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Abstract. The electron-polarized-photon coincidence method is used to determine linear and circular 

polarization correlations in the vacuum ultra-violet (VUV) for the differential electron impact excitation 

of neon and argon resonance transitions at impact energies of 25 eV and 30 eV at small scattering angles 

up to 40o. The circular polarization correlation is found to be positive in the case of Ne at 25 eV and 

supports the prediction of the present B-spline R-matrix theory concerning the violation of a long-

established propensity rule regarding angular momentum transfer in electron impact excitation of S → P 

transitions. Comparisons with the results from the present Relativistic Distorted-Wave Approximation 

and an earlier Semi-Relativistic Distorted-Wave Born model are also made.  For the case of Ar, at 25 eV 

and 30 eV, the circular polarization measurements remain in agreement with theory, but provide limited 

evidence to whether or not the circular polarization at small scattering angles is also positive. For the 

linear polarizations, much better agreement with theory is obtained than in earlier measurements carried 

out by Zheng and Becker (Z. Phys. D 23, 137 (1992), J. Phys. B 26 517 (1993)). 
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1. Introduction 

The application of electron-photon coincidence techniques in the measurement of electron-photon 

correlations has shed considerably more light on the dynamics of the scattering process regarding the 

differential electron impact excitation of atoms and molecules than conventional differential scattering 

experiments. Wide applications of this technique have been made since the pioneering work of Macek 

and Jaecks [1] on the theory of electron-photon correlations followed by the experimental study by 

Eminyan et a1. [2]. Considerable progress has been made both theoretically and experimentally, as 

reviewed for example by Blum and Kleinpoppen [3], Andersen et a1. [4], and Andersen and Bartschat 

[5] up to 2001. In the case of S → P excitations, the measurement of the circular polarization is 

important, as it is directly related to the angular momentum imparted to the target and hence gives 

insight into the dynamics of the collision process. In the VUV range this was first achieved by Khakoo 

et al. [6] using a double reflection, gold mirrors polarizer system [7] with He as the target and measuring 

the polarization correlation parameters for 11S → 21P excitation in He. The experiment showed the 

reversal of the angular momentum transfer by the projectile electron, as compared to positive angular 

momentum transfer for small-angle scattering, around the scattering angle (θ) of 60o for the incident 

energy (E0). 

Until recently, extensive work on the orientation of atoms excited by electron impact strongly 

supported an empirical “propensity rule,” indicating that the sign of the angular momentum transfer, L⊥ , 

perpendicular to the scattering plane, is positive for S → P transitions at small scattering angles (θ), 

essentially independent of the projectile energy or the specific target [4]. Interest in the generality of this 

rule, and any physical basis for it, stems from the early work of Kohmoto and Fano [8], who considered 

a classical grazing-incidence collision from the attractive potential between the projectile electron and 

the target, which results in the excited state having a positive orbital angular momentum component 

perpendicular to the scattering plane. Further work on this problem was performed by Madison and 
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Winters [9], who pointed out a phase error in [8] and then analyzed the orientation in terms of the 

projectile charge in a perturbation series expansion. They predicted a difference in the sign of L⊥  

between electron and positron impacts at small scattering angles, but without being able to predict the 

actual sign for either case. Andersen and Hertel [10] later developed a semi-classical model. While its 

validity was limited to small scattering angles, the model did offer the general prediction that the angular 

momentum transfer for electron-impact excitation processes was positive. Attempts to check the 

predictions of this model were made in a pioneering experiment reported by Shurgalin et al. [11], who 

studied electron scattering from the laser-excited 3p state in Na. Comparing de-excitation to the 3s 

ground state in super-elastic collisions with excitation to the 4s state in inelastic collisions, their results 

ultimately remained inconclusive for the 4s state. Bartschat et al. [12] explained the findings of 

Shurgalin et al. [11] by noting that the simple Andersen-Hertel model is not applicable to the Na (4s) 

case, due to the very large dipole polarizability of this state, which leads to an additional attractive 

potential that was neglected in the semi-classical argument.  

Extensive compilations [4] of the available experimental data at the time, and many more 

theoretical predictions, showed the propensity for a positive angular momentum transfer at small 

scattering angles in S → P excitation to be seemingly very well fulfilled for the case of unpolarized  

incident electrons. An important generalization was presented by Andersen et al. [13], who analyzed the 

so-called generalized Stokes parameters [5,14] for a spin-polarized projectile beam. They found that 

parity conservation required the opposite sign of L⊥  for spin-up and spin-down (relative to the scattering 

plane) electrons for forward scattering. Once again, however, they noticed that the spin-averaged value 

in electron-impact excitation of the (6s6p) “3P1” state in Hg fulfilled the propensity rule very well. This 

was also confirmed in an extensive compilation of data for spin-resolved electron impact [15]. The 

present measurements in Ne and Ar were instigated when recent theoretical results from the B-spline R-

matrix (BSR) model showed that the propensity rule was violated for Ne in a restricted range of E0 from 
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approximately 22 eV to 30 eV with the circular polarization P3 (= - L⊥ , see below in section 2) reaching 

0.14 at E0 = 25 eV and θ = 30o in a large 457-state BSR calculation (BSR-457). 

In Ar, at E0 = 25 eV and 30 eV, a similar trend was observed in smaller BSR-31 state calculations, 

i.e., the sign of P3 was predicted positive below θ = 30o, however reaching a much smaller maximum 

(than in Ne) of 0.022 at E0 = 25 eV and θ = 15o and of 0.042 at E0 =30 eV and θ = 18o. While no P3
 

measurements exist in the literature in this regime, linear polarization correlation measurements were 

carried out by Zheng and Becker [16,17]. Consequently, although the Ar case was significantly more 

challenging, we decided to undertake polarization correlation measurements also for Ar to see if we 

could provide experimental data for this target.  At the same time, a much larger BSR model was set up, 

and we also decided to perform additional perturbative calculations using semi-relativistic and fully 

relativistic distorted-wave approaches.  In this context, we also decided to independently test the data of  

Zheng and Becker [16,17], who reported significant disagreements with predictions by Bartschat and 

Madison [18].  This was somewhat surprising, since the measurements were performed in an angular 

range, where one would have expected the calculation to be fairly reliable. 

 

2. General Theory 

In the theory of angular and polarization correlation measurements, Andersen and Hertel [10] and 

Andersen et a1. [4] defined the so-called coherence parameters, which reveal the details of the excitation 

in the most transparent way. These parameters are:  

(i) The alignment angle, γ, of the excited-state charge cloud relative to the incident electron direction. 

(ii) The linear polarization,  

linP  = (l - w) / (l + w),   (1)  

where l and w define the relative length and width of the charge cloud in the scattering plane.  

(iii) The height parameter,  
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ρoo= h /( l + w + h),     (2)  

where h is the relative height of the cloud perpendicular to the scattering plane;  a nonzero value of ρoo is 

a direct indication of any spin-orbit coupling during the excitation.  

(iv) The angular momentum, perpendicular to the scattering plane, L⊥ , transferred by the projectile 

electron to the orbital motion of the target electrons.  

The present experiment is set up to measure polarization correlations (or normalized Stokes 

parameters) of the light emitted perpendicular to the scattering plane in coincidence with the scattered 

electron. It does not measure the ρoo parameter. However, it probes the positive reflection symmetry of 

the excited state with respect to this plane. The Stokes parameters are determined by measuring two 

linear ( 1P , 2P ) polarizations and one circular ( 3P ) polarization 

o ο

1 o ο

I(0 ) - I(90 )η
I(0 ) + I(90 )LP =  ,     (3a) 

o o

2 o ο

I(45 ) - I(135 )η
I(45 ) + I(135 )LP =

    
    (3b)  

and 

3
I( ) - I(-)η
I( ) + I(-)CP +=

+
 ,    (3c) 

respectively, where I(α) is the coincidence signal for the polarizer set at the angle α with respect to the 

incident electron beam and I(+), I(-) are the polarizer setting for right- and left-handed circular polarized 

light, respectively (see Fig. 1 and details in section 3). Also, ηL and ηC are device dependent polarization 

efficiency factors for the measurement of linear and circular polarizations. Further,  

2 2
1 2linP P P= +      (4) 

2

1

tan 2  = P
P

γ       (5) 
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L⊥  = 3- P       (6) 

and, 

2 2 2
1 2 3 +  1totP P P P= + ≤ .   (7)  

In the fully coherent case the equality sign in (7) holds. The excitation is then completely specified 

by two parameters γ and L⊥  while ρoo = 0. Incoherence can manifest itself due to the addition of 

incoherent scattering processes (spin flips) or target effects such as hyperfine depolarization, spin-orbit 

interactions, etc. Then the inequality in (7) holds, in which case three parameters (γ, linP , L⊥ ) must be 

used to specify the excitation, even if positive reflection symmetry still holds, since linP and L⊥  are now 

independent parameters. Positive reflection symmetry can be broken during the excitation process, e.g. 

by spin-flip processes, in which case the excited-state charge cloud acquires a finite height perpendicular 

to the scattering plane. To measure this ρoo height parameter requires a fourth Stokes parameter, P4, 

where the photon polarizer is placed in the scattering plane perpendicular to the incident electron. The 

relationship between P4 and ρoo is (see [4]): 

4
00

4

(1+ ) (1- )
4-(1- ) (1- )

lin

lin

P P
P P

ρ = .    (8) 

Andersen et a1. [4] and Andersen and Bartschat [5] have discussed how – without any incoherence 

effects in the actual excitation process – further depolarization of the emitted radiation may take place 

due to fine- or hyperfine-structure effects during the time evolution of the decaying excited state.  

 

3. Experiment 

 The setup of the experiment, shown in Fig. 1, is similar to that given in [19]. The apparatus 

consists of an electron energy-loss spectrometer and a VUV reflection polarizer, which is housed in a 

high-vacuum chamber made from stainless steel. The angular resolution of the spectrometer’s electron 
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detection system was ± 2o, which is small, and appropriate for small θ work as is the case here. The 

chamber was evacuated by a ≈8-in. turbo-molecular pump (Varian- TV 701 Navigator) providing an oil-

free vacuum environment. Backing pump oil (low-grade diffusion pump oil; Diffoil 20, K. J. Lesker 

Co.) was inhibited from streaming up the vacuum line into the pump by a micro-maze oil filter. The base 

pressure of the vacuum system was ≈1 × 10−7 torr. Ne and Ar gas were delivered to the collision region 

via a 50-mm-long molybdenum needle of internal diameter 1 mm that was driven with a pressure of 

≈0.35 torr. The needle was placed in the scattering plane perpendicular to the incident electron beam, so 

that it did not point into the photon polarizer. With the gas flowing, the vacuum chamber pressure rose 

to 5 × 10−7 torr. In this pressure regime, we expect radiation trapping to be negligible [19]. The electron 

spectrometer, described elsewhere [20], employed hemispherical energy selectors in the electron gun 

and analyzer regions and operated with a total energy resolution of 600 meV (full-width at half-

maximum, FWHM) with an electron beam current between 1.0 and 1.5 μA. This energy resolution was 

insufficient to resolve the Ne (2p5[1/2]3s) “1P1” and (2p5[3/2]3s) “3P1” excited levels as well as the Ar 

(3p5[1/2]4s) “1P1” and(3p5[3/2]4s) “3P1” excited levels. Fortunately, the dominant triplet character of the 

“3P1”states leads to a much smaller excitation cross-section compared to the “1P1” state at an E0 of 25 eV 

or 30 eV. Coupled with the much longer lifetime of the “3P1” vs. the “1P1” (21.0 ns versus 1.64 ns [21] 

for Ne and 8.5 ns versus 1.88 ns for Ar [22]), the coincident signal is expected to be relatively small at 

near forward scattering angles of this work. Quantitatively, using an experimental coincidence timing 

coincidence width of 10 ns (FWHM), for the triplet-singlet differential cross section ratio for Ne at 

E0=25 eV [23], we estimate that the contribution of the 3P1 state to the coincidence signal to be about 3% 

at θ=10o about 5% at θ=40o, and therefore small. However, for Ar at E0=25 eV, using the triplet-singlet 

differential cross section ratio from [24], we estimate that around θ=30o the triplet contribution to the 

signal is about 20%, and at E0=30 eV it is about 17%, and therefore small, but not negligible. However, 

for small-angle scattering theoretical models predict essentially the same coherence parameters for the 
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triplet and singlet states, so this should not affect our results here. VUV photons emitted from collision 

events were detected by a double reflection polarizer mounted perpendicular to the scattering plane. The 

principles of a reflection optics polarizer are well described in [7] and [16]. Here we will go briefly over 

some of the material covered in [7,16].   

 The polarizer, which viewed the collision region perpendicular to the scattering plane, consisted of 

two gold-plated mirrors (M1 and M2 in Fig. 1) that were flat to 1/10 of a wavelength (for λ = 632 nm, 

[25]) and whose normal vectors were mounted at incident (reflection) angles of θl =57.5o to the incident 

light. Linearly polarized light was measured by physically rotating M1 and M2 around the photon 

emission axis (angle α in Fig. 1), while holding M1 and M2 parallel to each other (φp = 0o as illustrated 

in Fig. 1). To measure the circular polarization the polarizer was aligned at α = ± 45o to the major axis of 

the emitted radiation’s polarization ellipse (= γ, from equations 3a, 3b and equation 5; see Fig. 1) while 

M2 was rotated to φp = ± 45o to behave as a quarter-wave plate [7]. The polarizer’s linear and circular 

polarization efficiencies for all VUV transition lines of interest were determined from the experimental 

optical refractive index equations for the polarization efficiencies (ηL and ηC). This formulation is given 

in the Appendix. The detector was a channel electron multiplier (Detech Inc., model 203) with a 10 mm 

entrance outer diameter cone, which was coated with a double layer of CsI to enhance its quantum 

efficiency from its quoted value of about 10% without coating to approximately 23% for λ=58.4 nm and 

exceeding 60% for λ>100 nm [25]. We also note that the efficiency is also dependent on the polarization 

and angle of incidence [26,27], but assume that in this case for a cone-type geometry, this is averaged 

over and the detector should be essentially insensitive to polarization [27]. The entrance cone of the 

multiplier was biased at a negative voltage greater than E0 to ground (our collision region is grounded) 

to repel electrons. Ions generated in the collision region do not generate counts even if they strike the 

multiplier, as their kinetic energies are well below 100 eV (if attracted to the multiplier) and in this case 

the quantum efficiency to generate secondary electrons is essentially zero. 
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 The first reflector acts like a λ/4 plate in conventional transmission optics. At other wavelengths 

such as in the present work, the phase-shift deviates from 90ο and thus a suitable correction must be 

made. The linear polarizations are determined using the device as a straightforward double linear 

polarization analyzer. Then γ of the charge cloud is determined using (5). Knowing the alignment of the 

polarization ellipse allows one to properly orient the polarization analyzer for the circular polarization 

measurements φ’ which is given in [7] as  

1

2

tan 2 ' - P
P

φ =  .    (9) 

Comparison of (5) and (9) yields the relationship between φ' as defined above and γ, the alignment angle 

of the ellipse, as φ' = γ ± 45ο. The circular polarization is then obtained directly by measuring the 

coincidence rate at the two angular settings of φ' and measuring the coincidence rate with M2 (Fig. 1) set 

at the two positions ± 45ο about zero. Equation (A16) in Westerveld et a1. [7] gives the normalized 

Stokes parameter (circular polarization) for a polarization-insensitive photon detector with the reflection 

phase difference between the parallel and perpendicular polarization incident light (Δ) in the second 

mirror assumed to be 90ο and the first term in parentheses defining the polarization sensitivity of the 

device as negligible. In the case that Δ is not 90ο a correction needs to be made with  

o o

o o3
1 45 ' 45 '

cos 2ψ in2ψ 45 45r r

( , ) ( , )P
s ( , ) ( , )

⎡ ⎤Ι ϕ − Ι −  ϕ= − ⎢ ⎥Ι 0 + Ι −  0⎣ ⎦
 ± linP  cot (Δ) .   (10) 

The ± sign in the linP  cot (Δ) term in Eqn. (10) is taken as positive if φ’ = γ - 45ο and negative if φ’ = γ + 

45ο. The effects of finite angular acceptance of the polarizer can be determined by integration of incident 

ray paths (Gaussian acceptance optics) for this device. This variation was found to be about 2% for an 

acceptance angle of ± 3o (FWHM) for the present device.  

 Test measurements of the electron impact coherent parameters for He (λ = 58.4 nm) were 

performed at an incident energy of E0 = 50 eV, for the (1s2) 1S → (1s2p) 1P transition in He, to ensure 
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the validity of our polarization efficiencies. The results were in very good agreement with the published 

data [4] and confirmed a positive L⊥  at small θ values, i.e., that our instrument was measuring the sign 

of the circular polarization correctly. Output pulses from the polarizer and electron spectrometer were 

processed using standard timing electronics. Time-coincident electron-photon events were recorded and 

analyzed by a data-acquisition computer, which also monitored the experiment and was responsible for 

setting and changing the position of the polarizer. LABVIEW™ custom data-acquisition software was 

developed in house for this study. Data-acquisition times per point ranged from two days to over two 

weeks, depending on the signal levels at each θ. Typical coincidence peak widths were in the region of 

8-10 ns (full-widths at half maximum). The data taking sequence was as follows: at a fixed value of E0 

and θ, firstly 1P and 2P  measurements were made with both mirrors parallel to each other, i.e. φp=0 and, 

with the polarizer sequencing in between the polarization angle positions of α=-45ο, 0, 45ο, π. At each 

position coincidence spectra were obtained with a dwell time of 600 seconds. Using the counts under 

each spectrum we deduced 1P  and 2P  from and Eqns. 3 and determined linP and γ from Eqns. 4 and 5. 

With the determination of γ, we then set the polarizer α angle at the alternating positions of α=φ’=γ ± 

45ο. In each of these alternating positions, M2 was rotated to φp= ± 45ο. The four coincidence spectra at 

the two α values and two φp values (dwell time at each was 600s) were used to determine 3P  from Eqn. 

(10) using the linP  values at this angle. The two values of 3P  obtained were averaged to produce the final 

value of 3P .  A typical value for the linP  cot (Δ) correction term in Eqn. (10) was around 0.1; this is not 

negligible and adds to our errors.  

 We also note that the polarization values had to be corrected for polarization efficiencies of the 

linear and circular polarization modes (Table A-1). In this experiment the polarization efficiency for the 

polarizer in the linear polarization mode (ηL) was calculated using the refractive index (n) and extinction 

coefficient (k) data from [28] for gold at the appropriate wavelengths (λ), but further corrected by 



 
 

11

measuring the non-coincidence polarized radiation emitted by He as measured by Mumma et al. [29] 

E0=50 eV and 80 eV. Unfortunately for the circular polarization efficiency (ηC) there was no readily 

available calibration standard, and consequently only theoretical values of ηC were used as given in 

Table A-1. 

 

4. Theoretical Methods 

4a. Relativistic Distorted-Wave (RDW) Approximation 

The Relativistic Distorted-Wave (RDW) approximation [30] is based on solutions of the Dirac 

equations for the wave functions for both the bound atomic states and the scattered electron.  The ground 

and excited atomic state wave functions were calculated separately using the Multi-Channel Dirac-Fock 

program [31].  The ground state was represented in j-j coupling by a single configuration 
_

n p 2 n p 4 

while the excited state was a linear combination of the configurations 
_

n p 2 n p 3(n+1)s and 

_
n p n p 4(n+1)s  where 

_
p  represents a p-electron with total angular momentum j = 1/2 and p represents 

a p-electron with j = 3/2 while n = 2 for Ne and n = 3 for Ar.  For the excited state the configurations 

were coupled to a total angular momentum J = 1. 

The distorted wave in the incident channel was a solution of the Dirac equations including the static 

potential of the ground state while in the excited channel it was calculated using the spherically-

symmetrized static potential of the excited state.  Using these wave functions, the scattering amplitudes 

were calculated and the various Stokes parameters evaluated using the formulae of [4]. 

4b. Semi-Relativistic Distorted-Wave Approximation (DWBA) 

In order to show the theoretical developments of the past 25 years, we present predictions from the 

DWBA calculations published by Bartschat and Madison [18] in 1987.  They used target wave functions 

generated by the SUPERSTRUCTURE code [32]. For the calculations of the distorted waves, the static 
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potential generated from these wave functions was supplemented by local potentials to simulate the 

effects of electron exchange, the polarization of the charge cloud due to the incident electron, and loss of 

flux into inelastic channels.  Relativistic effects were also accounted for in the calculation of the 

distorted waves through additional correction terms in the distortion potential. 

4c. Breit-Pauli B-Spline R-Matrix (BSR) with Pseudo-States Approach 

With the rapidly increasing computational power over the past years, much algorithm development 

has concentrated on fully ab initio, nonperturbative methods for the description of atomic collision 

processes.  One of such approaches is the B-Spline R-Matrix (BSR) method [33].  It represents an 

alternative to the well-known Belfast suite of R-Matrix codes [34] to solve the close-coupling equations, 

with several key modifications that have proven to be particularly advantageous for complex targets. 

The distinctive feature of the method is the use of B-splines as a universal basis to represent the 

scattering orbitals in the inner region of the R-matrix box.  Furthermore, employing individually 

optimized, and hence nonorthogonal sets of one-electron radial functions for the target states provides 

high flexibility and accuracy in the structure description.  Finally, we are now in a position to include a 

large number of pseudo-states in the close-coupling expansion in order to simulate the effect of coupling 

to the high-lying Rydberg states and, most importantly, to the ionization continuum using the general R-

matrix with pseudo-states (RMPS) [35] philosophy. 

For the present work specifically, we set up a close-coupling expansion including 457 target states 

for e-Ne collisions, with the lowest 87 states representing the bound spectrum and the remaining 370 the 

ionization continuum.  More details about this calculation can be found in [36].  The corresponding 

RMPS model for e-Ar contained a total of 500 states, 78 for the bound spectrum and 422 for the 

continuum.  While a fully relativistic version of the BSR complex exists [37], we chose to perform 

semirelativistic calculations by including the one-electron terms of the Breit-Pauli Hamiltonian in setting 

up the matrices.  The size of these matrices (currently up to 120,000), which need to be diagonalized for 
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the inner region, would be doubled in a fully relativistic approach. This is computationally prohibitive at 

the current time.  Fortunately, neutral Ne and Ar are targets for which a Breit-Pauli approach is expected 

to be sufficient.  Remaining discrepancies between experiment and theory are most likely due to reasons 

other than the treatment of relativistic effects.  

 

5. Results and Discussion 

 Table 1 shows a summary of our experimental results. Figure 2 exhibits our polarization 

correlation parameters for Ne at E0 = 25 eV, which were also reported in [38]. For the linear polarization 

parameters, the DWBA [29] and the present BSR and RDW models show excellent agreement with each 

other as well as with the present experiment, which is restricted by statistics to θ < 40o. The models 

diverge from each other for θ > 60o. Both the DWBA and RDW are intermediate-energy models and the 

fact that they are in good agreement in the experimental range is very encouraging. In particular, 

agreement between theory and experiment in the value of γ, which is used to locate the experimental 

position of the polarizer for the measurement of 3P  is excellent. We also note that the experimental 

value of the linP  parameter is in general close to 1, albeit below by about 6% on average. Our error bars, 

however, are too large to make a precise deduction, and we could likely also have a small systematic 

error due to our determination of ηL and ηC to compound this issue.   

 The above results can be qualitatively understood by recalling the results of the first-order plane-

wave Born approximation (PWBA).  The PWBA predicts linP = 1 and the alignment angle γ to be the 

angle of the momentum-transfer direction [4,5].  In other words, if the PWBA is a reasonable 

approximation, then the linear polarizations depend only on the scattering angle and the energy loss – 

they are completely independent of the numerical model. 
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 For the 3P (= - L⊥ ) parameter in Ne, the models show severe disagreement. The present experiment 

shows very good agreement with the BSR predictions for Ne, which motivated this project. As reported 

in [38], the BSR only predicts positive 3P  values if it includes channels exceeding the minimum 5-state 

model (the 2p6 ground state plus the four fine structure states of the 2p53s configuration).  Such channel-

coupling is not prevalent in the DWBA, which shows the usual 3P  form predicted by [8], although the 

drop in 3P  from zero is less dramatic than what is usually observed at higher E0 values. The BSR theory 

also predicts 3P to become negative around θ = 43o and then to change sign around θ = 75o, a pattern 

that is usually observed for He and the other rare gases. We also note that the BSR model predicts a very 

large (0.995) positive 3P value around θ = 94o. For our totP  parameter, hyperfine depolarization is 

expected to be negligible (Ne has only a 0.257% odd atomic weight isotope [39]).  Theory predicts 

values of essentially unity, in good agreement with the present experimental work, albeit with large error 

bars.  Although not shown here, we note that the RDW values for 3P  at small θ change rapidly for E0 < 

25 eV.  In fact, the RDW results for 3P  become positive at E0 = 20 eV for small θ ≤30o. These latter 

findings, as well as the DWBA results for Ar shown below, suggest that channel coupling alone is not 

responsible for the unusual small-angle 3P  values at certain energies.  Recall that the PWBA predicts 3P  

= 0 for all energies and angles [4,5].  In other words, any more sophisticated model than the PWBA will 

deviate from the zero value.  Apparently, already the direction of this deviation can be very sensitive to 

the collision energy and the details of the model.  The more sophisticated models will, of course, also 

predict deviations of linP  and totP from unity.  However, these deviations will be small, even for 

3P values of 20%, due to the mathematical relations outlined above.  Consequently, such deviations are 

very difficult to confirm experimentally, and the same is true for deviations of γ from the momentum-

transfer direction.  
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 In Figs. 3 and 4, our linear polarization correlation measurements for Ar are compared with earlier 

experimental work (linear polarization parameters only) by Zhang and Becker [16,17] and with the 

DWBA, RDW and present BSR models. As in Ne, all three theories (DWBA, RDW and BSR) show 

excellent agreement with each other up to θ ≈ 50o and also with the present experimental data, which are 

again restricted by statistics to θ up to 30o. Referring back to the discussion above, this good agreement 

is ultimately not very surprising, since the PWBA can be expected to be a reasonable model in the small-

angle regime.  Consequently, it is not clear why the earlier experimental data of [16,17] deviated so 

much from these predictions. In these figures, comparison of 3P values for Ar shows a mixed picture. At 

E0 = 25 eV, the experimental 3P  value is essentially zero, more in agreement with the DWBA than the 

BSR or the RDW which are in good agreement with each other. This is, however, not the result of the 

influence of the “3P” component which, as mentioned above, since from the BSR model the 3P value for 

the “3P” state of Ar is also negative at small θ at both 25 eV and 30 eV.  

 In fact, all theories predict very similar results for the physical singlet and triplet states at the small 

angles covered by the experiment.  This is due to the fact that these states can be well described in an 

intermediate-coupling scheme as linear combinations of LS-coupled singlet and triplet states [40]. Even 

though the singlet admixture is smaller in the physical triplet state than in its singlet counterpart, the 

excitation at small angles is effectively determined by this component.  The triplet admixture, and hence 

exchange scattering and the possible spin-flips associated with it, is basically negligible.  

 The result for Ar at 25 eV may need to be independently checked. At E0 = 30 eV, the experimental 

3P values are in the negative range in agreement with all theories, but unfortunately with large error bars 

that do not provide a stand-alone data set or a robust test of these models. The experiment, however, 

coupled with the predictions of the models, supports the fact that the 3P values for Ar are negative at 

small θ.  Hence the overall picture regarding the small θ 3P values suggests that positive 3P values at 
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small θ seem to be unique to Ne over a restricted range of E0 values around 20–25 eV.  Since, based on 

the discussion above, L⊥  studied for the targets, energies, and angles in the present work is orbital 

angular momentum orientation of the singlet part of the wave function, it is unlikely that semi-classical 

arguments will be able to explain the deviations from the propensity rule.  We believe that these 

deviations are associated with quantum mechanical interference effects. 

  

6. Summary and Conclusions 

 We have observed exceptions to the propensity rule of a positive angular momentum transfer in the 

electron impact excitation of an S → P transition at small scattering angles for excitation of the 

resonance transition in Ne at 25 eV, as predicted by a large BSR model.  This prediction is also 

supported by our RDW model at E0 = 20 eV for Ne, but we have not yet verified it experimentally at this 

energy. The positive 3P  values from theory are well supported by our experiment for Ne at E0 = 25 eV. 

Positive deviations of the 3P  values could not be verified experimentally for Ar on account of the larger 

error bars and the considerably smaller absolute 3P  values in Ar as compared to Ne. At 30 eV the small-

angle 3P  values in Ar from experiment and theory are negative. Interestingly, only the DWBA model 

predicted positive small-angle 3P  values for Ar at 25 eV.  In general, the effect seems to be limited to a 

small window of energies of around 20 – 30 eV for these targets.  It would be of interest to investigate 

this issue also in Kr and Xe.  If violations of the propensity rules do occur in these targets, this might 

provide further insight into the scattering dynamics and serve as a sensitive test of theoretical models. 

More studies would also be helpful to further test present theoretical models and challenge experimental 

methods for polarization correlation measurements.  Given the apparent validity of the PWBA 

predictions at small angles for all but the circular polarization, measurements in this angular range 

should concentrate on P3, with the linear polarizations mostly serving as a consistency check rather than 
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a test of a particular theoretical model.  In order to perform a test of theory beyond P3, the experiments 

would need to be performed over a much wider angular range. 
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8. Appendix 

Reflection Polarizer Parameters. 

 
The  ηL and ηC are polarization efficiency factors, used in equations 3, were determined from the 

experimental optical refractive index n and extinction values k of the gold mirrors [28], using the 

appropriate formulas given in [26]. We note here that similar formulae are given in a similar, but later 

publication [41], with severe typographic errors. This is another reason why we carefully list these 

formulae here.  

 Using n, k we define parameters a, b, 

)θ−−+4+)θ−−= 22
ιι knknkna 2222/122222 sin(]sin[(2     (A-1) 

)θ−−−4+)θ−−= 22
ιι knknknb 2222/122222 sin(]sin[(2 ,    (A-2) 

where θl is the angle of incidence of the light on the mirror, from which the reflection coefficients 

parallel (Rs) and perpendicular (Rp) to the plane of the gold mirror can be derived (see [21]): 

22
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coscos2
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Following this, the single mirror linear polarization efficiency is  

 1
1

cos 2
S P

L
S P R

R R
R R

η −= =
+ Ψ

,         (A-5) 

and the double mirror linear polarization efficiency equals [7] 

2

 2  
1 cos 2

2cos 2
R

L L
R

η η + Ψ= =
Ψ

   .         (A-6) 

The phase-shift ΔP, ΔS of the perpendicular and parallel polarization components of the light are 

respectively, 

B
A

bababa
bab

ιι

ιι
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θ+θ+−−−
θ−++θ

=Δ 222222222

222

cos]4)sin[)(
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and the phase difference between the two components is 

⎟
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Finally, the circular polarization efficiency for the double reflection polarizer is, 

2
1

cos 2 sin 2 sinC C
R R

η η −= =
Ψ Ψ Δ

    .      (A-11) 

Finally, Table A-1 gives n, k and Δ for gold at several VUV wavelengths. 
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θ (deg) P1 Error P2 Error P3 Error Plin Error γ (deg) Error Ptot Error
Ne 25eV

10 0.85 0.05 -0.37 0.05 0.04 0.11 0.93 0.06 -11.6 1.5 0.97 0.06
15 0.66 0.09 -0.54 0.09 0.24 0.12 0.86 0.09 -19.7 3.0 0.90 0.10
20 0.47 0.07 -0.67 0.07 0.22 0.12 0.82 0.07 -27.5 2.4 0.83 0.07
25 0.30 0.12 -0.94 0.08 0.18 0.10 0.91 0.11 -35.3 3.7 0.91 0.11
30 0.093 0.069 -0.91 0.09 0.25 0.11 0.93 0.09 -41.2 3.0 0.95 0.14
40 -0.29 0.11 -0.82 0.14 0.02 0.17 0.87 0.14 -54.7 3.9 0.87 0.14

Ar 25eV
10 0.00 0.12 -0.98 0.17 0.04 0.12 0.99 0.18 -45.1 3.5 1.02 0.21
15 -0.31 0.13 -0.83 0.17 0.14 0.17 0.89 0.16 -55.2 4.3 0.90 0.16
20 -0.80 0.15 -0.18 0.13 0.00 0.26 0.82 0.15 -83.8 4.6 0.82 0.15
25 -0.67 0.16 0.42 0.13 0.03 0.2 0.80 0.15 74.0 5.0 0.79 0.16

Ar 30eV
10 0.19 0.09 -0.99 0.14 0.13 0.09 1.00 0.13 -39.6 2.5 1.01 0.13
15 -0.68 0.11 -0.61 0.10 -0.06 0.12 0.90 0.16 -69.1 3.3 0.91 0.18
20 -0.96 0.18 0.16 0.10 -0.10 0.14 0.97 0.18 85.3 3.2 0.98 0.19
25 -0.79 0.18 0.70 0.11 -0.22 0.14 1.03 0.15 68.5 4.0 1.06 0.15
30 0.25 0.14 0.77 0.14 -0.16 0.14 0.81 0.14 36.0 4.8 0.83 0.14

 
Table 1. Polarization correlation parameters for the resonance transitions in Ne and Ar. Error bars are 
one standard deviation. 
 
 

Species Energy (eV) λ (nm) n k cos(2ΨR) sin(2ΨR) η1L η2L Δ (deg) η2C

He 21.218 58.4 1.069 0.838 0.6440 0.7650 1.5528 1.0361 91.1 -2.03
Ne 16.848 73.6 1.040 0.694 0.6763 0.7366 1.4787 1.0775 82.6 -2.02
Ar 11.828 104.8 1.216 0.864 0.7077 0.7065 1.4130 1.0604 97.4 -2.02
Kr 10.644 116.5 1.244 0.939 0.6930 0.7209 1.4430 1.0680 101.4 -2.04
Kr 10.033 123.6 1.278 0.985 0.6890 0.7248 1.4515 1.0702 104.3 -2.07
Xe 9.570 129.6 1.306 1.019 0.6862 0.7274 1.4573 1.0718 106.5 -2.09
Xe 8.437 147.0 1.400 1.097 0.6851 0.7284 1.4595 1.0723 112.1 -2.16

 
Table A-1. Refractive index, extinction coefficients, and polarization parameters (see equations A1-
A11) for radiation reflection by gold at selected resonant VUV wavelengths incident at the angle of 
57.5o.  
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Figure 1: Schematic diagram of the experimental setup. Note that φp = 0o for the arrangement of M1 and 
M2 shown. See text for details. 
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Figure 2 (color online):  Polarization correlation parameters for Ne at E0 = 25 eV.  Legend: • Present 
experiment with one standard deviation error bars; ⎯ (blue) BSR-457 model; .. ― .. (green) RDW; - - - 
(brown) DWBA [18]. See text for details and discussion. 
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Figure 3 (color online):  Polarization correlation parameters for Ar at E0 = 25 eV.  Legend is the same 
as Fig. 2 except for: ⎯ BSR-500 model; experiment:  Zheng and Becker [16]. See text for discussion. 
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Figure 4 (color online):  Polarization correlation parameters for Ar at E0 = 30 eV.  Legend is the same 
as Fig. 3 except for: experiment:  Zheng and Becker [17]. 
 


