering between
cavity field and atomic qubit A(B). The Hamiltonian of Eq.
(3) corresponds to the so-called dispersive regime in cav-
ity QED. Based on analogous atom-cavity dispersive interac-
tions, there have been proposed both the generation of gener-
alized binomial states of radiation and the realization of logi-
cal gates [29]. Then the effective Hamiltonian describing the
two atomic qubits plus the cavity-BEC system is

Ĥe f f =
1
2
ω
′

Aσ̂
A
z +

1
2
ω
′

Bσ̂
B
z +
(

δAσ̂
A
z + δBσ̂

B
z

)

â†â + Ĥ1. (4)

Now we consider dynamics of the two atomic qubits
passing through the cavity-BEC system. We assume the
two atomic qubits are initially prepared in a class of states
with maximally mixed marginals ( ˆρA(B) = ÎA(B)/2) [30] de-
scribed by the three-parameterX-type density matrix ˆρs(0) =
1/4(ÎAB +

∑3
i=1 ciσ̂

A
i ⊗ σ̂B

i ), whereÎAB is the identity opera-
tor in the Hilbert space of the two atomic qubits,i = 1, 2, 3
meanx, y, z correspondingly, andci (0 ≤ |ci| ≤ 1) are real
numbers satisfying the unit trace and positivity conditions of
the density operator ˆρs(0). The cavity-BEC system is initially
in the ground state|G〉 of the HamiltonianĤ1. The dynamic
evolution of the total system is controlled by the effective
Hamiltonian in Eq. (4). The density operator of the total
system at timet is written asρT (t) = U(ρ̂s(0) ⊗ |G〉〈G|)U†
with U = e−iĤe f f t. After tracing the degrees of freedom of the
cavity-BEC system, we obtain the reduced density matrix of
the two atomic qubits

ρ̂s(t) =
1
4





























1+ c3 0 0 µ(t)D1(t)
0 1− c3 ν(t)D2(t) 0
0 ν∗(t)D∗2(t) 1− c3 0

µ∗(t)D∗1(t) 0 0 1+ c3





























,

(5)
where we have introduced the following parameters

µ(t) = (c1 − c2)e−i(ω
′
A+ω

′
B)t, ν(t) = (c1 + c2)e−i(ω

′
A−ω

′
B)t,

D1(t) = 〈G|eiĤeete−iĤggt|G〉, D2(t) = 〈G|eiĤegte−iĤget |G〉, (6)

with

Ĥee = δ1â†â + Ĥ1, Ĥgg = −δ1â†â + Ĥ1, δ1 = δA + δB,

Ĥeg = δ2â†â + Ĥ1, Ĥge = −δ2â†â + Ĥ1, δ2 = δA − δB. (7)

We consider the situation that the two atomic qubits pass
through the cavity field region in a very short time such that
δ1t ≪ 1 andδ2t ≪ 1. In fact, according to Ref. [19], the waist
of the cavity field is 25µm, the effective frequency shiftsδA,
δB are about 100 Hz. Above conditions are well satisfied if
injected velocity of the atomic qubits meetsv > 10−3 m/s. By
the short-time approximation, the factors|D1(t)| and|D2(t)| in
Eq. (5) can be derived as

|D1 (t) | = exp
(

−2γδ21t2
)

, |D2 (t) | = exp
(

−2γδ22t2
)

, (8)

where the decay factorγ =
〈

(

â†â
)2
〉

−
〈

â†â
〉2

is the photon

number fluctuation (PNF) of the cavity field in the ground
state|G〉 [24].

From Eq. (5) we can see that the cavity-BEC system only
affects off-diagonal elements of the density matrix for the
two atomic qubits, hence it equivalently acts as a phase de-
coherence environment for the two atomic qubits. That is,
the cavity-BEC system constitutes an artificial phase decoher-
ence environment of the two qubits. The coupling constant
λ in the Hamiltonians (1) and (7) is a QPT parameter of the
cavity-BEC system. The QPT parameter is a controllable pa-
rameter of the artificial environment, and affects properties of
the ground sate|G〉 of the HamiltonianĤ1. It is worth noting
that when the effective frequency shiftsδA, δB are equal, i.e,
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δ2 = 0, a decoherence-free subspace in the basis{|ge〉, |eg〉}
appears.

In order to obtain the detailed form of the PNFγ, in the
following we find the ground state|G〉 according to the Ref.
[17]. By the use of the Holstein-Primakoff transformation [31,
32] Ĵ+ = ĉ†

√

2 j − ĉ†ĉ, Ĵ− =
√

2 j − ĉ†ĉĉ, Ĵz = ĉ†ĉ − j with
j = N/2 , the Hamiltonian of the Eq. (1) is further reduced to

Ĥ1 = ωâ†â + ω0ĉ†ĉ + λ
(

â + â†
)



















ĉ†

√

1− ĉ†ĉ
2 j
+ H.c.



















. (9)

When the coupling strengthλ is smaller than the critical cou-
pling strengthλc =

√
ωω0/2, the system is in the normal

phase in which the BEC and the cavity field have low exci-
tations. When the coupling strength is larger than the critical
strength, the system is in the super-radiant phase in which both
the BEC and the cavity field have collective excitations in the
order of the atom numberN.

In the normal phase at the thermodynamic limitj→ ∞, we

can take
√

1− ĉ†ĉ
2 j ≈ 1, Hamiltonian (9) then becomes

Ĥ1 = ωâ†â + ω0ĉ†ĉ + λ
(

â + â†
) (

ĉ + ĉ†
)

, (10)

which can be diagonalized as

Ĥ1 = ε−d̂†1d̂1 + ε+d̂†2d̂2, (11)

where we have used the Bogoliubov transformation

â† = f1d̂†1 + f2d̂1 + f3d̂†2 + f4d̂2,

ĉ† = h1d̂†1 + h2d̂1 + h3d̂†2 + h4d̂2. (12)

Two eigenfrequencies in Eq. (11)ε− andε+ are given by

ε2± =
1
2















ω2 + ω2
0 ±
√

(

ω2
0 − ω2

)2
+ 16λ2ωω0















. (13)

In the normal phase, the coefficients of the Bogoliubov
transformation about the cavity field in Eq. (12) are

f1,2 =
1
2

cosφ
√
ε−ω

(ω ± ε−) , f3,4 =
1
2

sinφ
√
ε+ω

(ω ± ε+) , (14)

where the mixing angleφ is given by tan 2φ = 4λ
√
ωω0

ω2
0−ω2 . In the

following discussion on the PNF we only need the coefficients
fi (i = 1, 2, 3, 4), so the coefficientshi (i = 1, 2, 3, 4) are not
given here.

In the super-radiant phase, in the Hamiltonian (9) we dis-
place the bosonic modes ˆa† → â†

′
+
√
α, ĉ† → ĉ†

′ −
√
β with√

α and
√
β describing the macroscopic mean fields in the or-

der ofO( j). Neglecting terms withj in the denominator and

taking
√
α = 2λ

ω

√

j
2

(

1− ξ2),
√
β =

√

j (1− ξ) with ξ = λ
2
c

λ2 ,
the Hamiltonian Eq. (9) is reduced to the following form

Ĥ1 = ωâ†
′
â
′
+ ω̃0ĉ†

′
ĉ
′
+ η
(

ĉ†
′
+ ĉ

′)2

+λ̃
(

â
′
+ â†

′) (

ĉ†
′
+ ĉ

′)

, (15)

where the parameters ˜ω0, λ̃ andη are given by

ω̃0 =
ω0

2ξ
(1+ ξ), λ̃ = λξ

√

2
1+ ξ

,

η =
ω0 (1− ξ) (3+ ξ)

8ξ (1+ ξ)
. (16)

The Hamiltonian in Eq. (15) can be also diagonalized as

Ĥ = ε
′

−d̂
′†
1 d̂

′

1 + ε
′

+d̂
′†
2 d̂

′

2, (17)

by the Bogoliubov transformation

â†
′
= f

′

1d̂†
′

1 + f
′

2d̂
′

1 + f
′

3d̂†
′

2 + f
′

4d̂
′

2, (18)

ĉ†
′
= h

′

1d̂†
′

1 + h
′

2d̂
′

1 + h
′

3d̂†
′

2 + h
′

4d̂
′

2,

where the eigenfrequenciesε
′
− andε

′
+ read as

ε
′2
± =

1
2























ω2 +
ω2

0

ξ2
±

√

√













ω2 −
ω2

0

ξ2













2

+ 4ω2ω2
0























. (19)

The coefficients of Bogoliubov transformation about the
cavity field in the super-radiant phase are

f
′

1,2 =
1
2

cosφ
′

√

ε
′
−ω

(

ω ± ε′−
)

, f
′

3,4 =
1
2

sinφ
′

√

ε
′
+ω

(

ω ± ε′+
)

. (20)

whereφ
′
is the mixing angle defined by tan 2φ

′
=

2ωω0ξ
2

ω2
0−ξ2ω2 . The

coefficientsh
′

i (i = 1, 2, 3, 4) are also not given here since we
do not need in the PNF calculation below.

We now investigate the PNF in the normal and super-radiant
phase. In the normal (super-radiant) phase, the ground state is
|0, 0〉d1,d2 (|0, 0〉d′1,d′2). It is easy to get the PNF in the normal
and super-radiant phase with the following form

γ =











































2 f 2
1 f 2

2 + 2 f 2
3 f 2

4 + ( f1 f4 + f2 f3)2 , λ < λc,

f
′2
1 f

′2
2 + 2 f

′2
3 f

′2
4 +
(

f
′

1 f
′

4 + f
′

2 f
′

3

)2

+α

[

(

f
′

1 + f
′

2

)2
+
(

f
′

3 + f
′

4

)2
]

, λ > λc.

(21)

Compared with the case of the normal phase, the displace-
ment α due to collective excitation appears in the super-
radiant phase. Figure 2 shows the PNFγ will experience dras-
tic change near the critical coupling pointλc/ω0 = 10. The
closer the coupling strengthλ near the critical coupling point,
the larger the PNFγ. This inspires us to control the coherence
decay rate of the two atomic qubits by adjusting the pump-
field power to change the coupling strength in the region near
the critical coupling.

In the following we consider the QD amplification of the
two atomic qubits induced by the QPT of the cavity-BEC
system. The QD [1] is defined as the difference between
the total correlation and the classical correlation with the ex-
pressionD

(

ρ̂AB
)

= I
(

ρ̂A : ρ̂B
)

− C
(

ρ̂AB
)

with ρ̂A, ρ̂B and
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FIG. 2: (Color online) The logarithm to base 10 of the PNFγ changes
with respect to the coupling strengthλ. Related parametersN =
105, ω0 = 0.05MHz, ω = 20MHz correspond to the experimental
parameters in Ref. [19].

ρ̂AB being the reduced density operators for subsystemsA
and B, and the total density operator, respectively. The to-
tal correlation in the state ˆρAB is measured by quantum mu-
tual informationI

(

ρ̂A : ρ̂B
)

= S
(

ρ̂A
)

+ S
(

ρ̂B
)

− S
(

ρ̂AB
)

with
S (ρ̂) = −Tr(ρ̂ log ρ̂) being the von Neumann entropy. The
classical correlation between the two subsystemsA and B
is given byC(ρ̂AB) = S (ρ̂A) − min{P̂B

k }
[

∑

k pkS (ρ̂A
k )
]

where

pk = TrAB[( ÎA⊗P̂B
k )ρ̂AB(ÎA⊗P̂B

k )] denotes the probability relat-
ing to the outcomek, andÎA denotes the identity operator for
the subsystemA with {P̂B

k } being a set of projects performed
locally on the subsystemB.

The mutual information of the state given in Eq. (5) is
derived asI

(

ρ̂A : ρ̂B
)

= 2 +
∑4

i=1λi logλi, whereλ1,2 =
1
4(1+ c3 ± |µ(t)D1(t)|), λ3,4 =

1
4(1− c3 ± |ν(t)D2(t)|) are four

eigenvalues of ˆρs(t). And the classical correlation can be ob-

tained as [15, 30]C(ρ̂s(t)) =
2
∑

n=1

1+(−1)nχ
2 log2

[

1+ (−1)nχ
]

with

χ(t) = max
[|c3|, (|µ(t)D1(t)| + |ν(t)D2(t)|)/2]. Therefore, the

QD can be written as

D (ρ̂s(t)) = 2+
4
∑

i=1

λi log2 λi − C(ρ̂s(t)). (22)

The QD can be amplified for some initial states such as the
state parameters being set asc2 = 0, 0 ≤ c1 = 2c3 ≤ 2/3
when the qubits are in the phase decoherence environment
[15]. For the present cavity-BEC environment, let the two
atomic qubits enter the cavity at timet = 0 and leave the cav-
ity at timet f . Then we can define the QD amplification rate as
Γ = D(t f )/D(0). In Figure 3 we have plotted the QD ampli-
fication rateΓ with respect to the coupling strengthλ and the
initial state parameterc1 whenc3 = c1/2, c2 = 0, ω0 = 0.05
MHz, ω = 20 MHz, λc/ω0 = 10, t f = 1/ω0, δ1 = 0.001ω0,
δ2 = 0, andN = 105. Figure 3 indicates that the initial QD
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FIG. 3: (Color online) The QD amplification rate as a functionof the
coupling strengthλ and the initial parameterc1. Other parameters are
set asc3 = c1/2, c2 = 0, ω0 = 0.05 MHz,ω = 20 MHz, t f = 1/ω0,
δ1 = 0.001ω0, δ2 = 0, andN = 105.

can be amplified by the use of the cavity-BEC system through
changing the QPT parameterλ. Specially, the QD amplifica-
tion rate sensitively increases at the QPT point of the cavity-
BEC systemλ = λc. In this sense, the sensitive QD amplifi-
cation can be understood as a quantum phenomenon induced
by the QPT of the cavity-BEC system. It should be pointed
out that one can control the QPT parameterλ by changing
the Rabi frequency of the pump fieldΩp based on the relation
λ =
√

Ng0Ωp/2∆.
In conclusion, we have proposed a scheme to realize the

sensitive QD amplification of two atomic qubits via the cavity-
BEC system by changing the QPT parameter of the the cavity-
BEC system, and revealed the QPT mechanism of the sensi-
tive QD amplification. We have indicated that the cavity-BEC
system is equivalent to a phase decoherence environment for
the two atomic qubits. Hence, it provides an artificial and
controllable phase decoherence environment for quantum in-
formation processing. Essentially, the QD amplification isin-
duced by the PNF of the cavity field. The PNF mainly depends
on the fluctuation of the BEC density. At the point of the QPT,
the density of the BEC in the cavity changes from a uniform
distribution into a checker-board pattern. It should be men-
tioned that the present scheme should be within the reach of
present-day techniques since the cavity-BEC system used in
the scheme has been well established in recent experiments of
observing the Dicke QPT [19]. The experimental realization
of the scheme proposed in the present paper deserves further
investigations.

Acknowledgments

This work was supported by the 973 Program under Grant
No. 2013CB921804, the NSF under Grant No. 11075050,
and the PCSIRTU under Grant No. IRT0964, and the HPNSF



5

under Grant No. 11JJ7001.

[1] H. Ollivier and W. H. Zurek, Phys. Rev. Lett.88, 017901
(2001).

[2] L. Henderson and V. Vedral, J. Phys. A: Math. Gen.34, 6899
(2001); V. Vedral, Phys. Rev. Lett.90, 050401 (2003).

[3] A. Datta, A. Shaji, and C. M. Caves, Phys. Rev.
Lett. 100, 050502 (2008); B. Dakić, etal., Nature Phys.
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