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We demonstrate a generic and robust mechanism that leads to an extreme output sensitivity to a
deep subwavelength boundary perturbation in wavelength-scale microcavities. A deformation of the
cavity boundary on the order of ten thousandth of a wavelength may flip the output directions by
180◦, corresponding to a variation of 0.1nm for a 1µm-radius cavity. Our analysis based on a pertur-
bation theory reveals that such tiny structural change can cause a strong mixing of nearly degenerate
cavity resonances with different angular momenta, and their interference is greatly enhanced to have
a radical influence on the far-field pattern. Our finding opens the possibility of utilizing carefully-
designed wavelength-scale microcavities for fast beam steering and high-resolution detection.

PACS numbers: 42.55.Sa,42.25.-p,05.45.Mt

I. INTRODUCTION

Optical microcavities have a wide range of applications
from coherent light sources in integrated photonic cir-
cuits, to cavity quantum electrodynamics, single-photon
emitters, and biochemical sensors [1, 2]. For example,
ultrahigh quality (Q) factor microcavities have demon-
strated extraordinarily high sensitivity in detection of
single molecules and viruses [3–5]. The extremely long
lifetime of whispering-gallery modes in circular micro-
cavities greatly enhances the interaction of the circulat-
ing light with a tiny perturbation on the cavity boundary,
which leads to a shift of resonant frequencies. However,
the long lifetime also means a slow response of the sen-
sors, limiting the sampling frequency. Moreover, the ul-
trahigh Q is very fragile against surface roughness, which
is common to semiconductor microdisks/rings, and the
cavity size cannot be reduced to wavelength scale due to
Q degrading.

In this article we present a fundamentally different
scheme to achieve an extremely sensitive response to a
perturbation on the cavity boundary. By exploring de-
formation induced coupling between nearly degenerate
cavity resonances, we show that a variation on the order
of 0.1nm along the boundary of a 1µm-radius disk can
flip the output direction by 180◦, which is much more
dramatic than the relative frequency shift (∆ω/ω � 1)
of the current microcavity sensors. Our scheme is ap-
plicable to wavelength-scale microcavities with relatively
low Q factors, and it allows fast response and is robust
against the surface roughness. Moreover, it provides a
means of rapid steering of microcavity emission with low
energy consumption, which has important applications
for microlasers and single photon emitters.

∗ lge@princeton.edu
† hui.cao@yale.edu

Previous studies have shown that cavity deformation
can strongly modify the intracavity ray dynamics and the
output directionality [6–16]. The intracavity ray dynam-
ics becomes (partially) chaotic for a large deformation
from an integrable cavity shape, and the emergence of
unstable manifolds of distinct geometries lead to dramat-
ically different emission patterns from similarly deformed
microlasers [11]. For a small deformation from a circle or
sphere [7, 17–22], evanescent tunneling is dominant over
refractive escape, and it can be highly directional due to
nonperturbative phase space structures in the intracav-
ity ray dynamics. All these studies were performed in
the semiclassical regime, where the cavity size R is much
larger than the wavelength λ. As such, the variation of
the boundary, though small compared to R, is compa-
rable to or even larger than the wavelength. The same
variation of the boundary as a fraction of R becomes
much smaller than the wavelength in the wave regime,
where R → λ [23–25]. Thus one would have expected
the deformation to have a much weaker influence, for ex-
ample, on the output directionality. As we show below,
however, the prediction of the intracvaity ray dynamics
fails in this regime and is much weaker compared with
the outcome of deformation induced coupling.

Mode coupling in microcavities has been extensively
studied [26–29], but the extreme sensitivity we report
here has never been found. Both numerical simulation
and perturbation theory show that the ultrahigh sensi-
tivity is unique for the output directionality and absent in
all other properties of the resonances, such as the frequen-
cies, Q factors, and intracavity field patterns. Thanks to
the generality of the wave equations, our findings can be
applied to other types of waves such as polaritons and
acoustic waves.

Below we first present the numerical results that show
the dramatic sensitivity of the output directionality on
the boundary deformation, followed by the analysis based
on a perturbation theory that reveals the underlining
mechanism. In the conclusion we discuss the generality
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of our approach and its potential applcations.

II. OUTPUT SENSITIVITY: NUMERICAL
SIMULATIONS

Although our results are relevant for a variety of de-
formed cavities, we present below a simple example of a
two-dimensional dielectric cavity slightly deformed from
a circle. The deformation is characterized by harmonic
perturbation of the boundary, ρ(θ) = R[1 + ε2 cos(2θ) +
ε3 cos(3θ)] in the polar coordinates, where |ε2|, |ε3| � 1.
A small dipolar term (ε1 cos θ) mostly leads to a lateral
shift of the cavity, and it can be eliminated by choosing
a proper origin of the coordinate system. Because the
cavity has reflection symmetry with respect to the hori-
zontal axis, the cavity resonances have either even parity
or odd parity about θ = 0◦. Below we consider the even
parity modes, and the analysis of the odd parity modes is
similar. Using a scattering matrix approach [30, 31] we
calculate the cavity resonant frequencies and Q-factors
of transverse electric (TE) modes (electric field parallel
to the disk plane), which are most common in microdisk
lasers. The dramatic boundary sensitivity to be discussed
below also exists for transverse magnetic (TM) modes.

We first consider a slightly deformed quadrupolar cav-
ities with ε2 = −0.01 and ε3 set to zero. Series of
quasi-whispering-gallery mode (WGM) can be found,
and Fig. 1(a) shows one at Re[kR] ≈ 4.387 (Mode 1). Its
output is bidirectional towards θ = 0◦, 180◦ [Fig. 1(b)],
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FIG. 1. (Color online) Intracavity field distribution (a),
farfield intensity pattern (b), and Hankel coefficients (c) of
Mode 1 at kR = 4.387− i1.809× 10−5 in a quadrupole cavity
with R = 1µm, ε2 = −0.01, ε3 = 0, and n = 3. Black solid
contour in (b) represents the farfield obtained from the 2nd
order perturbation theory, which agrees almost exactly with
the numerical data (red shadow). Green dash-dotted contour
shows the envelope 1 + cos(2θ). Red crosses connected by the
solid line in (c) show the numerical data; squares and triangles
are given by the 1st and 2nd order perturbation calculation,
respectively. (d-f) Same as (a-c) but the cavity is now sightly
perturbed with ε3 = 10−4. The resonance shifts slightly to
kR = 4.387− i2.039× 10−5.

which we analyze in the polar coordinates together with
the intracavity field:

ψ(m)(r, θ) =

{∑
pApJp(nkr) cos(pθ), r < ρ(θ),∑
pBpHp(kr) cos(pθ), r > ρ(θ).

(1)

Jp(nkr), Hp(kr) are the p-th order Bessel function and
outgoing Hankel function, respectively. Ap (Bp) will be
referred to as the Bessel (Hankel) coefficients inside (out-
side) the cavity. Since |ε2| � 1, each WGM has a dom-
inant angular momentum m inside the cavity, and for
Mode 1 m = 9. The quadrupolar deformation ε2 cos(2θ)
scatters light from m to m ± 2. Since the m + 2 com-
ponent is more tightly confined within the cavity, the
far-field pattern is largely determined by the interference
of the m and m−2 components [Fig. 1(c)]. When the lat-
ter two have almost equal amplitudes, their beating gives
rise to an envelope function 1+cos(2θ), which agrees well
with that of Mode 1.

To alter the output directionality strongly, a ε3 cos(3θ)
deformation is added to ρ(θ) which generates additional
m ± 3 components, with m − 3 stronger than m + 3
outside the cavity. Consequently, the dominant Hankel
coefficients are m,m − 2,m − 3 as shown in Fig. 1(f)
for Mode 1 at ε3 = 10−4; they not only have compa-
rable amplitudes but also similar phases. Since cos(6θ)
is symmetric about the vertical axis while cos(7θ) and
cos(9θ) are antisymmetric, it interferes with the other
two constructively along θ = 0◦ and destructively along
θ = 180◦, creating the unidirectional emission shown in
Fig. 1(e). Note that by changing the sign of ε3, the
output direction of Mode 1 is reversed, since the cav-
ity changes to its mirror image about the vertical axis,
i. e. ρ(π − θ) = R[1 + ε2 cos(2θ)− ε3 cos(3θ)].

The unidirectionality of the output can be measured

by U ≡
∫ 2π

0
dθI(θ) cos θ, where I(θ) is the normalized

farfield intensity satisfying
∫ 2π

0
dθI(θ) = 1. U is zero for

isotropic or bi-directional emission, and positive (nega-
tive) for unidirectional emission along θ = 0◦ (180◦). U
of Mode 1 rapidly increases to its maximum of 0.39 at
ε3 ' 2.7× 10−4 [Fig. 2(a)], at which the interference be-
tween even and odd angular components is strongest. As
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FIG. 2. (Color online) (a) U versus ε3 for Mode 1 (solid line)
and 2 (dashed line) in Fig. 5(a). 1st order (dotted line) and
2nd order (dash-dotted line) perturbation results for Mode 1
are also shown. (b) Ratio of Hankel coefficients |B7/B9| (solid
line) and |B6/B9| (dashed line) of Mode 1 as a function of ε3.
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FIG. 3. Bessel coefficients inside the cavity (red crosses con-
nected by solid line) of Mode 1 at ε3 = 0 (a) and 10−4 (b).
Note that the increase of |A6| in (b) due to the coupling to
Mode 1′ is very small, in contrast to |Bp| shown in Fig. 1(f).
Squares and triangles show the results of the 1st and 2nd
order perturbation theory, respectively.

ε3 further increases, the increasing amplitude difference
between even and odd angular components (see Fig. 2(b))
reduces the interference effect, bringing down the unidi-
rectionality.

Despite the drastic change of the farfield pattern, the
intracavity field distribution remains nearly the same
[Fig. 1(d)], because the deformation introduced Bessel
coefficient A6 in Mode 1 is much smaller than A9 (see
Fig. 3). This holds true even when ε3 increases to 10−3,
at which B6 dominates over B9 and B7 outside the cavity.

III. ORIGIN OF THE OUTPUT SENSITIVITY

The observed boundary sensitivity cannot be ac-
counted for using semiclassical ray dynamics [7, 8], in
which light is treated as particles undergoing specular
reflections at the cavity boundary. In this picture the
dynamical properties of light are usually represented by
the Poincaré Surface of Section (SOS), using the positions
of rays incident on the boundary (represented by the az-
imuthal angle θ) and the corresponding angles of inci-
dence χ. As shown in Fig. 4(a,b), the majority of the SOS
remains regular in the presence of a small ε2 and ε3, with
unbroken Kolmogorov-Arnold-Moser (KAM) curves rep-
resenting the WGM trajectories (θ ∈ [0◦, 360◦]). There
are a few islands corresponding to stable periodic orbits,
including the right (“.”) triangle which becomes unsta-
ble when ε3 changes from 0 to 10−4. To investigate its
connection to the change of emission directionality, we
perform ray tracing which includes the effect of all dy-
namical structures in the phase space. Fig. 4(c) plots the
intensities of output rays for ε3 = 0◦ and 10−4, which are
very similar and peaked at θ = 0◦, 180◦. This result
shows that the stability change of the right triangular
orbits is just a coincidence and not related to the dra-
matic change of the output directionality observed in the
actual modes.

We note that the ray model applies in the semiclassical
regime, where the same value of ε3 stands for a boundary
perturbation (∼ ε3R) much larger than the wavelength
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FIG. 4. (Color online) (a) SOS for the intracavity ray dy-
namics at ε3 = 0. The islands near sinχ = 0.5 correspond to
the left (“/”) and right (“.”) triangular orbits, and the ones
near sinχ = 0.7 correspond to the diamond orbit (“�”). Red
dashed line indicates the critical line, i. e. sinχ = 1/n. (b)
Same as (a) but at ε3 = 10−4. The right triangular orbit be-
comes unstable. (c) Output directionality obtained by tracing
40,000 random rays uniformly distributed in the SOS above
the critical line. The output is collected each time they refract
at the boundary. Thin black solid line and thick dashed red
line are for ε3 = 0 and 10−4, respectively. Insets: Above men-
tioned orbits shown in real space, which display little change
with ε3.

and where a stronger effect would have been anticipated.
Its failure to capture the output sensitivity highlights the
wave nature of the observed radical response and implies
a mechanism that is completely different and stronger
than the change of intracavity ray dynamics.

The bidirectional output at ε3 = 0 can also be un-
derstood intuitively: the curvature of the boundary is
highest at θ = 90◦, 270◦, so the evanescent tunneling
at these places is also strongest, giving rise to the bidi-
rectional emission observed. This picture, however, fails
when ε3 becomes nonzero. For example, the highest cur-
vature points only shift about 1◦ at ε3 = 10−4, which
cannot explain the dramatic change of the output direc-
tionality we observe.

To identify the mechanism of the radical output sensi-
tivity, we examine the cavity modes in the vicinity of
Mode 1, which form a higher-Q and a lower-Q series
[Fig. 5(a)]. A correlation is observed between unidirec-
tionality of the higher-Q mode and its frequency spacing
to the nearby lower-Q mode: Mode 1 has the largest U at
ε3 = 10−4 and its distance to its quasi-degenerate partner
(Mode 1′) is also the shortest. Mode 1′ has a dominant
angular momentum m′ = 6, which appears in Mode 1
when ε3 6= 0. These observations suggest a coupling be-
tween Mode 1 and 1′. Recent studies [23, 32] show that a
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FIG. 5. (Color online) (a) Complex resonant frequency kR
(red crosses) of a cavity with R = 1µm, ε2 = −0.01, ε3 =
10−4, and n = 3. Triangles show the 2nd order perturbation
results. The corresponding resonances in a circular cavity of
the same R are marked by black dots. (b) Unidirectionality
U of the high-Q resonances (squares) and their distances to
the nearest low-Q resonances in the complex frequency plane
(triangles) versus Re[kR] of the high-Q modes.

higher-Q mode can acquire the unidirectional emission of
a lower-Q mode via coupling. However, this scenario does
not take place here; Mode 1′ emits more or less symmet-
rically along θ = 0◦, 180◦ (see Fig. 6). In addition, the
relative changes of the frequencies of the coupled modes
(e.g., 1 and 1′) and their Q-factors, which are normally
used to determine mode coupling, are only of the order
10−7. Thus what we presented here is quite a untypical
scenario of mode coupling.

To understand the relation of mode coupling and the
boundary sensitivity, we adopt a perturbation theory
[33–36] to the TE modes. Since the cavity is slightly
deformed from a circle, we use the resonances k0 of a
circular cavity of radius R as the unperturbed basis and
treat the deformation ε2 cos(2θ) + ε3 cos(3θ) ≡ εf(θ)/R
as the perturbation. k0 are determined by the boundary
condition for TE modes in a circular cavity, i. e.

Tm(k0R) ≡ J ′m(nk0R)

nJm(nk0R)
− H ′m(k0R)

Hm(k0R)
= 0. (2)

The resonant frequency in the deformed cavity can be
expanded as k = k0+k1ε+k2ε

2+O(ε3). For convenience,
we rewrite Ap = ap/Jp(nkR), Bp = (ap + bp)/Hp(kR)
and normalize ψ(~r) by scaling the dominant ap to unity.
In the appendix we show that all ap 6=m and bp are at least
of order ε1, thus we define ap 6=m ≡ αpε + βpε

2 + O(ε3)
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FIG. 6. (Color online) Intracavity field distribution (a) and
farfield intensity pattern (b) of a low-Q resonance (Mode 1′

in Fig. 5(a)) at k′R = 4.391− i2.019× 10−2 with ε3 = 10−4.

and bp ≡ µpε + γpε
2 + O(ε3). By expanding the TE

boundary conditions to ε2 around r = R, k = k0, we find
the corrections to the resonant frequency k as well as the
coefficients ap and bp.

With the second order corrections βp 6=m and γp given
in the appendix, the perturbation theory reproduces the
numerical results nicely [Figs. 1,2,5]. In fact, the essence
of the extreme output sensitivity is already well captured
by the first order corrections

αp 6=m =
1

Tp

[
k0RSm

(
H ′p
Hp
− H ′m
Hm

)
− T ′m

]
Fpm, (3)

µp = k0RSmFpm, (4)

as shown in Fig. 2(b). We have dropped the argu-
ments of the Bessel and Hankel functions and defined
Fpm ≡ cp

∫ 2π

0
f(θ) cos(pθ) cos(mθ)dθ/2πR (cp = 2−δp,0),

Sp(x) ≡ nJ ′p(nx)/Jp(nx) − H ′p(x)/Hp(x). We note
that the first order correction to the resonance, k1 =
−εk0Fmm, vanishes unless f(θ) changes the average ra-
dius (i. e.,

∫
f(θ)dθ 6= 0). Thus the frequency and Q-

factor do not show a radical response to the deformation,
and the second order treatment is needed to capture the
shift of the resonances [Fig. 5(a)].

The presence of another WGM k′0R with a dominant
angular momentum m′ in close vicinity of k0R implies
that Tm′(k0R) ≈ Tm′(k′0R) = 0. When this occurs, the
m′ component in ψ(m)(r, θ) is much enhanced via αm′ ,
since T−1m′ (k0R) � 1. This large prefactor amplifies the
small boundary perturbation of cos (m−m′)θ, especially
when the m′ component is leakier (m′ < m) and has
a strong influence on the field outside the cavity. For
example, the unperturbed WGMs corresponding to Mode
1 and 1′ are k0R = 4.388 − i1.226 × 10−5 with m = 9
and k′0R = 4.391 − i1.153 × 10−2 with m′ = 6. The
factor |T−1m′ (k0R)| = 7.930 is much larger than its typical
value in the absence of quasi-degeneracy. As a result, αm′

increases rapidly with Fmm′ = ε3/2, so does Bm′ with
respect to Bm. The weaker output sensitivity of the other
higher-Q modes in Fig. 5(a), e.g. Mode 2 (see Fig. 2(b)),
can also be understood; their wider separation from the
nearest lower-Q mode leads to a smaller enhancement
factor |T−1m′ (k0R)|.

Note that although αm′ also appears in the Bessel coef-
ficient Am′ , |Am′/Am| increases much more slowly due to
the much smaller factor |Jm′(nkR)/Jm(nkR)| compared
with |Hm′(kR)/Hm(kR)| in |Bm′/Bm|, which explains
the almost identical intracavity field distribution while
the output directionality changes dramatically with ε3.

Another important factor for the extreme sensitivity
is the phase of αm′ , which differs from am(≡ 1) by
π/2 as given by (3). With another relative phase of
π/2 in the asymptotic form of the Hankel function, i. e.
Hp(kr → ∞) ∝ exp(−ipπ/2), the m′ component inter-
feres constructively with the m and m − 2 components
along θ = 0◦ and destructively along θ = 180◦.
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IV. DISCUSSION AND CONCLUSION

The above analysis based on the perturbation theory
reveals that the dramatic response of the output direc-
tionality originates from the deformation introduced cou-
pling of quasi-degenerate resonances with different angu-
lar momenta. This mechanism is general, and the exact
shape of the cavity, e.g. the value of ε2 or the presence
of higher-order harmonics, is not crucial.

To demonstrate this generality, here we consider an-
other example where the cos(2θ) term is absent in the
boundary shape. At ε3 = 0 the cavity is circular and the
output of all WGMs are isotropic. As shown in Fig. 5(a),
Mode 1 and 1′ still form a quasi-degenerate pair, which
leads to a rapid increase of |B6| with ε3 in Mode 1. The
beating of m = 9 and m′ = 6 in Mode 1 gives rise to
a tri-directional output even at ε3 = 10−4 (see Fig. 7).
Note that the value of |B6| is almost the same as in the
previous example [Fig. 1(f)], which is largely determined
by the 1st order perturbation and all εp 6=3 only contribute
weakly.

To further support the generality of our approach, we
also consider boundary roughness in the example where
ε2 = −0.01. We first treat the boundary roughness as
perturbation with a wide range of angular momenta,
i. e. δρ(θ) = R

∑
p δp cos(pθ), in which we have as-

sumed δρ(θ) = δρ(−θ) for simplicity. The perturba-
tive contribution of the high-order harmonics (p � 1)
only occurs to Bessel and Hankel coefficients of large
angular momenta to the leading order. These compo-
nents decay rapidly outside the cavity and have little ef-
fect on the farfield. Thus the farfield intensity pattern
only changes with low-order harmonics in the bound-
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FIG. 7. (Color online) Intracavity field distribution (a),
farfield intensity pattern (b), Hankel coefficients (c), and
Bessel coefficients (d) of Mode 1 at ε2 = 0 and ε3 = 10−4.
Other parameters and figure symbols are the same as in Fig. 1.

ary roughness, and we consider δp(p = 4, 5, . . . , 8) with
a random amplitude up to 10−3 when varying ε3. We
found that the farfield intensity pattern is modified in
the presence of these extra terms, but the sensitivity to
ε3 survives. Fig. 8(a) shows one example of δρ(θ), and
from Fig. 8(b) we see that U of Mode 1 also displays a
sensitive dependence on ε3, similar to the case without
the surface roughness. In Fig. 8(c) we model the surface
roughness in a different way. We include 30 Gaussian
bumps and pits randomly distributed around the cavity,
with a random amplitude up to 10−3R and a full-width-
at-half-maximum of 5◦. Again the sensitivity of U to ε3
can still be observed.

The examples given above emphasize that the key of
the dramatic sensitivity of the output directionality is the
quasi-degeneracy, which has a weak dependence on the
small boundary deformation as we have shown using the
perturbation theory. As a consequence, quasi-degenerate
modes can be conveniently identified by examining those
of the circular cavity given by Eq. (2). To further reduce
the frequency separation of a quasi-degenerate pair, one
may fine-tune the effective index of a microdisk by chang-
ing the disk layer thickness, varying the composition of
the material, or using thermal control or carrier injection.
Our results can also be directly generalized to terahertz
frequency, microwave, and acoustics, due to the scalabil-
ity of the wave equation.

Our findings offer many practical applications, includ-
ing a fast and energy efficient way of steering optical sig-
nals from microcavities. Using micro-electro-mechanical
(MEM) or optomechanical approaches, one can introduce
the proposed cavity deformation and switch the micro-
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p=4 δp cos(pθ). In this exam-

ple ε4 = 0.4278×10−3, ε5 = 0.4814×10−3, ε6 = 0.8559×10−3,
ε7 = 0.9886 × 10−3, and ε8 = 0.3936 × 10−3. (b) U of Mode
1 versus ε3 with the boundary roughness shown in (a). (c)
δρ(θ) modeled as random Gaussian bumps and pits. (d) U of
Mode 1 versus ε3 with the boundary roughness shown in (c).
For simplicity we have assumed that δρ(θ) = δρ(−θ).
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cavity emission between two or even more desired direc-
tions. This can be very useful not only to microlasers
but also to single-photon emitters, allowing the delivery
of single photons to multiple ports. Utilizing the time-
reversal of this scheme, i. e. using a passive cavity as
a coherent perfect absorber [37, 38], one can selectively
inject optical signals from different directions into mi-
crocavities, again on a fast time scale and with minimal
energy cost.
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APPENDIX: PERTURBATION THEORY FOR TE
MODES

In this section we present the perturbation theory for
TE modes in a deformed microdisk cavity, which is more
complicated compared with a similar approach for TM
modes introduced in Ref. [39]. The “asymmetry” in the
boundary conditions for TE modes

ψ<(ρ, θ) = ψ>(ρ, θ),
1

n2
∂ψ<
∂r

=
∂ψ>
∂r

, (5)

due to the factor of n−2 leads to a more complicated per-
turbation series and an additional first order correction.

Here ψ<(>)(r, θ) are the wave function inside (outside)
the cavity. By expanding the boundary conditions to
O(ε2) at r = R, we obtain

ψ< − ψ> = −εf(θ)
(
∂ψ<

∂r
−
∂ψ>

∂r

)
−

1

2
ε2f(θ)2

(
∂2ψ<

∂r2
−
∂2ψ>

∂r2

)
,

(6)

1

n2

∂ψ<

∂r
−
∂ψ>

∂r
= −εf(θ)

(
1

n2

∂2ψ<

∂r2
−
∂2ψ>

∂r2

)
−

1

2
ε2f(θ)2

(
1

n2

∂3ψ<

∂r3
−
∂3ψ>

∂r3

)
. (7)

Using the ansatz

{
ψ<(r, θ) =

∑
p ap

Jp(nkr)
Jp(nkR) cos(pθ), r < ρ(θ),

ψ>(r, θ) =
∑
p(ap + bp)

Hp(kr)
Hp(kR) cos(pθ), r > ρ(θ),

(8)

we derive

ψ< − ψ> = −
∑
p

bp cos(pθ), (9)

1

n2

∂ψ<

∂r
−
∂ψ>

∂r
= k

∑
p

[
apTp(kR)− bp

H′p(kR)

Hp(kR)

]
cos(pθ). (10)

We see that all ap 6=m and bp are at least O(ε) by com-
paring the above expressions to the expansions (6) and
(7). Thus we rewrite ap 6=m ≡ αpε + βpε

2 + O(ε3) and
bp ≡ µpε+γpε

2 +O(ε3). In the case of TM modes µp = 0
as (ψ< − ψ>) is at least O(ε2) [39] by substituting the
correspondent of Eq. (7) into (6).

Using (8) we can rewrite the differences on the right
hand sides of Eqs. (9) and (10) as

∂ψ<

∂r
−
∂ψ>

∂r
= k

∑
p

[
apSp(kR)− bp

H′p(kR)

Hp(kR)

]
cos(pθ), (11)

∂2ψ<

∂r2
−
∂2ψ>

∂r2
= −

k

R

∑
p

[
Sp(kR) + kR(n2 − 1)

]
ap cos(pθ) +

k

R

∑
p

[
H′p(kR)

Hp(kR)
− (

p2

kR
− kR)

]
bp cos(pθ), (12)

1

n2

∂2ψ<

∂r2
−
∂2ψ>

∂r2
= −

k

R

∑
p

[
Tp(kR) +

p2

n2kR
(n2 − 1)

]
ap cos(pθ) +

k

R

∑
p

[
H′p(kR)

Hp(kR)
− (

p2

kR
− kR)

]
bp cos(pθ), (13)

1

n2

∂3ψ<

∂r3
−
∂3ψ>

∂r3
=
∑
p

[
kTp(kR)(

p2 + 2

R2
− n2k2)− (n2 − 1)k3

H′p(kR)

Hp(kR)
+

3p2

n2R3
(n2 − 1)

]
ap cos(pθ)

−
∑
p

[
k
H′p(kR)

Hp(kR)
(
p2 + 2

R2
− k2)−

1

R
(
3p2

R2
− k2)

]
bp cos(pθ). (14)

When deriving the last three expressions, we have used

J ′′p (z) + 1
zJ
′
p(z) + (1 − p2

z2 )Jp(z) = 0 and its derivative,

which give, for example,
J ′′p (nkR)

Jp(nkR)
= −

1

nkR

J ′p(nkR)

Jp(nkR)
+ (

p2

n2k2R2
− 1), (15)

J ′′′p (nkR)

Jp(nkR)
=
J ′p(nkR)

Jp(nkR)
(
p2 + 2

n2k2R2
− 1)−

1

nkR
(

3p2

n2k2R2
− 1). (16)

Next we expand the Bessel and Hankel functions
around k = k0. It is straightforward to see that the
zeroth order term in (10) vanishes, which is consistent
with the right hand side of (7). We keep the terms in
Eqs. (6) and (7) up to order ε2 in the discussion below,
and Eqs. (9-14) become
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ψ< − ψ> = −
∑
p

(µpε+ γpε
2) cos(pθ) +O(ε3), (17)

1

n2

∂ψ<

∂r
−
∂ψ>

∂r
= εk0

k1RT ′m(k0R) cos(mθ) +
∑
p6=m

αpTp(k0R) cos(pθ)−
∑
p

µp
H′p(k0R)

Hp(k0R)
cos(pθ)


+ ε2[k21RT

′
m(k0R) + k0k2RT

′
m(k0R) +

1

2
k0k

2
1R

2T ′′m(k0R)] cos(mθ)

− ε2
∑
p

[
k1µp

H′p(k0R)

Hp(k0R)
+ k0µpk1R

[
H′p(z)

Hp(z)

]′
z=k0R

+ k0
H′p(k0R)

Hp(k0R)
γp

]
cos(pθ),

+ ε2
∑
p 6=m

[
k1αpTp(k0R) + k0αpk1RT

′
p(k0R) + k0Tp(k0R)βp

]
cos(pθ) +O(ε3), (18)

∂ψ<

∂r
−
∂ψ>

∂r
= k0Sm(k0R) cos(mθ) + εk1[Sm(k0R) + k0RS

′
m(k0R)] cos(mθ)

+ εk0

∑
p6=m

αpSp(k0R)−
∑
p

µp
H′p(k0R)

Hp(k0R)

 cos(pθ) +O(ε2), (19)

∂2ψ<

∂r2
−
∂2ψ>

∂r2
= −

k0

R
[Sm(k0R) + k0R(n2 − 1)] cos(mθ) +O(ε1), (20)

1

n2

∂2ψ<

∂r2
−
∂2ψ>

∂r2
= −(n2 − 1)

m2

n2R2
cos(mθ)− εk0k1T

′
m(k0R) cos(mθ)− ε

∑
p6=m

[
k0

R
Tp(k0R) +

p2

n2R2
(n2 − 1)

]
αp cos(pθ)

+ ε
∑
p

[
k0

R

H′p(k0R)

Hp(k0R)
− (

p2

R2
− k20)

]
µp cos(pθ) +O(ε2), (21)

1

n2

∂3ψ<

∂r3
−
∂3ψ>

∂r3
= (n2 − 1)

[
3m2

n2R3
− k30

H′m(k0R)

Hm(k0R)

]
cos(mθ) +O(ε1), (22)

Henceforth we drop the arguments in the Bessel and Han-
kel functions. The first order terms of ε in (6) are then

−
∑
p

µpε cos(pθ) = −εf(θ)k0Sm cos(mθ), (23)

which gives the first order correction in bp:

µp = (k0R)SmF
(1)
pm , (24)

where F
(ν)
pm = cp

∫ 2π

0
fν(θ) cos(pθ) cos(mθ)dθ/(2πRν) (ν =

1, 2). We have dropped the superscript of F
(1)
pm in the

main text.
The first order terms of ε in (7) are

εk0

T ′mk1R cos(mθ) +
∑
p 6=m

αpTp cos(pθ)−
∑
p

µp
H′p

Hp
cos(pθ)


= εf(θ)

m2

n2R2
(n2 − 1) cos(mθ), (25)

which give

k1R =
1

T ′m

[
m2

n2k0R
(n2 − 1) + k0RSm

H ′m
Hm

]
F (1)
mm,

(26)

αp 6=m =
1

Tp

[
m2

n2k0R
(n2 − 1) + k0RSm

H ′p
Hp

]
F (1)
pm . (27)

Using Tm = 0, or nH ′m/Hm = J ′m/Jm, and the relation

T ′m =

[
J ′′m
Jm
−
(
J ′m
Jm

)2
]
−

[
H ′′m
Hm
−
(
H ′m
Hm

)2
]

(28)

= − (n2 − 1)m2

(nk0R)2
− H ′m
Hm

Sm, (29)

Eq. (26) is reduced to k1 = −k0F (1)
mm, which is the same

as the 1st order correction to TM resonances [39].

The ε2 terms in (6) are

−
∑
p

γpε
2 cos(pθ)

= −εf(θ)
[
ε

(
k1Sm + k0k1RS

′
m − k0µm

H′m
Hm

)
cos(mθ)

+εk0
∑
p6=m

(
αpSp − µp

H′p

Hp

)
cos(pθ)


+
k0

2R
ε2f(θ)2

[
Sm + k0R(n2 − 1)

]
cos(mθ), (30)
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from which the 2nd order correction in bp can be derived

γp =

(
k1RSm + k0k1R

2S′m − k0Rµm
H′m
Hm

)
F

(1)
pm

+ k0R
∑
q 6=m

(
αqSq − µq

H′q

Hq

)
F

(1)
pq

−
k0R

2

[
Sm + k0R(n2 − 1)

]
F

(2)
pm (31)

= (n2 − 1)(k0R)2

[
1 + n2

(
H′m
Hm

)2
]
F

(1)
mmF

(1)
pm

+ (n2 − 1)k0R
∑
q 6=m

1

Tq

(
Sq

m2

n2k0R
+
k0R

n
Sm

J ′q

Jq

H′q

Hq

)
F

(1)
qmF

(1)
pq

−
k0R

2

[
Sm + k0R(n2 − 1)

]
F

(2)
pm. (32)

The ε2 terms in (7) are

ε2[k21RT
′
m + k0k2RT

′
m +

1

2
k0k

2
1R

2T ′′m] cos(mθ)

+ ε2
∑

p6=m,m′

[
k1αpTp + k0αpk1RT

′
p + k0Tpβp

]
cos(pθ)

− ε2
∑
p

[
k1µp

H′p

Hp
+ k0µpk1R

[
H′p

Hp

]′
+ k0

H′p

Hp
γp

]
cos(pθ),

=− εf(θ)
k0

R
[−(k1Rε)T

′
m cos(mθ)

−
∑
p 6=m

(Tp +
p2

n2k0R
(n2 − 1))αpε cos(pθ)

+
∑
p

(
H′p

Hp
−

p2

k0R
+ k0R)µpε cos(pθ)]

−
1

2
ε2f(θ)2(n2 − 1)

[
−k30

H′m
Hm

+
3m2

n2R3

]
cos(mθ), (33)

the left hand side of which can be simplified using
Eq. (25). From the mth harmonic on both sides we ob-
tain the second order correction to the resonance

T ′mk2R = −
1

2
(k1R)2T ′′m + γm

H′m
Hm

+ µmk1R

[
H′m
Hm

]′
+

[
k1RT

′
m −

k1

k0

m2(n2 − 1)

n2k0R

]
F

(1)
mm

+
∑
p 6=m

(Tp +
p2

n2k0R
(n2 − 1))αpF

(1)
mp

−
∑
p

(
H′p

Hp
−

p2

k0R
+ k0R)µpF

(1)
mp

+
1

2
(n2 − 1)

[
(k0R)2

H′m
Hm

−
3m2

n2k0R

]
F

(2)
mm, (34)

and from the pth harmonic on both sides we obtain the
second order correction to ap 6=m:

Tpβp = −αpk1RT
′
p + γp

H′p

Hp
+ µpk1R

[
H′p

Hp

]′
+

[
k1RT

′
m −

k1

k0

m2(n2 − 1)

n2k0R

]
F

(1)
pm

+
∑
q 6=m

(Tq +
q2

n2k0R
(n2 − 1))αqF

(1)
pq

−
∑
q

(
H′q

Hq
−

q2

k0R
+ k0R)µqF

(1)
pq

+
1

2
(n2 − 1)

[
(k0R)2

H′m
Hm

−
3m2

n2k0R

]
F

(2)
pm . (35)

In the main text we have shown that the perturba-
tion theory gives good agreement with the wave solu-
tions. Here we give one simple analytical example to
further confirm its validity: f(θ) = R, i. e. a disk of

radius ρ = R(1 + ε) in which F
(1)
pm = F

(2)
pm = δpm. The

exact resonance can be easily obtained from scaling, i. e.
k = k0R/(R+εR) ≈ k0(1−ε+ε2)+O(ε3), which implies

k1 = −k0 = −k0F (1)
mm, as given by Eq. (26), and k2 = k0.

To confirm the later, we note that Eq. (34) takes the
following form:

k2RT
′
m = −

1

2
(k1R)2T ′′m + k1RT

′
m + γm

H′m
Hm

+
1

2
(n2 − 1)

[
(k0R)2

H′m
Hm

−
3m2

n2k0R

]
+ µmk1R

[
H′p

Hp

]
−
k1

k0

m2(n2 − 1)

n2k0R
− (

H′m
Hm

−
m2

k0R
+ k0R)µm. (36)

Using

T ′′m = −
T ′m
k0R

+
2(n2 − 1)m2

n0(k0R)3
− 2

H′m
Hm

S′m, (37)

H′′m(kR)

Hm(kR)
= −

1

kR

H′m(kR)

Hm(kR)
+ (

m2

k2R2
− 1), (38)

the right hand side of Eq. (36) is reduced to k0RT
′
m, indi-

cating that k2 = k0 as we have expected. Since the cavity
is still circular and the angular momentum is conserved,
all αp6=m, βp 6=m in the expansion of ψ< and µp 6=m, γp 6=m
in the expansion of ψ> should be zero. Indeed this is the
case as can be read off from Eqs. (24), (27), (32), and
(35).
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