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We show that the recently developed optical lattices with Peierls substitution – which can be modeled as a
lattice with a complex tunneling coefficient – may be used to induce controllable quantum transport of ultra-cold
atoms. In particular, we show that by ramping up the phase of the complex tunneling coefficient in a spatially
uniform fashion, a finite quasi steady-state current (QSSC) ensues from the exact dynamics of non-interacting
fermions. The direction and magnitude of the current can be controlled by the overall phase difference but not
the details of the ramp. The entanglement entropy does not increase when the QSSC lasts. Due to different
spin statistics, condensed non-interacting bosons do not support a finite QSSC under the same setup. We also
find that an approximate form of the QSSC survives when perturbative effects from interactions, weak harmonic
background traps, and finite-temperature are present, which suggests that our findings should be observable with
available experimental capabilities.

PACS numbers: 05.60.Gg, 67.10.Jn, 72.10.-d

I. INTRODUCTION

There has been growing interest in studying quantum trans-
port phenomena of ultra-cold atoms. For instance, recent ex-
periments [1–5] have demonstrated how to induce a mass cur-
rent using different confining potentials and drives, while the-
oretical studies [6–10] have explored interesting phenomena
that may soon be tested experimentally. A mass current has
been usually induced by a displacement or distortion of the
confining potential [1–4], a quench or imbalance of the den-
sity or interactions within the system [6–8, 10], or connecting
to external reservoirs [5, 9]. At first glance it may then look
counter-intuitive that one may induce a current in an isolated
atomic cloud without either distorting the trap potential or by
introducing any imbalance in its parameters. Here, instead
we show the possibility of driving a current under those con-
straints by using the recently developed techniques of optical
lattices with artificial (synthetic) gauge fields [11, 12].

Synthetic gauge fields for ultra-cold atoms have suggested
interesting phenomena such as inducing vortices without ro-
tating the atomic cloud [13], oscillations of atomic clouds
driven by synthetic electric fields [14], and many others
[15, 16]. Ref. [11] shows how a combination of a radio-
frequency field and a Raman field can generate a lattice po-
tential with the feature that atoms acquire a Berry phase when
tunneling to a different site. This can be modeled as a lattice
with the Peierls substitution [17], where the tunneling coef-
ficient is generalized to a complex number t̄eiφ. Ref. [12]
also presents optical lattices with complex tunneling coeffi-
cient by temporally modulating the lattice with designed pat-
terns. As demonstrated in Refs. [11], t̄ and φ can be tuned
separately in experiments. Here we generalize the concept of
Refs. [11, 12] and use a micro-canonical formalism [7, 18]
to study the atomic dynamics when φ is a function of time.
We first consider non-interacting particles, an important but
difficult situation to realize for electronic solid-state systems
which can instead be easily accomplished in cold-atom sys-
tems [19]. This allows us to study the role of interactions in an

unambiguous way. Then perturbative effects of interactions,
finite temperatures, and weak harmonic background traps will
be studied.

Our major findings are: i) By ramping up the phase, φ, as
a function of time t in a spatially uniform fashion, an atomic
mass current can be induced in a closed isolated system with
or without a weak harmonic trap potential. ii) The direction
and magnitude of the mass current can be controlled by the
displacement of φ. iii) For non-interacting fermions, a quasi-
steady-state current (QSSC) and its approximate form persist
for a period of time depending on the system size. A con-
densate of non-interacting bosons, in contrast, does not sup-
port a finite QSSC. iv) The fermionic QSSC exhibits no mem-
ory effects, which means that the magnitude of the QSSC is
insensitive to the details of the ramp. v) The entanglement
entropy remains constant when the QSSC lasts, and finally
vi) The QSSC (and its approximate form) survives when per-
turbative effects from interactions and finite temperatures are
considered. All these predictions can be tested with minimal
modifications of available experimental techniques [11, 12].
Although there are many discussions on possible dynamics in
cold-atom systems, we emphasize that the concept of QSSC in
cold-atom systems has not been introduced until recently [7]
and here we demonstrate more setups that result in a QSSC.

This paper is organized as follows. Section II outlines our
theoretical framework, which is based on the micro-canonical
formalism [7, 18]. This method is suitable for studying cold-
atom systems, which should be modeled as isolated quantum
systems. Our results and discussions on the phase-induced
transport are given in Section III. Section IV concludes our
work.

II. THEORETICAL FRAMEWORK

Following Ref. [11], we consider non-interacting ultra-cold
atoms [20] loaded into a finite one-dimensional optical lattice,
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which may be modeled by the Hamiltonian

H = −
N−1∑
j=1

[t̄eiφc†jcj+1 +H.c.] (1)

with open boundary conditions. Here t̄ and φ are the ampli-
tude and the phase of the hopping coefficient and should be
tunable separately [11], c†j (cj) is the creation (annihilation)
operator of site j, and N is the lattice size. We assume φ and
t̄ are uniform across the whole lattice. The unit of time is
chosen as t0 ≡ ~/t̄.

The system can be driven out of equilibrium by varying φ
over time. The current flowing from the left half (j ≤ N/2)
to the right half (j > N/2) is given by I = −dNL/dt, where
NL =

∑N/2
j=1 〈c

†
jcj〉. Explicitly,

I = 2Im[t̄eiφ〈c†N/2cN/2+1〉]. (2)

The current can be measured by the protocol of Refs. [3, 7].
The unit of the current is 1/t0 so we plot the quantity t0I
which is dimensionless. The time evolution of the single-
particle correlation matrix cij(t) ≡ 〈c†i (t)cj(t)〉 follows the
equations of motion

i
∂

∂t
cij(t) = t̄eiφ(t)ci−1,j(t) + t̄e−iφ(t)ci+1,j(t)−

t̄eiφ(t)ci,j+1(t)− t̄e−iφ(t)ci,j−1(t). (3)

For a closed system as the present one, cij = 0 if i, j < 1
or i, j > N . We first consider Np non-interacting fermions
loaded into the ground state of the lattice with φ = 0 initially.

We then let the phase φ(t) rise according to φ(t) =
(t/tφ)φm when t ≤ tφ and φ(t) = φm when t > tφ. Note that
φ(t) is spatially uniform across the whole lattice at each time
t. Figure 1 (a) illustrates the setup. The unitary transformation

cj =
∑N
k=1 Ujkbk with Ujk =

√
2

N+1 sin
(
jkπ
N+1

)
e−i(j−1)φ

leads to H =
∑N
k=1Ekb

†
kbk with Ek = −2t̄ cos

(
kπ
N+1

)
. We

remark that Ujk depends explicitly on φ while Ek is indepen-
dent of φ. In the energy basis, the initial state of fermions
corresponds to 〈b†kbk′〉 = δkk′θ(Np − k) with φ = 0, where
θ(x) = 1 if x ≥ 0 and θ(x) = 0 otherwise. The correspond-
ing cij(t = 0) can be inferred from the unitary transformation.

In addition to the current, we also evaluate the entangle-
ment entropy, s, between the left half and the right half. The
entanglement entropy for a bipartite system with noninteract-
ing fermions has been discussed in Ref. [21]. Here it can
be calculated as follows. We define Mij(t) = cij(t) for
1 ≤ i, j ≤ (N/2) as the sub-matrix of the correlation ma-
trix for the left half with the eigenvalues vj(t). Then

s(t) = −
N/2∑
j=1

[vj(t) log vj(t) + (1− vj(t)) log(1− vj(t))].(4)

Note that s(t) is dimensionless. For electrons modeled as non-
interacting particles flowing through a quantum point contact
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Figure 1: Schematics of the setups of fermions for (a) phase-induced
transport and (b) an effective model for describing (a). Here grey dots
imply that particles may be in a superposition of quantum states.

[21], the rate at which s(t) increases depends on the transmis-
sion coefficient, which measures the probability that a particle
can tunnel from the left half to the right half when the systems
exhibits a steady or quasi-steady current.

III. RESULTS AND DISCUSSIONS

The current and entanglement entropy of a system with
N = 512 and Np = 256 are shown in Figure 2 for φm = π/2
and (3/2)π with tφ = 10t0 and 20t0. We consider a finite ra-
tio ofNp/N as discussed in Ref. [22]. Due to the finite size of
the system, the wavefunctions will interfere with themselves
after some revival time, as one can see on Fig. 2. We found
that the revival time is linearly proportional to the system size
but is insensitive to the initial filling of the system and one can
see this by comparing the revival times shown on Fig. 2 (a) and
its inset. This is consistent with the results of Refs. [7, 22].
Throughout the paper we will focus on the physics before this
revival time.

A key point is that even when the lattice, initial density dis-
tribution, and φ(t) are all spatially uniform, there can be a
current flowing across the middle of the lattice. The mech-
anism behind this current is because the initial ground state
for φ = 0 is not the ground state for φ > 0 so the spreading
of the wavefunction leads to a mass current. One can clearly
see that for the currents there is a plateau for each curve in a
given time interval. This plateau resembles the quasi-steady-
state current (QSSC) – studied in Refs. [7, 18] – induced by
an inhomogeneous bias or density. We found that for a fixed
ratio of Np/N , the duration of the QSSC scales linearly with
N and its magnitude is the same. For a fixed N , the dura-
tion of the QSSC is the same as Np varies but the magnitude
decreases in a non-linear fashion as Np decreases. The inset
of Fig. 2 (a) shows the currents for (N,Np) = (512, 256),
(512, 128), and (256, 128) with φm = (3/2)π and tφ = 10t0
and demonstrates those features [23].

Importantly, the direction and magnitude of the QSSC can
be controlled by φm for fixed N and Np. We also remark that
the QSSC lasts when dφ/dt = 0 until the revival time and
this is partially due to the fact that there is no dissipation in
an isolated non-interacting system. Another important feature
is that the magnitude of the QSSC for fixed N and Np is in-
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Figure 2: (Color online) The fermionic current (a) and entanglement
entropy (b) from phase-induced transport. We show the results for
φm = π/2 in black and those for φm = (3/2)π in red. Solid
and dashed lines correspond to tφ = 10t0 and 20t0, respectively.
Here N = 512 and Np = 256. The inset of (a) shows how the
quasi steady-state current varies asN orNp changes. The black solid
line, red solid line, and black dashed line correspond to (N,Np) =
(512, 256), (512, 128), and (256, 128) with φm = (3/2)π and tφ =
10. The current and entanglement entropy of the effective model (1)
with N = 512, Np = 256, and tφ = 10t0 are shown in (c) and
(d). The black solid lines, red solid lines, and black dashed lines
correspond to the three selected V0(t) shown in the inset of (c). Note
that

∫ tφ
0
V0(t)dt are the same for all three cases.

sensitive to different ways of turning on the phase φ(t) [24].
Here tφ should be of the order of a few t0 because the QSSC
lasts for a time duration ∼ (N/2)t0 and a ramp with too large
slopes may induce unexpected transient effects. Our findings
suggest that the magnitude of the QSSC exhibits no memory
effect when the QSSC has been developed and maintained.
This also implies that experimentally the details of the ramp
are not critical for the observation of a QSSC if the ramping
time is reasonable. However, whether interactions can intro-
duce memory effects deserves further investigation.

The entanglement entropy remains the same when the
QSSC lasts, which is consistent with previous studies with
different setups [21] in the limit where the transmission co-
efficient is equal to one due to the uniform tunneling coeffi-
cient. One may understand this behavior by the full count-
ing statistics which models the particles semi-classically with
probability T (equal to the transmission coefficient) of tunnel-
ing through the middle and with probability 1 − T of being
reflected [21]. The entanglement entropy increases because
this probability distribution introduces correlations between

the right half (with tunneling particles) and the left-half (with
reflected particles). For a uniform lattice without any scatter-
ing potential, however, the transmission coefficient is T = 1
[25], so particles tunnel through the middle without building
any correlations between the two halves of the lattice. We em-
phasize that the phase-induced transport does not introduce
additional correlations between the two parts of the lattice. A
recently developed technique uses laser beams to generate a
constriction in an atomic cloud [5] and this may simulate a
point contact. Such a constriction could introduce a nontrivial
T and result in interesting growth dynamics of the entangle-
ment entropy.

Let us now analyze the effect of ramping up φ from dif-
ferent initial values. The corresponding initial states are de-
termined by diagonalizing the Hamiltonian (1) with different
φ(t = 0) and constructing the ground states. We verified that
with the same ramp time and displacement of the phase, the
currents coincide. This can be explained by the fact that in
quantum mechanics, an overall constant phase change of the
wavefunction does not introduce observable effects. One may
notice that the QSSC from φ(t = 0) = 0 to φm = 3π/2 has
the opposite sign of that from 0 to π/2. To observe this rever-
sal of the direction of the QSSC, one has to ramp the phase by
the full amount. Simply going from π to 3π/2 does not show
this reversed current. The ability to reverse the direction of the
current is because the factor eiφ in the Hamiltonian (1) selects
the preferred direction of tunneling. Since ei(φ+π) = −eiφ,
the preferred direction can be reversed. One may also see
this reversal of the current from the expression of I shown in
Eq. (2). This relation also implies that there is no current when
φm = φ(t = 0) + π, which we have verified numerically.

To understand why varying φ(t) can drive a QSSC, we
resort to a classical analogy. Using E = −∂A/∂t and
I = V/R, one expects that the instantaneous current is lin-
early proportional to dφ/dt, where φ =

∫
A · dl. Here E

is an electric field causing the voltage difference V , and R is
the resistance of the classical system. We thus assume that
dφ/dt induces a voltage difference V between adjacent sites
j and j + 1 and model the quantum system by the effective
Hamiltonian

Heff = −t̄
N−1∑
j=1

(c†jcj+1 + c†j+1cj) +

N−1∑
j=1

Vj(t)c
†
jcj . (5)

Here Vj(t) = 0 if t ≤ 0, Vj(t) = V0(t)(N − j) during
0 < t ≤ tφ, and then Vj(t) = 0 for t > tφ. In other words, the
lattice is tilted during 0 < t ≤ tφ with a potential difference
V0(t) between adjacent sites. In the effective model (5) the
tunneling coefficient is real and time-independent. Figure 1
(b) illustrates this effective model. The Hamiltonian (5) de-
scribes tilted optical lattices, which have recently been used in
simulations of spin chains [26]. Generalizations of our study
here may help model spin dynamics in those quantum simula-
tions.

Figure 2 (c) and (d) show the current and entanglement en-
tropy from the effective Hamiltonian (5) for several functional
forms of V0(t) shown in the inset. Two important features im-
mediately connect the effective model and the phase-induced
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transport: i) a QSSC and ii) a constant entanglement entropy
when the QSSC persists. Therefore it is the potential differ-
ence due to dφ/dt during tφ that drives the QSSC and the
QSSC can continue after dφ/dt = 0 or the potential differ-
ence vanishes. Another important feature is that for differ-
ent functional forms of V0(t) with the same

∫ tφ
0
V0(t)dt, the

magnitude of the QSSCs are extremely close to each other.
This again exhibits the lack of memory effects in the trans-
port of non-interacting systems because the QSSC is con-
trolled by the area enclosed by V0(t), not the detailed form
of V0(t). However, our results bear a stark difference between
the classical and quantum systems: For the quantum system,
the QSSC is controlled by the total difference of φ, not its time
derivative.

In Ref. [7] it was shown that condensed noninteracting
bosons cannot support a QSSC when the system is subject
to a sudden density imbalance. For bosons the Hamilto-
nian and the equations of motion are identical to those of
fermions. At zero temperature, all non-interacting bosons
occupy the lowest energy state so the initial condition is
〈b†kbk′〉 = Npδkk′δk,1 with φ = 0, where k = 1 denotes the
lowest energy state. We did not find any plateau in the bosonic
current, namely initially condensed non-interacting bosons do
not support a QSSC although a time-dependent φ(t) can still
drive a finite current [27].

Finally we consider other effects that may arise in ac-
tual experiments. The first case involves two-component
fermions with weak onsite repulsive interactions of the form
HU = U

∑
j njσnjσ̄ , where njσ = c†jσcjσ , σ = 1, 2 for

the two species, and σ̄ is the opposite of σ. The equa-
tions of motion with the standard Hartree-Fock approxima-
tion have been reported in Ref. [22]. We consider an ini-
tial state of the approximate Hamiltonian for the species
σ: Ha = −t̄

∑N−1
j=1 (c†jcj+1 + H.c.) + U〈nσ̄〉njσ , where

〈nσ̄〉 = (1/N)
∑
j〈njσ̄〉. The unitary transformation cjσ =∑

k Ũjk b̃kσ that diagonalizes Ha can be found and the initial
state corresponds to 〈b̃†kσ b̃k′σ′〉 = δkk′δσσ′θ(Np − k), where
we assume that there are Np particles for each species. Then
the system evolves according to the HamiltonianH+HU with
a linear rising φ(t) for t ≤ tφ and φ = φm for t > tφ. We
also assume that 〈c†jσcjσ〉 = 〈c†jσ̄cjσ̄〉 for all t. Figure 3 (a)
shows the currents for σ = 1 from the case with U/t̄ = 1 and
from the non-interacting case with N = 512 and Np = 256.
One can see that for weak interactions where the mean-field
(Hartree-Fock) approximation is reasonable, the current is not
affected qualitatively by the presence of the repulsive interac-
tions. We remark that the initial state is not the ground state
of the full mean-field Hamiltonian H + HU . Therefore even
if φ(t) = 0 for all t, there is still a tiny current (∼ 10−9t−1

0 )
induced by the difference between the Hamiltonians. This is,
however, a negligible effect.

Other two possible effects involve the background har-
monic trap for holding the atomic cloud and finite temper-
ature. We study them for the non-interacting single-species
fermions case. The harmonic trap potential introduces a term∑
j(1/2)mω2d2(j − N/2 − 1/2)2c†jcj to the Hamiltonian,

where m is the mass of atoms, ω is the trap frequency, and
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Figure 3: (Color online) The phase-induced currents under differ-
ent conditions: (a) Effects of interactions. We show the currents
for one species of a two-component Fermi gas with onsite interac-
tions U/t̄ = 1 (solid lines) and without interactions (dashed lines).
Here φm = π/2 (black) and φm = 3π/2 (red) with tφ = 10t0,
N = 512, and Np = 256. (b) The initial ground-state density pro-
files for different confining potentials and temperatures. On (b), (c),
and (d) the black dashed lines labeled by ”(1)” and the red dashed
lines labeled by ”(2)” correspond to the system without a harmonic
potential, while the solid black lines labeled by ”(3)” and the red solid
lines labeled by ”(4)” correspond to the system with a harmonic po-
tential with y = 10−4. The temperatures of (1) and (3) are T = 0
while those for (2) and (4) are T = 4t̄/kB . (c) and (d) show the
currents from the four cases shown in (b). The maximal phase in (c)
is φm = π/2 and that in (d) is 3π/2. The ramp time is tφ = 10t0
for both (c) and (d). Here N = 512 and Np = 128 for (b), (c), and
(d).

d is the lattice constant. We let y ≡ (1/2)mω2d2/t̄. In the
presence of a harmonic trap, the density is higher at the mini-
mum of the trap potential and is lower towards the trap edge.
If the density reaches nj = 1 at the center (j around N/2),
that region will become a band insulator and no current can
flow through it in a one-band model. Therefore Np/N and
y cannot be too large or the insulating state at the center will
emerge and block any current. We found that for a lattice with
N = 512 and Np = 128 held by a harmonic trap potential
with y = 1 × 10−4, the maximal density at the center is less
than one. Fig. 3 (b) shows the density profiles with and with-
out a harmonic trap potential. The QSSC can still be observed
at T = 0 when a weak harmonic trap potential is present,
albeit it lasts for a shorter time period compared to the case
without the trap potential as shown in Fig. 3 (c) and (d).

To study finite-temperature effects, we first diagonalize the
φ = 0 Hamiltonian with and without the trapping poten-
tial to obtain Htot =

∑N
k=1E

t
k(bt)†kb

t
k. The initial condi-

tion is chosen as 〈(bt)†kbtk′〉 = f(Etk)δkk′ , where f(x) =
(exp[(x−µ)/kBT ] + 1)−1 is the Fermi distribution function.
The chemical potential is determined by Np =

∑N
k=1 f(Etk).

One can use the unitary transformation that diagonalizes the
Hamiltonian to obtain cij(t = 0) and follow the equations of
motion as φ(t) turns on. The currents from the initial states
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at T = 4t̄/kB with and without a harmonic trap potential are
shown in Fig. 3 (c) and (d) for φm = π/2 and 3π/2 with
tφ = 10t0. One can see that the phase-induced current at
finite T is smaller when compared to the current at T = 0.
This implies that the phase-induced current is a phenomenon
that requires coherence of the initial state. At finite T the ini-
tial state is mixed according to the Fermi-Dirac distribution
and the tuning of the tunneling coefficient could not drive a
current efficiently. Moreover, in the presence of a harmonic
trap potential at finite T , we observe a slightly tilted regime
in the current instead of a plateau that defines a QSSC. There-
fore in experiments with a harmonic trap, there should only
be an approximate QSSC where the current changes relatively
slowly as time evolves and this approximate QSSC represents
the QSSC that is more prominent as T → 0. Nevertheless, for
zero or finite temperatures with or without a harmonic poten-
tial, the direction and magnitude of the phase-induced current
could still be controlled by the maximal phase φm even when

φ(t) and t̄ are uniform across the whole lattice.

IV. CONCLUSION

We have thus shown that controllable phase-induced trans-
port should be feasible in optical lattices with Peierls substi-
tutions in realistic experimental conditions. Combined with
reservoirs [5], density- or interaction-imbalance [7, 8], and
other types of proposed devices [28], phase-induced transport
may find applications in atomtronics [28], where one tries to
build devices using cold-atoms and optical lattices, or quan-
tum quench dynamics [29] and provides an interesting exam-
ple of dynamical quantum phenomena.
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