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Analytically exact solutions of a driven two-level system are extremely important to many areas
of physics (E. Barnes and S. Das Sarma, Phys. Rev. Lett. 109, 060401, 2012), we here present
a simple method of synchronous and asynchronous combined-modulations to generate a lot of new
exact solutions, and apply the simplest several solutions to perform the coherent control of quantum
states. The physical interesting phenomena such as the arbitrary population transfers between the
different and/or asymptotic stationary states and the controlled coherent population oscillation
are achieved analytically and numerically. Simplicities of the exact solutions and the modulated
fields render the control strategies more transparent and the qubit manipulation more convenient
in experiments.

PACS numbers: 32.80.Qk, 03.65.Xp, 32.70.Cs, 32.80.Xx

The analytically exact and perturbed solutions of the
two-level problem have played a central role in studying a
number of important physical phenomena, such as quan-
tum computing [1], qubit control [2–4] and coherent ma-
nipulations of various quantum states [5–7]. Research at-
tempting to control quantum phenomena has been under-
way for a long time [8–12]. In practice one may achieve
the control goal by introducing external fields, e.g. laser
light to transfer an initial state to a desired final state.
Such laser field can be designed with help of the quantum
optimal control theory [11, 13]. It is well-known that ex-
act analytical solutions can provide deeper understanding
of the underlying physics than straight numerical calcu-
lations [14]. Therefore we are interested in the situations
where the exact analytical solutions of simple forms exist,
rendering the control strategies more transparent [13].

In an analytically solvable driven two-level system,
the forms of driving fields contain an infinite variety.
The most frequently used drives are of sinusoidal [15]
and hyperbolic forms [16], which adjust the correspond-
ing amplitude- and frequency-modulated functions. The
single [17–20] and/or combined [14, 21–25] modulations
have been applied for producing an unlimited number of
exact solutions in terms of complicated functions which
include the Gauss hypergeometric function [21–23], We-
ber function [18, 19] and some more specific functions
[17, 20, 25]. It is worth noting that the physical inter-
esting phenomena are very finite in a two-level system,
which may be described by a few simple solutions asso-
ciated with simple driving forms.

In this paper, we present a simple method of syn-
chronous and asynchronous combined-modulations to
construct a lot of new exact solutions of the Schrödinger
equation describing a driven two-level (or double-well)
system. It is shown that most of the interesting physi-
cal phenomena could be conveniently described only by
several simplest solutions that creates the possibility of
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the transparent controls. In our transparent controls, the
simple combined modulations lead to the controlled co-
herent population oscillation (CCPO) and the arbitrary
coherent population transfer (ACPT) between the differ-
ent and/or asymptotic stationary states, including the
incoherent destruction of tunneling (IDT) of the Floquet
states which enable us to control the system to an arbi-
trary stationary state, the coherent destruction of tun-
neling (CDT) between the superposition states, and the
controlled coherent population inversion (CPI). The ana-
lytical results are confirmed numerically and good agree-
ments are displayed. The results can be applied to many
branches of contemporary physics and could be observed
particularly as physical realizations of qubits and quan-
tum logic gates.
Two-level model with combined modulations.

We consider the bosonic representation [26] of the two-
level (or double-well) Hamiltonian in the general form
with combined modulations [22]

H(t) = G(t)(a†1a1 − a†2a2) + J(t)(a†1a2 + a†2a1), (1)

where aj(a
†
j) are annihilation (creation) operators for the

atom in j-th state or well with j = 1, 2, the real func-
tions J(t) and G(t) correspond to the amplitude- and
frequency-modulated functions respectively. The bosonic
representation (1) is equivalent to the two-state represen-
tation [26], and also can be expressed in terms of the an-
gular momentum operators [7, 17] through the formulas

[27] σx = a†1a2+a
†
2a1, σz = a†1a1−a†2a2. The system (1)

is dimensionless by adopting the Planck constant ~ = 1
and using the reference frequency ω0 = 100Hz to nor-
malize the energy and the field parameters in J(t), G(t),
and using ω−1

0 to normalize time t [28].
Taking the localized states |1〉 and |2〉 as the bases, we

expand the quantum state |ψ〉 of system (1) as

|ψ〉 = C1(t)|1〉+ C2(t)|2〉, (2)

where Cj for j = 1, 2 denote the time-dependent prob-
ability amplitudes in the states (wells) 1 and 2. In-
serting Eqs. (1) and (2) into the Schrödinger equation
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i∂|ψ〉
∂t

= H |ψ〉 yields the coupled equation

iĊ1(t) = G(t)C1(t) + J(t)C2(t),

iĊ2(t) = −G(t)C2(t) + J(t)C1(t), (3)

which governs time evolution of the probability am-
plitudes. For different forms of the amplitude- and
frequency-modulated functions, some complicated exact
solutions have been constructed [14, 21–25]. We here
focus on simple exact solutions and their rich physics,
which are associated with some special driving forms and
parameters.
Analytically exact solution for the synchronous

modulations. By the synchronous modulations we
mean that the amplitude and frequency modulated func-
tions are in the same form, namely the former is propor-
tional to the latter, J(t) = J0G(t) with proportionality
constant J0 and any function G(t). In such a case, we
can adopt the new “time variable”

τ =

∫

G(t)dt (4)

to make Eq. (3) the linear differential equation of τ with
constant coefficients. Its simple exact solution of form
Cj(t) = Cj [τ(t)] reads

C1(t) = D1e
−i
√

0.25+J2

0
τ +D2e

i
√

0.25+J2

0
τ ,

C2(t) =
1

J0
[D1(

√

0.25 + J2
0 − 0.5)e−i

√
0.25+J2

0
τ

+ D2(
√

0.25 + J2
0 + 0.5)ei

√
0.25+J2

0
τ ]. (5)

The general solution is a coherent superposition of the

two special solutions e±i
√

0.25+J2

0
τ with the complex su-

perposition constants Dj for j = 1, 2 being adjusted by
the initial conditions and normalization. Generally, Eq.
(5) leads Eq. (2) to be the coherent state |ψ〉 = |ψ1〉+|ψ2〉
with |ψ1〉 = |ψ〉D2=0, |ψ2〉 = |ψ〉D1=0, which describes
controlled coherent population oscillation (CCPO) of the
particle. Once the initial setup is set to give Dj = 0 for
j = 1 or 2, Eq. (2) becomes the incoherent stationary
state |ψ2〉 or |ψ1〉 with a constant norm, which displays
the incoherent destruction of tunneling (IDT) for a suit-
able constant J0. Analytic solutions for some pulses and
oscillatory fields include an infinite variety of amplitude
and frequency modulations [22]. Here by selecting some
simple modulated functions G(t) and combining Eqs. (4)
with (5), we perform the interesting transparent control
of the quantum tunnel (or transition).
Controlled coherent population oscillation and incoher-

ent destruction of tunneling. At first, we take the usual
periodic modulation as an example to show CCPO of
the non-Floquet states and IDT of the Floquet states.
Let the function G(t) be in the form G0 +G1 cosωt such
that Eq. (4) gives τ = G0t +

G1

ω
sinωt and Eq. (5)

implies that |ψ1〉 and |ψ2〉 are two Floquet states with

quasi-energies E± = ±
√

0.25 + J2
0 G0, and their linear
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FIG. 1: (Color online) Time evolutions of the population im-
balance showing the CCPO for the parameters J0 = 1, ω =
1.2 and (a) G0 = 0; (b) G0 = 0.5 with the solid curves cor-
responding to G1 = 0.2 and the dashed curves to G1 = 2.2.
Hereafter all the quantities plotted in the figures are dimen-
sionless, and all the circular points indicate the analytical
solutions and the curves represent the numerical results.

superposition |ψ〉 is a non-Floquet state [28]. Setting
the initial probability amplitudes as the real constants
C1(0) =

√
0.99 and C2(0) =

√
0.01, and the propor-

tionality constant as J0 = 1, from Eq. (5) we obtain
the constants D1 = 0.7647, D2 = 0.2303. Then we
take ω = 1.2 and two sets of different parameters G0

and G1 to plot time evolutions of the population im-
balance z(t) = P1(t) − P2(t) with P1(t) = |C1(t)|2 and
P2(t) = |C2(t)|2 as in Fig. 1. For the zero constant-
modulation, G0 = 0, Fig. 1(a) exhibits perfect agreement
between the numerical [curves from Eq. (3)] and analyti-
cal [circular points from Eq. (5)] results. For the nonzero
constant-modulation, G0 = 0.5, Fig. 1(b) indicates small
deviation between the numerical and analytical results
[29]. Both the figures show that the amplitude and fre-
quency of the population oscillations can be controlled
by adjusting the driving parameters.
When one of D1 and D2 is equal to zero, Eq. (5)

gives the Floquet solutions C1(t) and C2(t) with con-
stant probabilities |C1|2 = P1, |C2|2 = P2 = 1 − P1.
This means the decoherence between Floquet states |ψ1〉
and |ψ2〉 and results in the exact IDT. As an instance,
we take the real initial values C1(0) = D1 =

√
P1 and

C2(0) =
√
P1

2J0

(2
√

0.25 + J2
0 − 1) = ±

√
1− P1. Combin-

ing these with Eq. (5) leads to D2 = 0, |ψ〉 = |ψ1〉 and
the restriction relation between J0 and P1,

P1± = 0.5(1± 1/
√

1 + 4J2
0 ). (6)

As the functions of J0, P1± is plotted in Fig. 2(a). Given
Eq. (6), for a fixed J0 value we have two allowable values
of the probability in state (well) one, P1+ and P1−. If ini-
tial value is one of the both, the exact IDT infers that the
initial population is kept and no quantum tunnel occurs
such that the system is in a kind of new stationary states.
Taking the parameters G0 = 0.5, G1 = 2.2, ω = 1.2
yields τ = 0.5t+ 2.2

1.2 sin(1.2 t). Then setting D2 = 0 and
three different groups of (J0, D1) values, from Eq. (5)
we plot time evolutions of the population imbalance z(t),
as the circular points in Fig. 2(b). The corresponding
numerical results are shown by the curves of Fig. 2(b),
which are in good agreement with the analytical ones.
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FIG. 2: (Color online) (a) In the Floquet state |ψ〉 = |ψ1〉,
the probability P1 versus the field parameter J0. (b) Time
evolutions of the population imbalance showing the IDT for
the parameters G0 = 0.5, G1 = 2.2, ω = 1.2 and (J0, D1) =
(12.48,

√
0.52) (solid line), (0.10153,

√
0.99) (dashed line),

(0.10153,
√
0.01) (dotted line).

0 2 4 6 8 10
G2�Α

-1
-0.5

0
0.5
1

1.5

z
H
¥
L

J0=0.5

J0=2 HaL
0 10 20 30 40

t

-1
-0.5

0
0.5
1

z

G2�Α=1.52

G2�Α=1.92
G2�Α=2

HbL

FIG. 3: (Color online) (a) Plots of the asymptotic popula-
tion imbalance versus G2

α
for the initial conditions C1(0) =

1, C2(0) = 0 and the parameters J0 = 0.5, D1 =
0.85355, D2 = 0.14645 (solid curve), and J0 = 2, D1 =
0.6212678, D2 = 0.37873 (dashed curve). (b) Time evolu-
tion of the population imbalance z(t) for three values G2

α
=

1.52, 1.92, 2 on the dashed curve of Fig. 3(a).

Therefore, we can control the system to arbitrary sta-
tionary states, through the IDT.
Arbitrary coherent population transfers and exact co-

herent destruction of tunneling between the asymptotic

stationary states. In the case of the synchronous
modulations, by using the square sech-shaped G(t) =
G2sech

2(αt) instead of the periodic G(t), Eq. (4) gives
the “time variable” τ = G2

α
tanh(αt), where G2 and α

are the driving strength and inverse pulse width. Apply-
ing such a τ to Eqs. (5) and (2), we obtain the exact
asymptotic stationary state in which the atomic popula-
tion imbalance z(∞) is a constant at time t → ∞ and
τ → G2

α
. Assuming the initial state to be |ψ(0)〉 = |1〉

with conditions C1(0) = 1 and C2(0) = 0, for the pa-
rameter J0 = 0.5 (or 2) from Eq. (5) we get the con-
stantsD1 = 0.85355 (or 0.6212678) andD2 = 0.14645 (or
0.37873). Employing such parameters and Eq. (5) results
in the asymptotic population imbalance as the functions
of G2

α
, which are plotted in Fig. 3(a). Then we take three

values G2

α
= 1.52, 1.92 and 2 on the dashed curve of Fig.

3(a) to plot time evolutions of the population imbalance
z(t), as the circular points in Fig. 3(b). The correspond-
ing numerical results are given as the solid, dashed and
dotted lines for the three different G2

α
values, respectively.

The both results agreeably show that one can adjust the
external field parameters J0 and G2

α
to make the ACPT

from a fixed initial state to any desired stationary state,
including the exact CDT for G2

α
= 1.52 case of Fig. 3(b).

Controlled coherent population inversion for

the asynchronous modulations. In the case of asyn-
chronous modulation, we take the sech-shaped ampli-
tude modulation G(t) = G3 tanh(αt) and tanh-shaped
frequency modulation J(t) = J0sech(αt) as an example
to exhibit the transparent control. The complicated so-
lutions in terms of the Gauss hypergeometric function
are well-known for the similar system [14, 22, 25]. We
here demonstrate that for a set of suitable field param-
eters G0, J0 and α a simple solution exists, which ex-
actly describes the controlled coherent population inver-
sion (CPI). To do this, we first make a function transfor-

mation C1(t) =
√
sech C(t) and from Eq. (3) establish

the second-order equation

iC̈(t) = [U0 + U1(t)]C(t), U0 = 0.5(α2 − 2J2
0 − iαG3),

U1(t) =
1

4
(4J2

0 − α2 −G2
3) tanh

2(αt). (7)

This equation is mathematically equivalent to the
Schrödinger equation of square tanh-shaped potential,
and its n exact solutions in terms of hypergeometric func-
tions have been found [30]. It is important to note that
by selecting the field parameters

4J2
0 − α2 −G2

3 = 0, U0 = [0.5(α− iG3)]
2, (8)

one can produce the simple solutions of Eq. (7) as
C± = D±e±0.5(α−iG3)t with D± being constants. Given
Eq. (8), the general solution of Eq. (7) is the coher-
ent superposition C(t) = C+ + C−. Applying C1(t) =
√

sech(αt) C(t) and Eqs. (3) and (8), we arrive at the
simple general solutions

C1(t) =
√

sech(αt)(D−e
−0.5(α−iG3)t +D+e

0.5(α−iG3)t),

C2(t) = (iĊ1 − 0.5GC1)/J =
1

2J0
(iα+G3)

√

sech(αt)

×(D−e
0.5(α+iG3)t −D+e

−0.5(α+iG3)t). (9)

From Eq. (8) the relation among the parameters
G0 and J0 is displayed in Fig. 4(a) for three differ-
ent values of α. It is quite interesting to note that
Eqs. (9) and (8) imply P1(−∞) = P2(∞) =

√
2D2

− and

P2(−∞) = P1(∞) =
√
2D2

+. The result means the exact
CPI from any initial state |ψ(−∞)〉 to the corresponding
final state |ψ(∞)〉 [19, 25, 29]. Thus for a set of fixed pa-
rameters obeying Eq. (8), the final states are controlled
by imposing appropriate initial conditions. The CPI is
shown for the initial time t0 = −100 and five different
initial states, as in Fig. 4(b), where the analytical re-
sults (the circular points) from Eq. (9) agree with the
numerical results (the curves) from Eq. (3) very well.
We have studied how to design simple combined mod-

ulations of amplitude and frequency to construct the ex-
act analytical solutions of simple forms for a two-level
(or equivalent double-well) system, and to perform the
new transparent synchronous and asynchronous control
of quantum transition (or tunnel) analytically and nu-
merically. It is shown that although we can obtain many
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FIG. 4: (Color online) (a) Plot of the parameter G3 ver-
sus J0 for α = 4 (dotted curve), α = 2 (solid curve)
and α = 0.4 (dashed curve). (b) Time evolutions of the
population imbalance showing the CPI for the parameters
J0 = 0.5, α = 0.4, G3 = 0.9165 and the initial conditions
P1(−100) = 1 (thick dashed curve), P1(−100) = 0.7 (thick
solid curve), P1(−100) = 0.5 (dotted curve), P1(−100) = 0.3
(thin dolid curve), P1(−100) = 0 (thin dashed curve) and the
corresponding phases argCj(−100) given by Eq. (9).

analytically exact solutions of complicated forms, most of
the physical interesting phenomena could be conveniently
described only by several simple solutions which are the
coherent superpositions of two special solutions respec-
tively. In the synchronous case, the amplitude modu-
lation is proportional to the frequency modulation such
that for any form of the modulated function we show the
transparent control from CCPO to IDT by adjusting the

proportionality constant and imposing appropriate ini-
tial conditions. Thus we can control the system to an
arbitrary stationary state, through the IDT. The exam-
ple of periodic modulation gives the exact solutions being
the Floquet and non-Floquet states. For a square sech-
shaped modulated function we find the exact CDT and
ACPT between the asymptotic stationary states by se-
lecting the suitable ratio of the driving strength and the
inverse pulse width. In the asynchronous case, the sech-
shaped amplitude and tanh-shaped frequency modula-
tions are adopted and the controlled CPI is illustrated.
The results can be applied to many physical contexts,
such as the qubit control, two state collision problems
and the artificial two-level electronic system, and so on.
Specifically, the simplicity of the combined modulations
and exact solutions bring experimental convenience for
direct observation as physical realizations of qubits and
quantum logic gates by using the current experimental
setups.
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