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Abstract

We propose and illustrate numerically the possibility of imaging rotational wavepackets in an-

gular space and time using different pump-probe spectroscopic techniques. A general theoretical

framework to perform such rotational mapping is derived and three specific spectroscopies, namely,

birefringence, high harmonic generation and angle-resolved photoelectron spectroscopy, are nu-

merically explored. All three approaches are shown to provide direct mapping of the rotational

coherences of molecules but they are not equivalent; comparison of their results yields interesting

insights into their relative merits. Finally, we illustrate the role played by the symmetry of the

molecular orbitals in determining the quality of the images generated by high harmonic and pho-

toelectron signals. The potential of rotational imaging as a route to both intramolecular coupling

mechanisms and the interaction of molecules with different environments is discussed.

PACS numbers: 37.10Vz,33.80.-b,42.65.Ky,33.15.Mt,33.20.Sn,33.80.Wz
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I. INTRODUCTION

Wavefunction imaging has been the subject of increasing excitement in recent years [1–4].

Several well-established approaches provide a view of the amplitude associated with station-

ary electronic wavefunctions [1–3] or the probability density of vibrational wavefunctions

[4]. Yet more interestingly, the possibility of extracting information about the phase and

modulus of wavefunctions [5] or wavepackets [6–12] has been demonstrated via different

experimental techniques.

The spatiotemporal evolution of a wavepacket arises due to the coherent superposition of

several stationary eigenstates. One can image the time-dependent probability distribution

in co-ordinate space or go further and extract the amplitude and relative phases of all the

individual states that comprise the wavepacket, amounting to quantum state tomography

or holography [7, 8]. The possibility of imaging Rydberg electronic wavepackets in atoms,

by measuring the underlying amplitudes and phases, for instance, was illustrated in Refs.

[9, 10, 12, 13]. More recently, tomography of an electronic wavepacket of a molecule has

been performed using high-order harmonics [14]. A complete quantum state reconstruction

of vibrational wavepackets has been demonstrated in Refs. [7, 11] and time-dependent

vibrational probability distributions have been imaged using laser induced fluorescence in

Refs. [15, 16] and via Coulomb explosion methods in Refs. [17–20].

A particularly interesting case is that of rotational wavepackets, namely, broad coherent

superpositions of eigenstates of the total material angular momentum. Rotationally-broad

coherent wavepackets are formed via sequential rotational excitation induced by the interac-

tion of a moderately-intense laser pulse with the (permanent, transition, or induced) dipole

of the molecular system [21, 22]. The phase relations between the rotational components of

the wavepacket guarantee that the molecular axis (axes) will align with the field polarization

vector(s). In the nonadiabatic limit, where the pulse is short with respect to the rotational

period(s) of the molecule, the superposition of rotational states coherently excited during

the pulse continues to beat after the turn-off, leading to an early field-free alignment pe-

riod and a subsequent revival pattern. In the case of linear or symmetric top molecules,

the early field-free alignment is precisely reconstructed at multiples of the rotational pe-

riod. Experimentally, coherent wavepacket alignment has been explored via a variety of

approaches, including Coulomb explosion techniques [23–25], birefringence studies [26, 27],
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resonant-enhanced multiphoton ionization (REMPI) [28, 29], X-ray spectroscopy [30] and

strong field approaches to determination of the refractive index [31, 32].

To date, the vast majority of studies of rotational wavepackets have focused on applica-

tions of the associated sharp alignment in fields ranging from attosecond pulse generation

[33] and orbital tomography [1, 3, 14] to control of unimolecular chemistry [34] and electron

transport via molecular junctions [35, 36]. The interest in rotationally-broad wavepackets

as such, however, has been noted. In particular, it was illustrated that rotational coher-

ences can serve to explore intramolecular coupling mechanisms, such as rotation-vibration

coupling [37–42]. More interestingly, rotational coherences were shown to contain unique

information regarding the interaction of solvated molecules with their environment, hence,

potentially, a route to the dissipative properties of exotic media [43, 44]. In the weak field

limit, nonadiabatic alignment reduces to the method of rotational coherence spectroscopy -

a well established approach to determining rotational constants (and hence molecular struc-

tures) that was successfully applied to a large variety of complex molecules [45–47]. Our

interest in rotational wavepacket imaging is thus not only for the extension of the imaging

concept to new modes of motion but also as a potential diagnostic tool in molecular research.

A question that has been debated in the past in the context of strong-field-induced align-

ment, and is relevant also to the discussion below, is that of a quantitative measure of the

degree of alignment. The vast majority of the theoretical and experimental studies have

used the expectation value of cos2 θ in the time-evolving wavepacket to that end, where θ

is the polar Euler angle between the space-fixed and body-fixed z-axes. The expectation

value 〈cos2 θ〉 is proportional (up to a constant) to the second moment of the rotational

distribution, hence providing a convenient and transferable 1D measure that is accessible by

several experiments. It was noted in the past, however, that the complete rotational distri-

bution (which contains all moments) provides a wealth of information that is not exhibited

in 〈cos2 θ〉 [48]. In particular, the latter observable exhibits only second order rotational

coherences (since cos2 θ couples angular momentum states J, J ′ only for |J − J ′| = 0, 2),

whereas the rotational probability exhibits all high order rotational coherences. This argu-

ment will be made sharper through discussion of Figs. 1(a) and (b) below. As shown in

the next section, 〈cos2 θ〉 is a measure of the probability that the molecular axis is aligned

along the space fixed z-axis and indeed is close to it when rotational wave packet contains

no more than second order coherences (|J − J ′| = 2). On the other hand, one needs the ro-
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tational probability distribution in order to answer questions such as what is the probability

of finding the molecular axis making a certain angle θ with respect to the pump polariza-

tion axis at any given time t. The rotational probability distribution readily answers such

questions which may prove to be important in the alignment control of molecular interac-

tions. Here, the Coulomb explosion imaging approach has proved a useful, readily visualized

route to exploring additional facets of the rotational distribution. While informative and

successful, this approach requires careful choice of the molecule (very specific bond(s) need

to break through the explosion), tight control of the experimental conditions and nontrivial

analysis,[25] in addition to being limited to the gas phase. The development of more general

and less experimentally demanding imaging approach is thus pertinent.

In the present work we propose three different approaches to image the time evolving

probability density of rotational wavepackets, develop a theoretical framework to simulate

these images, explore their information content, and compare their resolution. Throughout

we restrict attention to linear molecules. In the next section we provide a qualitative discus-

sion of the rotational imaging concept that serves to motivate our approach and place the

different imaging approaches introduced in context. Section III derives the theory, beginning

with the case of Raman induced polarization spectroscopy (RIPS) (Sec. IIIA), proceeding to

high harmonic generation (HHG) (Sec. IIIB) and ending with angle-resolved photoelectron

spectroscopy (PES) (Sec. IIIC). Our results are presented in Sec. IV, and the final section

summarizes our conclusions, pointing to avenues for future research. Several derivations

that we expect to interest our readers but are not essential to follow the text are deferred

to an appendix.

II. BASIC PRINCIPLE OF ROTATIONAL IMAGING

We consider a pump-probe scenario, where the pump is a linearly-polarized, moderately-

intense pulse of duration short with respect to the rotational period. This pulse serves to

excite a rotationally-broad, coherent wavepacket via sequential, angular momentum non-

conserving transitions. The time-evolving rotational probability density is imaged by means

of a time-delayed probe, whose nature and mathematical description are discussed in the

next section. The rotational density operator ρ̃r(τ), a vector in Liouville space, subsequent

4



to the pump pulse is given as,

ρ̃r(τ) =
∑

JMJ ′M ′

ρJMJ ′M ′(τ)
∣

∣ JM
〉〈

J ′M ′
∣

∣, (1)

where ρJMJ ′M ′ represent elements of the rotational density matrix, J and M being the

quantum numbers corresponding to the total material angular momentum and its projection

onto the space-fixed z-axis, respectively, and τ is the time-delay with respect to the pump

pulse. The rotational probability density ρr(θ, φ, τ), a scalar in angular coordinate space, is

thus,

ρr(θ, φ, τ) = 〈θ, φ|ρ̃r|θ, φ〉 =
∑

JMJ ′M ′

ρJMJ ′M ′(τ)YJM(θ, φ)Y ∗
J ′M ′(θ, φ), (2)

where 〈θ, φ|JM〉 = YJM(θ, φ) are spherical harmonics, θ is the polar Euler angle between the

space-fixed and body-fixed z-axes, and φ is the azimuthal angle of rotation about the space-

fixed z-axis. In Eq. (2) the latter axis is taken to be the pump-field polarization vector, but

another definition will be more physically natural and mathematically convenient below.

Spectroscopic signals from rotational wavepackets are shown below to be expressible quite

generally in terms of the expectation value of a rotational operator in the time-evolving

rotational density. The functional form of the rotational operator, denoted M(θ, φ) below,

as a function of the Euler angles, depends on the direction of the polarization vector of the

probe pulse and the experimental probe envisioned; several specific examples are derived in

the next section. The observable optical signal is then,

ISignal(τ, γ) ∝

∣

∣

∣

∣

∣

∑

JMJ ′M ′

ργJMJ ′M ′(τ)

∫

sin θdθdφ YJM(θ, φ)Y ∗
J ′M ′(θ, φ)M(θ, φ)

∣

∣

∣

∣

∣

2

, (3)

where γ is the angle between the space-fixed z-axis and the alignment pulse polarization

vector. (In the case of photoelectron spectroscopy, discussed in Sec. IIIC, the signal depends

on the rotational density, rather than on its square.) Rotational imaging could be envisioned

as sampling the rotational probability of Eq. (2) by rotating the probe polarization vector

with respect to the rotational density quantization axis in Eq. (2). An equivalent and

mathematically more convenient description entails rotation of the pump polarization, and

hence the rotational probability density, with respect to a fixed spatial axis that is defined

by the probe (vide infra) and serves as the quantization axis (the space-fixed z-axis). Thus,

the probability density can be equivalently written,

ργr (θ, φ, τ) = ρr(θ − γ, φ, τ). (4)
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As the pump polarization axis is rotated with respect to the space-fixed z-axis, M is no

longer conserved and the elements of density matrix are parameterized by rotation angle γ.

In the limit where the rotational operator is nearly as sharply peaked as the Dirac-delta

function, that is, M(θ, φ) ≈ δ(θ − θ0)δ(φ − φ0)/ sin θ about a specific set of Euler angles

θ0, φ0,

ISignal(τ, γ) ≈

∣

∣

∣

∣

∣

∑

JMJ ′M ′

ργJMJ ′M ′(τ)YJM(θ0, φ0)Y
∗
J ′M ′(θ0, φ0)

∣

∣

∣

∣

∣

2

≈ |ργr (θ0, φ0, τ)|
2 = |ρr(θ0 − γ, φ0, τ)|

2, (5)

i.e., the signal is proportional to the squared modulus of the rotational probability density

along a certain direction specified by the (experimentally variable) angle γ for any time τ .

In reality the rotational operator M(θ, φ) will not be as sharply peaked as a Dirac-delta

function. Rather, one expects a moderately peaked function that will allow the signal to

probe not the precise rotational density as a function of the Euler angles but rather a coarse-

grained version of it. We will find below that the probe may peak about an angle θ0 6= 0

(while exhibiting an angular breadth). This nonzero peak angle translates into a shift of the

image (considered as a function of γ) with respect to the probability density map. Often,

however, the rotational operator in Eq. (3) will be independent of the azimuthal angle φ,

M(θ, φ) = M(θ). In that case the spectroscopic signal does not have a preferred direction

in azimuthal space and integration of the signal over φ leads to disappearance of the θ0

rotational shift in the obtained image. In either case, in the limit of a sharply defined M(θ),

the (γ, τ)-dependence of Iγsignal(τ) maps the (θ, τ)-dependence of the rotational probability

density.

To further motivate our discussion, and also to serve as a basis for testing the fidelity

of the imaging techniques introduced below, we show in Figs. 1(a) and 1(b) the rotational

probability density of Eq. (2) vs the polar Euler angle θ and the time-delay τ . Here and

below we consider specifically the cases of N2 and O2 molecules, as these two systems have

been intensively studied in the alignment context, both experimentally and numerically, and

since they represent two common and very different molecular symmetries. Shown to the

left of Figs. 1(a) and 1(b) are the corresponding averaged alignment measures 〈cos2 θ〉 (τ).

As discussed in Sec. I, 〈cos2 θ〉 (τ) exhibits several, but not all, features of the time-evolving

wavepacket. The expectation value of cos2 θ in the rotational density of Eq. (2) provides a

coarse grained image of the rotational probability density about the θ = 0 point. It therefore
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conveys the probability of the molecular axis being parallel to the space-fixed z-axis at any

given time in an averaged sense. Although it is an extremely useful and a very popular

observable for quantifying the degree of alignment with respect to the space-fixed z-axis, it

mirrors the probability density only in the vicinity of θ = 0. Further, as Figs. 1 illustrate,

the probability distribution exhibits structure that is not observed in cos2 θ since cos2 θ

couples only rotational levels J and J ′ with |J−J ′| = 0, 2 and hence exhibits only 2nd order

rotational interferences, whereas a wavepacket excited by a pulse of sufficient amplitude and

duration contains a broad range of high order rotational coherences. The contour figures

characterizing the rotational probability densities for the two molecules considered motivate

the development of rotational wavepacket imaging approaches and will also serve in the

analysis of the results below.

III. THEORY

To realize the imaging of the rotational probability density of linear molecules we now

turn to deriving expressions for the signals corresponding to different potential rotational

imaging experiments. Specifically, we derive the form of the rotational operator, M(θ, φ)

in Eq. (3), for three time-resolved spectroscopic techniques. The functional dependence of

M(θ, φ) on θ and φ differs in the three cases and determines the resolution of the rotational

image in angular space.

A. Raman induced polarization spectroscopy

An optical spectroscopy that has emerged in recent years as a powerful approach to probe

field-free alignment dynamics induced by a strong pulse, is one that is similar to the optical

Kerr effect and measures the birefringence produced by the alignment of the molecular

sample [26, 27]. The experimental geometry for this spectroscopy, termed Raman induced

polarization spectroscopy (RIPS), consists of a linearly polarized aligning pulse followed

by a time-delayed, linearly polarized probe pulse whose polarization vector is tilted with

respect to the aligning pulse by π/4. The signal is collected along a direction n̂ that is

perpendicular to the probe polarization vector and lies in the plane defined by the pump

and probe polarization vectors. The observed signal, IRIPS, is proportional to the squared
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magnitude of the expectation value of the n̂-projection of the induced dipole operator ~µind,

IRIPS(τ) ≈ |〈n̂ · ~µind〉|
2 = |Tr{n̂ · ~µind ρ̃r(τ)}|

2. (6)

In the context of conventional RIPS experiments, where the pump polarization direction

in fixed with respect to that of the probe and the observation direction, it is conventional

(and convenient) to define the pump pulse polarization vector as the space-fixed z-axis, with

the plane spanned by the pump and probe polarization vectors defining the space-fixed z-y

plane. Thus, ε̂pr = εz ẑ + εyŷ with εz = εy and the polarization vector of the analyzer is

n̂ = nz ẑ + ny ŷ, where nz = −ny. Here and below ε̂pr denotes a unit vector along the probe

field polarization direction. Equation (6) can thus be recast as,

IRIPS(τ) ≈

∣

∣

∣

∣

∣

∑

JMJ ′M ′

ρJMJ ′M ′(τ)

∫

sin θdθdφ YJM(θ, φ)Y ∗
J ′M ′(θ, φ)(cos2 θ − sin2 θ sin2 φ)

∣

∣

∣

∣

∣

2

.

(7)

Given, however, that the pump field is linearly polarized along the space fixed z-axis, the pro-

jection of angular momentum on the z-axis, given by the quantum number M , is conserved

and hence
〈

sin2 φ
〉

= 0. Thus, the conventional RIPS signal is proportional to 〈cos2 θ〉. Past

work on the characterization of the alignment induced by moderately intense laser pulses

has successfully applied RIPS to measure and control the time-evolving expectation value

〈cos2 θ〉.[26, 27]

As noted above, although 〈cos2 θ〉 has been the most popular measure of strong field-

induced alignment, it provides only the second moment of the rotational wavepacket and

hence does not convey the complete information contained in the wavepacket. Here we

envision a slightly modified approach, based on the standard RIPS concept,[27] where the

pump field polarization vector is stepwise rotated with respect to the weak-field, time-

delayed probe polarization vector, the latter remaining perpendicular to n̂, to record the

polarization signal vs the time delay and the angle (γ) between the space-fixed z-axis and

the pump polarization vector (ε̂pu), γ = cos−1 ε̂pu · ẑ. As the pump polarization vector

is rotated with respect to the space-fixed z-axis (
〈

sin2 φ
〉

6= 0), the rotational operator

M(θ, φ) = cos2 θ − sin2 θ sin2 φ peaks around both θ = 0 and θ = π/2. This leads to a

mirror reflection of the probability density map about a symmetry plane passing through

θ = π/4. If, however, one records only the component of the RIPS signal that is parallel

to the space fixed z-axis (e.g., by using a second analyzer), the rotational density mapping
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is significantly improved. It is readily shown that the intensity of the z-component of the

RIPS signal is given by,

I
‖
RIPS(τ, γ) ≈

∣

∣

∣

∣

∣

∑

JMJ ′M ′

ργJMJ ′M ′(τ)

∫

sin θdθdφ, YJM(θ, φ)Y ∗
J ′M ′(θ, φ) cos2 θ

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∣

∑

JMJ ′M ′

ρJMJ ′M ′(τ)

∫

sin θdθdφ, YJM(θ − γ, φ)Y ∗
J ′M ′(θ − γ, φ) cos2 θ

∣

∣

∣

∣

∣

2

(8)

irrespective of the relative orientation of the pump polarization vector in space (that is, for

all γ). Equation (8) illustrates that the γ-dependence of the extended RIPS signal thus

generated maps the θ-dependence of the rotational probability density. One can also use the

perpendicular component of the RIPS signal alone in mapping the rotational density but,

as will be discussed in the next section, the same information (with the same resolution) is

obtained using either component.

B. High-order harmonic signals

High harmonic signals from nonadiabatically aligned molecules have been the topic of

intensive study over the past 7 years, and continue to offer new questions for research. High

harmonic generation (HHG) is well understood in terms of a 3-step process [49, 50], wherein

ionization takes place close to the maximum of the electric field, generating a free-electron

wavepacket in the continuum that follows the electric field oscillations. If the field is linearly

(or close to linearly) polarized, the electronic wavepacket will revisit the vicinity of the core,

and, with a small probability, undergo recombination, thus emitting harmonics of the driving

field. The intense (and very fruitful) interest in HHG from nonadiabatically aligned linear

molecules has been largely inspired by the early report of tomographic imaging of molecular

orbitals based on measurements of harmonic spectra at a series of angles between the align-

ment and ionization polarization vectors [1]. Of specific interest for the focus of the present

study are subsequent experiments that recorded harmonic signals as a function of the time

delay between an alignment (pump) pulse and a subsequent ionization (probe) pulse, seeking

to understand the functional form of the τ -dependent spectra and their relation to molecular

properties. While tomographic imaging of orbitals remains the topic of controversy, it has

been shown that HHG from aligned molecules contains interesting structural and dynamical

information about the underlying molecular system.
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In particular, of relevance to the present work, Refs. [51, 52] point out the informa-

tion content of harmonic signals with regard to the rotational coherences responsible for

the wavepacket alignment. Specifically, the theory of Refs. [51, 52] predicts that harmonic

spectra would exhibit much higher order fractional rotational revivals than have been ob-

served so far, due to the involvement of rotational operators of more complex form than

the conventional cos2 θ in determining the spectrum (see the discussion of Sec. I; explicit

forms of such operators are provided below). Very recently, these predictions were confirmed

experimentally [53]. An interesting question, thus, is the extent to which, and the way in

which, HHG can serve to map the rotational density of wavepackets.

The theory of HHG from aligned molecules is derived elsewhere[51, 52] and is not repro-

duced here. We provide only the results that are required in order to reformulate the signal

in the general form (3). The intensity of the emitted harmonic polarized along a direction n̂,

is proportional to the squared magnitude of the Fourier transform of the expectation value

Tr{~µ · n̂ ρ̃(τ, t)} = Tr{~µ · nz ẑ ρ̃(τ, t)}+ Tr{~µ · ny ŷ ρ̃(τ, t)}, (9)

where ~µ is the dipole operator, ρ̃(τ, t) is the complete (electronic rovibrational) density oper-

ator of the molecule, ŷ and ẑ are unit vectors along the space-fixed y- and z-axes, respectively,

and we consider the common set up of HHG experiments from aligned molecules, where the

alignment (pump) pulse polarization vector, the ionization (probe) polarization vector and

the detection direction are coplanar. The polarization vector of the ionization (probe) pulse

defines the space-fixed z-axis and the common plane of the polarization vectors is taken to

define the (y,z) plane with γ = cos−1(ε̂pu · ε̂pr) = cos−1(ε̂pu · ẑ). The two components of the

signal amplitude in Eq. (9) for linear molecules are given as [54],

Tr{~µ · nz ẑ ρ̃(τ, t)} =

∫

dR̂ ργr (θ, φ, τ)

{

cos2 θ
∑

ll′kl

Ylkl(θ, χ)Y
∗
l′kl

(θ, χ)F‖(l, l
′, kl, t)

+ sin2 θ
∑

ll′kl

Ylkl(θ, χ)Y
∗
l′kl

(θ, χ)F⊥(l, l
′, kl, t)

}

+ c.c., (10)

and

Tr{~µ · nyŷ ρ̃(τ, t)} =

∫

dR̂ ργr (θ, φ, τ) sinφ sin θ cos θ

{

∑

ll′kl

Ylkl(θ, χ)Y
∗
l′kl

(θ, χ)F‖(l, l
′, kl, t)

−
∑

ll′kl

Ylkl(θ, χ)Y
∗
l′kl

(θ, χ)F⊥(l, l
′, kl, t)

}

+ c.c., (11)
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where R̂ denotes collectively the Euler angles of rotation, R̂ = (θ, φ, χ), and χ is the az-

imuthal angle of rotation about the body-fixed z-axis. In Eqs (10, 11) l and kl are the

electronic angular momentum and its projection onto the body-fixed z-axis, the electronic-

vibrational factors are given as,

F‖(⊥)(l, l
′kl, t) =

2

π
il−l′−1

∑

vc

|〈v|vc〉|
2ρvv(τ)

∫

dk
〈

b
∣

∣µ‖(⊥)

∣

∣Φlkl

〉

×

∫ t

dt′ρbb(t
′)εpr(t

′)
〈

Φl′kl

∣

∣µ‖(⊥)

∣

∣ b
〉

e−iS(t,t′), (12)

v and vc denote the vibrational indexes of the bound and ionic states, respectively, ρvv

and ρbb are the bound state vibrational and electronic densities, respectively, and S =
∫ t

t′
(Ek(t′′) + Evc + Ip − Evb)dt′′, Ip being the ionization potential and Ek(t) the continuum

electronic energy. As above, we reserve the variable τ to denote the delay between the

alignment and probe pulses, and use t to denote time with respect to the ionization pulse.

Assuming that Born-Oppenheimer separability is valid for the bound state, we express the

complete probability density as

ργ(θ, φ; τ, t) = ργr (θ, φ; τ)ρvv(τ)ρbb(t). (13)

Thus, the ρr(θ, φ, τ) in Eqs. (10,11) contains the response of the rotational subspace to the

alignment pulse and evolves on rotational time-scales, whereas the F‖(⊥)(l, l
′kl, t) contain

the response of the electronic subspace to the ionization pulse and evolve on the electronic

time-scales. Although in principle the partial wave expansion in Eqs. (10,11) involves an

infinite series, in practice it often converges rapidly.

Equations (10,11) thus formulate the harmonic spectra in the general form Eq.(3), where,

however, the rotational operator M(θ, φ) depends not only on the geometry of the exper-

iment, as in the RIPS case, but involves also the electronic symmetry of the bound state

of the molecule. Each electronic-vibrational factor F‖(⊥) describes (i) the process of tunnel

ionization of the bound electronic state
∣

∣ b
〉

into the continuum partial waves
∣

∣Φl,kl

〉

subject

to the interaction of the probe laser field εpr(t
′) with the dipole moment µ‖(⊥) parallel (per-

pendicular) to the molecular axis, (ii) propagation of the electron in the continuum under

the action of the laser field, in the course of which its phase S and momentum k evolve, and

finally (iii) recombination with the bound state. Since the electronic dynamics is entangled

with the rotational dynamics (although evolving on widely disparate time-scales), the ro-

tational response depends on both the electron energy (hence the harmonic order) and the
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orbital symmetry. On the one hand, this feature may serve to extract valuable information

about the electronic dynamics from measurements of the τ -dependence of harmonic spectra

[53]. On the other, it suggests that the resolution of rotational mapping based on HHG will

be system-dependent.

The two cases most intensively studied in the context of HHG from aligned molecules are

those of the N2 and the O2 molecules. In the former case, Eqs. (10,11) reduce to,

Tr{~µN2
· nz ẑ ρ̃N2

(τ, t)} ∝

∫

dR̂ ργr (θ, φ; τ) cos
4 θF‖(1, 1, 0, t), (14)

and

Tr{~µN2
· ny ŷ ρ̃N2

(τ, t)} ∝

∫

dR̂ ργr (θ, φ; τ) cos
3 θ sin θ sin φF‖(1, 1, 0, t), (15)

where attention is restricted to the first (dominating) term in the partial wave expansion.

In the latter case, one finds,

Tr{~µO2
· n̂z ẑ ρ̃O2

(τ, t)} ≈

∫

dR̂ ργr (θ, φ; τ)
{

cos2 θ
[

Y11Y
∗
11(F‖(1, 1,−1, t) + F‖(1, 1, 1, t))

+Y11Y
∗
31(F‖(1, 3,−1, t) + F‖(1, 3, 1, t)) + ...........

]

+ sin2 θ [Y10Y
∗
10F⊥(1, 1, 0, t) + Y10Y

∗
30F⊥(1, 3, 0, t) + ..]

}

+ c.c.. (16)

and

Tr{~µO2
· n̂yŷ ρ̃O2

(τ, t)} ≈

∫

dR̂ ργr (θ, φ; τ) cos θ sin θ sinφ
{[

Y11Y
∗
11(F‖(1, 1,−1, t)

+F‖(1, 1, 1, t)) + Y11Y
∗
31(F‖(1, 3,−1, t) + F‖(1, 3, 1, t)) + ...........

]

− [Y10Y
∗
10F⊥(1, 1, 0, t) + Y10Y

∗
30F⊥(1, 3, 0, t) + ......]}+ c.c., (17)

where several terms, whose magnitudes do not differ widely, have been retained. As a

consequence of orbital symmetry the first term (the l = 1, kl = 0 partial wave) dominates in

the case of N2, whereas several initial terms contribute for O2, including the perpendicular

component of the dipole element. Thus, in the case of N2 the rotational operator M(θ, φ)

(see Eq. (3)) does not differ qualitatively from its analogue in the RIPS case, cos4 θ being

only slightly better spatially-defined than cos2 θ. In the case of O2, by contrast, higher order

rotational moments can dominate and better spatial resolution may be expected, depending,

however, on the harmonic order.
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C. Angle-resolved photoelectron spectroscopy

Time- and angle-resolved photoelectron spectroscopy (PES) has been proposed in the

past as a route to the rotational composition of wave packets [37–42, 55, 56] and their time-

evolving electronic symmetry [41, 48, 57–62]. Here, the pump pulse aligns the molecule and

the (weak) probe pulse leads to photo-ejection of electrons that are resolved with respect to

both angle and energy (the latter to within the probe pulse band-width) and can be recorded

as a function of the pump-probe time delay. As in the previous subsections, we define the

space-fixed z-axis as the probe pulse polarization vector, ε̂pr = ẑ, with the pump (alignment)

pulse polarization vector, ε̂pr defining the space-fixed zy-plane and γ = cos−1(ε̂pu · ẑ).

The time evolving population of ejected photoelectrons as a function of the continuum

momentum ~k is given as,

PPES(~k, {c}, τ, t, γ) = Tr{
∣

∣~k, {c}
〉〈

~k, {c}
∣

∣ρ̃γ(τ, t)} (18)

where {c} denotes collectively the electronic, vibrational and rotational indices of the ion

core, {c} = (c, vc, Jc,Mc) and the signal is proportional to the long time limit of Eq. (18),

limt→∞ PPES(~k, {c}, τ, t, γ). To facilitate comparison with the previous sections, we use the

subscripts c to denote the ion core quantum numbers, retaining the set (b, v, J,M) to spec-

ify the bound state quantum numbers. Equation (18) reduces to evaluating the density

matrix element pertaining to a continuum electron occupying a well-defined momentum

state and the associated rotational and vibrational density matrices of the ion core, namely,

ργ~k{c},~k{c}(t). Experimental measurements of time-resolved PES signals, however, are mostly

focused on less detailed observables that are not resolved with respect to the final state ro-

tational and vibrational levels. Proceeding to sum Eq. (18) over the collection of quantum

indexes {c}, we make use of the Quantum Liouville equation as detailed in Appendix A to

find,

PPES(~k, τ, t, γ) =
∑

{c}

ργ~k{c},~k{c}(τ, t) =
∑

{c}{b}

−
i

~

〈

{b}
∣

∣~µ · ε̂pr
∣

∣~k, {c}
〉

×

∫ t

−∞

dt′εpr(t
′)ργ~k{c},{b}(τ, t

′) + h.c., (19)

where {b} labels the bound electronic state along with its associated rotational-vibrational

manifold, {b} = (b, v, J,M), ~µ, as above, is the molecular dipole vector and ε̂pr is a unit

vector in the direction of polarization of the probe pulse, ε̂pr = ẑ. As Eq. (19) illustrates, the
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population of photoelectrons in a continuum state
∣

∣~k, {c}
〉

is determined by the coherence

term ργ~k{c},{b}, which is an off-diagonal density matrix element. Making use of the Quantum

Liouville equation and following the derivation of Appendix A, we arrive at an approximate

expression for the element of interest,

ργ~k{c},{b}(τ, t
′) ≈

∑

{b′}

i

~

〈

~k, {c}
∣

∣~µ · ε̂pr
∣

∣ {b′}
〉

∫ t′

−∞

dt′′εpr(t
′′)ργ{b′},{b}(τ, t

′′)e
i

~
(E{c}−E{b})(t′′−t′),

(20)

where E{c} and E{b} denote the continuum and bound state energy eigenvalues and the

probe pulse has been expressed as ~εpr(t) = ε̂prεpr(t). In deriving Eq. (20), we have assumed

that (1) the pump and probe pulses do not overlap in time and hence the pump field does

not effect the photoelectron dynamics, and (2) the probe intensity is below saturation,

hence continuum coherences and populations are negligible as compared to the bound state

analogues.

Using Eqs. (19) and (20) we have,

PPES(~k, τ, t, γ) ≈
2

~2
Re

∑

{c}{b}{b′}

{

〈

{b}
∣

∣~µ · ε̂pr
∣

∣~k, {c}
〉〈

~k, {c}
∣

∣~µ · ε̂pr
∣

∣ {b′}
〉

∫ t

−∞

dt′εpr(t
′)

×

∫ t′

−∞

dt′′εpr(t
′′)ργ{b′},{b}(τ, t

′′)e
i

~
(E{c}−E{b})(t′′−t′)

}

. (21)

We proceed by factorizing the bound component of the density matrix into electronic, vi-

brational and rotational components in the spirit of the Born-Oppenheimer approximation

as,

ργ{b},{b′}(τ, t
′′) = ρbb(t

′′)ργJMJ ′M ′(τ)ρvv′(τ), (22)

where, as in the above, ρbb is the electronic, ργJMJ ′M ′ the rotational and ρvv′ the vibrational

density matrix elements of the bound state. Given that the bound state rotational and

vibrational density matrix elements are not changed during the brief ionization time, the

equation of motion for the rotational and vibrational density matrix elements are determined

by a Quantum Liouville equation that involves solely the pump pulse. Finally, neglecting the

molecular ion rotational energies as compared to the electronic energies in the exponential

term (for O2, for instance, the ratio of these energies is 10−5), and making use of the closure

property of spherical harmonics,

∑

JcMc

〈

θ, φ
∣

∣JcMc

〉 〈

θ′, φ′
∣

∣JcMc

〉∗
= δ(θ − θ′)δ(φ− φ′)/ sin θ, (23)
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one finds,

PPES(~k, τ, t, γ) ≈
2

~2
Re

{

∑

vcvv′

ρvv′(τ) 〈v|vc〉 〈vc|v
′〉

∑

JMJ ′M ′

ργJMJ ′M ′(τ)

∫

dR̂YJM(θ, φ)Y ∗
J ′M ′(θ, φ)

×
[

〈

b
∣

∣µ‖

∣

∣~k
〉〈

~k
∣

∣µ‖

∣

∣ b′
〉

cos2 θ +
〈

b
∣

∣µ⊥

∣

∣~k
〉〈

~k
∣

∣µ⊥

∣

∣ b′
〉

sin2 θ
]

∫ t

−∞

dt′εpr(t
′)

×

∫ t′

−∞

dt′′εpr(t
′′)ρbb(t

′′)e
i

~
(E{c}−E{b})(t′′−t′)

}

, (24)

where µ‖ and µ⊥ are the components of the dipole operator parallel and perpendicular to

the molecular axis and we have assumed that the matrix elements of these operators in the

electronic basis (the
〈

b
∣

∣µ‖

∣

∣~k
〉

in Eq. (24)) are independent of the vibrational coordinates.

The continuum electron wave function is conveniently expanded in a partial wave series

as,

〈Q|~k〉 =

√

2

π

∑

lmlkl

ilDl∗
mlkl

(R̂)Y ∗
lml

(k̂)Φlkl(k,Q, t), (25)

where Q denotes the electronic coordinates with respect to the body-fixed frame, l and

kl are the electronic angular momentum and its body-fixed z-projection (see Sec. IIIB),

Φlkl(k,Q, t) is the corresponding partial wave with k = |~k|, and ml denotes the projection

of l onto the space-fixed z-axis. Using Eq. (25) in Eq. (24) we have,

PPES(~k, τ, t, γ) ≈
4

π~2
Re







∑

vv′vc

ρv′v(τ) 〈v|vc〉 〈vc|v
′〉

∑

ll′klmlm
′
l

Y ∗
lml

(k̂)Yl′m′
l
(k̂)

×
∑

JMJ ′M ′

ργJMJ ′M ′(τ)

∫

dR̂ YJM(θ, φ)Y ∗
J ′M ′(θ, φ)Dl′

m′
l
kl
(R̂)Dl∗

mlkl
(R̂)

×
[

cos2 θµ‖(l, kl)µ
∗
‖(l

′, kl) + sin2 θµ⊥(l, kl)µ
∗
⊥(l

′, kl)
]

× il−l′
∫ t

−∞

dt′εpr(t
′)

∫ t′

−∞

dt′′εpr(t
′′) exp

[

i

~
(E{c} − E{b})(t′′ − t′)

]

ρb′b(t
′′)

}

, (26)

where the partial-wave electronic dipole matrix elements are defined as µ‖(l, kl) =
〈

φb

∣

∣µ‖

∣

∣Φlkl

〉

and µ⊥(l, kl) =
〈

φb

∣

∣µ⊥

∣

∣Φlkl

〉

. Considerable simplification has been ob-

tained in Eqs. (24,26) from the fact that cross products of dipole matrix elements such

as µ‖(l, kl)µ
∗
⊥(l

′, kl) cancel out. Equation (26) is of the form (3), where, however, the ro-

tational operator M(θ, φ) is a complex function of the Euler angles. Similar to the HHG

case of Sec. IIIB, M(θ, φ), and hence the resolution of the mapping, depend on both the

molecular symmetry and the electron dynamics.
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To gain qualitative insight into the form of Eq. (26), and hence its potential to serve as

a rotational imaging, it is useful to introduce several assumptions and approximations that

will simplify and make more explicit the functional dependence of M(θ, φ) on the Euler

angles. Assuming that the pump pulse is detuned far from vibrational transition frequencies

(which is the case in most alignment experiments), vibrational coherences in the bound state

are not excited and the double sum over v, v′ reduces to a single term (corresponding to the

initial vibrational state in experiments where the parent state is vibrationally selected). The

incoherent sum over vc becomes redundant if the final vibrational state of the ion is resolved.

In this situation, the long time limit of the double integral in Eq. (26) reduces to a constant

that is primarily determined by the pulse envelope. Assuming further that the detection

direction (k̂ in Eq. (26)) is chosen to lie along the space-fixed z-axis (defined above by the

probe polarization direction), k̂ = ε̂pr = ẑ, the double sum over ml, m
′
l reduces to a single

term, ml = m′
l = 0, and one finds for the PES signal IPES(~k, τ, t, γ) = limt→∞ PPES(~k, τ, t, γ)

IPES(k, k̂ = ẑ, τ, γ) ∝ Re

{

∑

ll′kl

il−l′
∑

JMJ ′M ′

ρJMJ ′M ′(τ)

∫

dR̂ YJM(θ, φ)Y ∗
J ′M ′(θ, φ)

×Ylkl(θ, χ)Y
∗
l′kl

(θ, χ)
[

cos2 θµ‖(l, kl)µ
∗
‖(l

′, kl) + sin2 θµ⊥(l, kl)µ
∗
⊥(l

′, kl)
]

}

, (27)

where, in order to simplify the notation and focus on the components that are relevant for our

purpose, we have omitted all the constants. Equation (27) is reminiscent of the expression

for the amplitude of the HHG signal along the space fixed z-axis, given by Eq.(10). A similar

series of rotational operators is obtained for the two cases, the important difference between

them arising from the respective dipole matrix elements. As discussed in the context of HHG

in the previous subsection, although in principle the partial wave expansion of the continuum

electronic wavefunction is infinite, in practice it often converges rapidly. Assuming, as in the

HHG case, that due to the orbital symmetry of N2 and O2 the first term (the l = 1, kl = 0

partial wave) dominates for the former whereas several initial terms contribute for the latter,

we find,

IN2

PES(k, k̂ = ẑ, τ, γ) ∝ Re

{
∫

dR̂ ργr (θ, φ, τ) cos
4 θ|µ‖(l = 1, kl = 0)|2

}

(28)
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PO2

PES(k, k̂ = ẑ, τ) ∝ Re

{
∫

dR̂ ργr (θ, φ, τ)
(

cos2 θ
{

Y11Y
∗
11(|µ‖(1, 1)|

2 + |µ‖(1,−1)|2)

−
([

Y11Y
∗
31(µ‖(1, 1)µ

∗
‖(3, 1) + µ‖(1,−1)µ∗

‖(3,−1))
]

+ c.c.
)

+ .....
}

+ sin2 θ
{

Y10Y
∗
10|µ⊥(1, 0)|

2 − Y10Y
∗
30µ⊥(1, 0)µ

∗
⊥(3, 0)− Y30Y

∗
10µ⊥(3, 0)µ

∗
⊥(1, 0) + ....

})

}

.(29)

for the O2 symmetry. Unlike in the case of N2, the perpendicular component of the dipole

element, µ⊥, need not be small compared to the parallel in the case of O2 owing to its πg

symmetry. For instance, |µ‖(1,±1)|2 = |µ⊥(1, 0)|
2. Thus, for the set-up envisioned above

(k̂ = ε̂pr), assuming that a single partial wave dominates the signal, the operator M(θ, φ)

behaves as cos4 θ in the case of N2 and as a superposition of quadratic and quartic powers of

cos θ in the case of O2 molecules. The former is a relatively well defined function of θ, peaked

at θ = 0, whereas the latter depends on the composition of the superposition. In practice,

whereas the assumptions introduced in the derivation of Eq. (27) are readily realized, the

assumption that a single partial wave determines the signal, Eqs. (28), is typically invalid.

The response of the images to the number of partial waves contributing to the spectrum is

explored in Sec. IVC.

IV. RESULTS AND DISCUSSION

In this section we proceed to apply the theory derived in the previous section to explore

possibilities of mapping the density of rotational wavepackets onto experimental observables.

As above, we use the N2 and O2 molecules as simple complementary examples. We begin in

Sec. IVA with a discussion of RIPS, continue, in Sec. IVB to the case of HHG, and conclude

with a discussion of rotational imaging by means of PES. The rotational wavepackets are

created with a Gaussian pump pulse of 25 fs pulsewidth and a peak intensity of 75 TWcm−2

for N2 and 25 TWcm−2 for O2. All calculations are carried out at a relatively high rotational

temperature (30 K), where about 15 rotational states are thermally populated. Since our

goal is to explore a new general concept, rather than to describe the properties of specific

molecules, we compute the dipole matrix elements for the HHG case within the strong-field

approximation and for the PES case using a Coulomb wave function description for the

continuum states. Thus, our results do not provide quantitative signals for either molecule,

but can asses the potential of the proposed imaging methods, clarify their differences and

similarities, and illustrate the sense in which and degree to which they depend on the system
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details.

A. Rotational wavepacket imaging using RIPS

Figures 2(a) and 2(b) show contour plots of the parallel component of the (extended)

RIPS signal vs the pump probe time delay τ and the angle γ = cos−1(ε̂pu · ẑ) between the

pump polarization vector and the space-fixed z-axis, calculated as detailed in Sec. IIIA.

The rotational operator in question is M(θ, φ) = cos2 θ, a function that is peaked at θ = 0,

but is a relatively broad function of θ. Comparison of Figs. 1(a) and 1(b) with Figs. 2(a)

and 2(b) illustrates the concept of rotational mapping; the signal as a function of (γ, τ)

reproduces the structure of the rotational density in (θ, τ) space rather faithfully, tracing

the fractional revival structure as well as the structure of ρr in angular space. The finite

angular width of the M(θ, φ) = cos2 θ leads to a certain degree of coarse graining, but this

is barely discerned. The result of Figs. 2(a) and 2(b) is remarkable considering the fact

that it is obtained from a non-intrusive optical signal that is more general and significantly

simpler to measure and analyze than imaging via Coulomb explosion. Similar results are

obtained using the component of the signal that is perpendicular to the space fixed z-axis

to map the rotational density (not shown), in which case the rotational operator in question

is M(θ, φ) = − sin2 θ sin2 φ. The map is reversed in angular space but its resolution is

unaltered.

To compare more quantitatively the RIPS signal with the rotational density, we consider,

in Figs.3 and 4, constant angle cuts of the contour plot in Figs. 2(a) and 2(b) respectively,

and compare them with the temporal evolution of cuts through the contour plots of the cor-

responding rotational densities of N2 and O2, Figs. 1(a) and 1(b). The traces corresponding

to the RIPS signal (red dashed curves in Figs. 3 and 4) are seen to capture the temporal

behavior of the rotational probability (shown in black), although the fine structure of ρr

is largely averaged out. As expected, the mapping is accurate in the regions of maximum

alignment and anti-alignment, but suffers in the region of θ = π/3, where the probability

oscillations about the isotropic value is a minimum. The plots have been normalized with

respect to the isotropic value and the smaller variations of the RIPS signal vis-a-vis the

rotational wave packet are consistent with the lesser contrast seen in the contour plots of

Figs. 2(a) and 2(b).
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Although the present imaging calculations are obtained specifically for the cases of N2

and O2, the precision with which the rotational mapping via (extended) RIPS is achieved

for linear systems is molecule-independent, as the rotational operator considered depends

only on the geometry of the experiment. The results of Figs. 2(a) and 2(b) are therefore

general.

B. Rotational wavepacket imaging using HHG

Rotational mapping via harmonic signals is conceptually similar to mapping via RIPS,

see Eq. (3), the major difference being that the rotational operator in question depends on

both the detection direction (n̂ in Eqs. (10)and (11)) and the symmetry of the molecular

orbital(s) involved. The former dependence offers, as illustrated below, the possibility to

tune the rotational operator so as to have advantageous spatial dependence that will improve

the resolution of the mapping. The latter dependence renders the mapping less general but

more controllable than the RIPS analog.

Figure 5a illustrates the 23rd harmonic of N2 vs the angle γ = cos−1(ε̂pu · ε̂pr) = cos−1(ε̂pu ·

ẑ) and the pump-probe time delay τ , as calculated within the theory of Sec. IIIB. As is

evident from the discussion of Sec. IIIB, for a detection angle n̂ = ẑ the resolution of

the mapping is only marginally improved as compared to the case of RIPS (the rotational

operator in question, M(θ, φ) ≈ cos4 θ, being only slightly better defined spatially than

the one corresponding to RIPS, M(θ, φ) = cos2 θ ). If, however, the detection direction is

rotated with respect to the space-fixed z-axis the rotational operator becomes a function of

the azimuthal Euler angle φ, leading to much enhanced resolution. This is shown in Fig.

5(a), where the harmonic emission is detected at an angle of π/2 from the z-axis. Comparison

of Fig. 5(a) with the N2 rotational density of Fig. 1(a) and the corresponding RIPS mapping

of Fig. 2(a) illustrates much improved contrast as compared to RIPS mapping. The higher

contrast is achieved due to the sin φ term in the perpendicular component of the harmonic

spectrum, see Eq (11). As the signal is averaged over the entire range of the azimuthal

angular space, the presence of sinφ effectively confines it to the vicinity of the z-y symmetry

plane, as the sin function peaks at φ = π/2, 3π/2.

Figure 5(a) exhibits also the mapping shift predicted in Sec. IIIB. The shift is readily

seen to arise from the perpendicular component of the emission, whose leading term is
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proportional to cos3 θ sin θ sinφ, a function that peaks around π/6. Combined with the

parallel component, whose dominating term behaves as cos4 θ, along with other terms in the

series expansion, this term leads to a peak around θ0 ≈ 25 deg, which expresses itself as a

ca. 25 deg shift of the map.

More quantitative comparison of the RIPS and the HHG mapping strategies is provided

in Fig. 3, where we show constant angle cuts through the contour maps of Figs. 1(a),

2(a) and 5(a). The blue curves, corresponding to the harmonic spectrum, illustrate the

anticipated enhanced contrast as compared to the RIPS case. Except in regions where the

probability density oscillations is close to its isotropic value, the HHG mapping is seen to

reproduce all the gross features and much of the fine structure of the rotational density. Here

too a rotational shift is noted in comparison of the cuts through the probability density and

the HHG signals.

In the case of O2 molecules, rotational imaging via harmonic signals is less mathemati-

cally transparent than in the N2 case, due to the involvement of several terms of comparable

magnitude in the partial wave expansion of the observable, see Eqs. (16) and (17). At the

same time, the participation of higher angular momentum states of the continuum electron

results in the involvement of rotational operators that include higher powers of the trigono-

metric functions and are hence better localized in angular space. An example is provided in

Fig. 5(b), which displays the 23rd harmonic of O2 vs γ and τ for an emission direction n̂ in

the z-y plane, rotated by π/4 with respect to the space fixed z-axis. Comparison with the

corresponding rotational density, Fig. 1(b), illustrates that the HHG mapping reproduces

relatively accurately even the fine structure of ρr. Consistent with our expectations based

on the discussion of the N2 results above, we find that for an observation direction n̂ = ẑ

(not shown), the fine structure is lost, as the φ integration averages it out. It is the local-

ization in the z-y plane that the perpendicular component of the signal introduces which

sharpens the contrast and leads to emergence of the fine structure. As anticipated by the

discussion of Section II, if emission parallel to the z-axis alone is considered, no rotational

shift occurs as a result of averaging of the signal over all φ values, as the rotational operator

M has no φ dependence. Similar to the case of N2, when the emission direction includes a

component perpendicular to the z-axis, a rotational shift of ca. θ0 ≈ 20 deg is observed, see

Fig. 5(b). These conclusions are again substantiated by Fig. 4, which compares constant

angle cuts through the contour maps of Figs. 1(b), 2(b) and 5(b). Unlike in the case of N2,
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the mapping does not lose its fine structure in regions where the probability density is small

but captures all features. A similar rotational shift to that discussed above is again evident

through comparison of the cuts through the rotational probability and the HHG signal.

The results summarized in this subsection illustrate the relative merits of RIPS and HHG

as potential rotational imaging techniques. The former is independent of the molecular

details and is general, being fully determined by the experimental geometry, whereas the

latter is less coarse-grained and hence leads to better resolution, at least for the molecular

symmetries considered here.

C. Rotational imaging via PES

As the ejected photoelectron momentum vector is angle-resolved, rotational imaging via

PES can in principle afford better resolution and sensitivity as compared to RIPS, similar

to HHG imaging. We remark, however, that the rotational operators involved are generally

different in the PES and HHG cases; the former depends on the angular momentum of the

ejected electron whereas the latter depend on the angular momenta of both the ionizing and

the recombining continuum states.

Panel a of Fig. 6 shows the photoelectron signal for N2 molecules vs the angle γ =

cos−1(ε̂pr · ẑ) (see Sec. IIIC) and the pump-probe time delay τ for detection parallel to

the space-fixed z-axis (defined in Sec. IIIC as the probe polarization vector), k̂ = ẑ. For

the specific case of the N2 molecule and the configuration considered here, the leading term

in M(θ, φ) is the same in the HHG and PES cases. Accordingly, the rotational mapping

obtained via PES for the N2 molecule is quite similar to the one obtained via HHG, where

an emission parallel to the space-fixed z-axis is detected. Similar conclusions are reached

by examining the constant angle cuts shown in Fig. 7. The PES signals are marginally

sharper compared to the HHG analogs (and do not exhibit a rotational shift, as only emission

direction parallel to the z-axis is detected), but their overall structure is essentially the same.

Clearly, this is not a general result but rather depends on the bound orbital(s) considered

and the angular momenta dominating the electronic continuum.

We conclude this section with a discussion of rotational imaging of O2 wavepackets via

PES, using this example to illustrate the limitation of PES as an imaging tool while also

clarifying the conditions under which PES is expected to provide enhanced contrast as com-
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pared to RIPS imaging. Figure 6(b) considers the case where the continuum electron partial

wave series is strongly dominated by the lowest allowed term, illustrating that, whereas the

main features of the rotational density are reproduced, the map lacks contrast compared

to that obtained by HHG and fails to capture the fine structure of the probability density.

This result is accentuated in Fig.8, which shows constant angle cuts through the probability

density, the RIPS map and the PES map, illustrating that the PES resolution is comparable

to that of RIPS and inferior compared to the analogous HHG map. The reason for the poor

imaging performance of PES signals compared to HHG is a combination of two features,

the elimination of either of which improves the contrast. First, the dominant rotational

operator in the PES signal is cos2 θ sin2 θ, which peaks in the z-y plane. Due to that lack

of φ dependence for this operator, integration over φ averages out the details, leading to a

loss of contrast. Thus, if one uses, for instance, the dipole matrix elements of N2, instead of

those of O2 (with all other parameters retained as those corresponding to O2), φ-integration

leads to insignificant azimuthal angle averaging leading to very good contrast (results not

shown here). Thus, the symmetry of the bound orbital determines if and to what extent az-

imuthal averaging will degrade the contrast. Second, since, as discussed above, low angular

momenta of the continuum electronic wavefucntion are associated, via angular momentum

conservation, with low order rotational operators (ones that include low powers of trigono-

metric functions and are hence less well localized in angular space), the dominance of the

lowest partial wave in the the calculations leading to Fig. 6(b) limits the attainable con-

trast. Thus, we found that even when a single but higher (ie., instead of the l = l′ = 1

term one uses the l = 1(3), l′ = 3(1) term) photoelectron partial wave is used in calculation

the contrast of the map improves. Finally, we remark that the availability of the emission

direction as an experimentally tunable parameter in PES provides an opportunity to probe

different rotational operators, but (depending on the form and combination of the rotational

operators involved) may either improve or degrade the contrast of the image [56].

V. SUMMARY AND CONCLUSIONS

Our goal in the research described in the previous sections was to introduce and explore

theoretically and numerically an approach for imaging rotational probability distributions,

hence rotational coherences and their evolution in time and space. While developing the con-
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cept of rotational imaging as part of the general, and fundamentally valuable, field of wave-

function imaging, we attempted to focus on experimental realizations that only slightly ex-

tend, or differently analyze established experimental methods. As such, we considered three

approaches: an extension of strong pump laser Raman induced polarization spectroscopy

(RIPS), high harmonic generation (HHG) from aligned molecules, and angle-resolved photo-

electron spectroscopy (PES). The extended RIPS approach offers the advantages of simplic-

ity of analysis and generality, the quality of the mapping being independent of the system.

Numerically and analytically it was shown to capture the basic features of the rotational

probability distribution while entailing a certain degree of coarse graining. Both HHG and

PES offer potential to generate better resolved images than the RIPS method, mapping

both the gross features and the fine details of the rotational probability distribution, hence

a direct map of high order rotational coherences. These techniques, however, do not share

the generality of RIPS nor its simple analysis, as the quality of the mapping depends not

only on the geometry of the experiment but also on the molecule and its electronic structure.

In essence, the extended RIPS method provides a P2(cos θ)-weighted measure of the

probability density [P2(cos θ) being a Legendre polynomial of order 2], hence probing second

order rotational coherences. HHG and PES, by contrast, introduce higher order rotational

expectation values through the involvement of higher angular momentum electrons in the

underlying physical process, and therefore contain information regarding higher order ro-

tational coherences. Hence the potential for higher resolution at the cost of the lost of

generality and simplicity. The latter two approaches differ in detail, since the HHG ro-

tational expectation values depend on both the angular momentum of the tunnel-ionized

electronic partial wave and that of the recombining one, whereas the PES analogs contains

information regarding the angular momentum of a single continuum electron partial wave.

With the concept of rotational wavepacket imaging established via the simplest case sce-

nario of a diatomic molecule, it will be an interesting challenge for future research to extend

the approach to the richer case of general, nonlinear molecules. As discussed in the previous

sections, rotational wavepacket imaging provides considerably more information than the

conventional 〈cos2 θ〉 measure (although it does not share the convenient transferability of

the latter observable), while offering generality and simplicity as compared to the (already

established) Coulomb imaging technique. Much more interestingly, as a sensitive probe of

rotational coherences, the imaging approach provides potentially a probe of both intramolec-
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ular rotational perturbations (such as Coriolis and centrifugal couplings) and the response

of rotational modes to different media. Finally, an experimental study of the mapping

introduced above would be clearly exciting.

Appendix A: Density matrix approach to PES signals

The Hamiltonian of the molecular system can be simplified as comprising of an active

bound electronic state and an electronic continuum with their respective associated vibra-

tional and rotational manifolds as,

H0 =
∑

{b}

E{b}
∣

∣ {b}
〉〈

{b}
∣

∣ +
∑

{c}

∫

d~k E{c}
∣

∣~k, {c}
〉〈

~k, {c}
∣

∣, (A.1)

where all variables are defined in Sec. IIIC. The interaction of the ionizing (probe) pulse,

~εpr(t) with the molecular dipole vector operator ~µ can be expressed as,

Hint(t) = −
∑

{c}{b}

∫

d~k µ{b},~k{c}

∣

∣ {b}
〉〈

~k, {c}
∣

∣εpr(t) + h.c., (A.2)

where

µ{b},~k{c} =
〈

{b}
∣

∣~µ · ε̂pr
∣

∣~k, {c}
〉

, (A.3)

and the probe pulse has been written as ~εpr(t) = ε̂prεpr(t), ε̂pr being a unit vector in the

direction of polarization of the probe pulse. The coherent quantum Liouville equation for

the molecular density operator ρ̃(τ, t) is given in terms of Eqs. (A.1) and (A.2) as,

dρ̃(τ, t)

dt
= −

i

~
[H0 +Hint, ρ̃(τ, t)] . (A.3)

Expanding the molecular density operator in terms of the relevant bound and continuum

states, one obtains from the Quantum Liouville equation an equation of motion for the

density matrix element pertaining to the population of a continuum state
∣

∣~k, {c}
〉

as,

dρ~k{c},~k{c}(τ, t)

dt
= −

i

~

∑

{b}

µ{b},~k{c}εpr(t)ρ~k{c},{b}(τ, t) + h.c. (A.4)

Integrating Eq. (A.4) over time leads to Eq.(19), where the density matrix element for

the continuum state population is given in terms of the coherences between the bound

and continuum electronic states, ρ~k{c},{b}(τ, t). The latter elements are given through the

Quantum Liouville equation as,

dρ~k{c},{b}(τ, t)

dt
= −

i

~

(

E{c} − E{b}
)

ρ~k{c},{b}(τ, t) +
i

~

∑

{b′}

µ~k{c},{b′}εpr(t)ρ{b′}{b}(t)
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−
i

~

∑

{c′}

∫

d~k′ µ~k′{c′}{b}εpr(t)ρ~k{c},~k′{c′}(t). (A.5)

Ignoring the third term, as ρ~k{c},~k′{c′}(t) ≪ ρ{b′},{b}(t) for below saturation probe intensities,

one obtains Eq.(20).
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FIG. 1: (Color online) The rotational probability density for (a) N2 and (b) O2 vs time and the

polar Euler angle θ compared with the averaged alignment measure
〈

cos
2 θ

〉

(left). A Gaussian

pump pulse of 25 fs pulsewidth and a peak intensity of 75 TWcm−2 for N2 and 25 TWcm−2 for O2

and the rotational temperature of 30 K is used in the calculations.
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FIG. 2: (Color online) Rotational mapping using RIPS where the angular dependence γ is obtained

from the angle between the pump and probe polarizations, for (a) N2 , (b) O2. The pulse and

system parameters are as in Fig. 1.
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FIG. 3: (Color online) Cuts through the N2 rotational probability distributions (RPD) of Fig. 1(a)

(black) compared with cuts through the RIPS signal of Fig. 2(a) (red dashed) and the HHG signal

of Fig. 5(a) (blue) at polar angles (a) θ = 0,(b) θ = 30 deg., (c) θ = 60 deg., (d) θ = 90 deg. The

rotational shift discussed in the text is included in the HHG cuts to simplify the comparison.
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FIG. 4: (Color online) As in Fig. 3 for the case of O2 molecules.
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FIG. 5: (Color online) Rotational mapping using HHG for (a) N2 , (b) O2. The pump pulse and

system parameters are as in Fig. 1, the probe pulse used to calculate the matrix elements is long

(akin to CW ) with an intensity of 200 TW and the 23rd harmonic is detected at an angle of 45

deg. with respect to the probe polarization vector.
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FIG. 6: (Color online) Rotational mapping using PES for (a) N2 , (b) O2. The pump pulse and

system parameters are as in Fig. 1, and the photoelectron signal is detected at an angle of zero

deg. with respect to the probe polarization vector.
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FIG. 7: (Color online) Cuts through the N2 rotational probability distributions of Fig. 1(a) (black)

compared with cuts through the PES signal of Fig. 6(a) (red dashed) and the HHG signal (blue)

at polar angles (a) θ = 0,(b) θ = 30 deg., (c) θ = 60 deg., (d) θ = 90 deg. The HHG emission

direction is along the probe polarization vector.
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FIG. 8: (Color online) Cuts through the O2 rotational probability distributions of Fig. 1(b) (black)

compared with cuts through the PES signal of Fig. 6(b) (red dashed) and the RIPS signal (blue)

at polar angles (a) θ = 0,(b) θ = 30 deg., (c) θ = 60 deg., (d) θ = 90 deg. The RIPS signal shown

as red dashed curves in Fig. 4 in included to simplify comparison.
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