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The dynamics of two variants of quantum Fisher information under decoherence are investigated
from a geometrical point of view. We first derive the explicit formulas of these two quantities for
a single qubit in terms of the Bloch vector. Moreover, we obtain analytical results for them under
three different decoherence channels, which are expressed as affine transformation matrices. Using
the hierarchy equation method, we numerically study the dynamics of both the two information in a
dissipative model and compare the numerical results with the analytical ones obtained by applying
the rotating-wave approximation. We further express the two information quantities in terms of the
Bloch vector for a qudit, by expanding the density matrix and Hermitian operators in a common set
of generators of the Lie algebra su(d). By calculating the dynamical quantum Fisher information,
we find that the collisional dephasing significantly diminishes the precision of phase parameter with
the Ramsey interferometry.

PACS numbers: 03.65.Yz, 03.65.Ta, 03.67.-a

I. INTRODUCTION

Quantum Fisher information (QFI), which is one of the
most important quantities for both quantum estimation
theory and quantum information theory, has been widely
studied [1–10]. In the field of quantum estimation, the
main task is to determine the value of an unknown pa-
rameter labeling the quantum system, and a primary goal
is to enhance the precision of the resolution [11–26]. The
inverse of the QFI provides the lower bound of error of
the estimation [27, 28]. Hence, how to increase the QFI
become the key problem to be solved. Moreover, the QFI
can be used to measure the statistical distinguishability
on the space of the density operators in the quantum in-
formation geometry [29, 30]. Recently, the QFI flow was
proposed as a quantitative measure of the information
flow and provides a novel perspective on observing the
non-Markovian behavior in open quantum systems [31].

There are several variants of quantum versions of
Fisher information, among which the one based on the
symmetric logarithmic derivative (SLD) operator has
been used most widely and possesses many good proper-
ties [27, 28], such as convexity, remaining invariant under
the unitary evolution, and the total amount of the QFI
equivalent to the summation of the QFIs of all subsystem
being uncorrelated. In this paper, we also study another
variant of the quantum version of the Fisher informa-
tion, which is closely related with the skew information
[32]. The skew information was proposed to measure the
amount of information that a quantum state contains
with respect to the observable which does not commute
with additive conserved quantities, such as Hamiltoni-
ans, momenta [32]. It is also used to measure the quan-
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tum uncertainty [33] and quantify quantum correlations
in bipartite state in a recent work [34]. In the following,
we shall show that the two QFIs formally possess many
similar features [1], but they are different not only for
the concrete expressions of the definitions, but also for
their applications. As is mentioned previously, the QFI
based on SLD operator is mainly applied in the quan-
tum metrology, however, the variant version of the QFI
plays an important role in quantum state discrimination
[35, 36].

From the information theory, both two different QFIs
characterize the content of information contained in the
quantum systems. A crucial property of these two infor-
mation quantities is that they decrease monotonically un-
der the completely positive and trace-preserving (CPT)
maps [1, 37–39]. The monotonicity property manifests
the information loss under the CPT map. Just as the in-
troduction of the QFI flow [31], can we observe the non-
Markovian properties from the other information quan-
tities perspective?

Here, we will address this problem by calculating these
two QFIs for a single qubit and derive the explicit formu-
las in the Bloch representation, which greatly facilitates
the computing of these two quantities. The main results
in this paper are that the dynamical QFIs, in the pres-
ence of decoherences, are analytically solved. Here, the
irreversible processes are modeled via three decoherence
channels [8, 40–42]: phase-damping channel (PDC), de-
polarizing channel (PDC), and the generalized amplitude
damping channel (GADC) [43]. The analytical results
for the two information quantities under those channels
are obtained. We will show that the values of the two
QFIs monotonically decrease with time, apart from the
isolated case that the QFI based on the SLD operator
about the amplitude parameter θ remain invariant un-
der the PDC. In order to further identify the behaviors
of the two QFIs subject to quantum noise, we discuss a
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simple model of a two-level system coupled to a reservoir
with a Lorentzian spectral density [44, 45]. By using the
hierarchy equation method [46–53], we numerically ana-
lyze the dynamics of the two QFIs, and compare these
with the analytical solutions by using the rotating-wave
approximation (RWA). We further generalize the results
to the qudit system. Meanwhile, we verify that they are
also applicable for the N -qubit system with symmetry
exchange. For the sake of clarity, we calculate the dy-
namical quantum Fisher information in the presence of
collisional dephasing.
This paper is organized as follows. In Sec. II, we first

review two different definitions of the QFI, and give the
explicit formulae for the QFIs for a single qubit sys-
tem. In Sec. III, we obtain the analytical results for the
two quantities under three different decoherence chan-
nels, and the numerical results are given. Moreover, in
Sec. IV(a), we generalize the expressions of the two QFIs
for a qudit system, and the QFI in a noisy environment
for an N -qubit system is discussed in Sec. IV(b). Finally,
the conclusion are given in Sec. V.

II. FISHER INFORMATION

In this section, we briefly summarize two variants of
definition of the QFIs [32, 54], which are referred to as
two different extensions from the classical Fisher infor-
mation. We also discuss the relations between the QFI
and the Bures distance [30, 55–57] as well as the QFI and
the Hellinger distance [58]. In the Bloch representation,
we derive the explicit formulas of these two information
quantities for the single qubit system.

A. Fisher information and Bures distance

The classical Fisher information, originating from the
statistical inference, is a way of measuring the amount
of information that an observable random variable X
carries about an unknown parameter λ. Suppose that

{pi (λ) , λ ∈ R}Ni=1 is the probability density conditioned
on the fixed value of the parameter λ = λ∗ with measure-
ment outcomes {xi}. The classical Fisher information is
defined as

Fλ =
∑

i

pi (λ)

[
∂ ln pi (λ)

∂λ

]2
, (1)

which characterizes the inverse variance of the asymp-
totic normality of a maximum-likelihood estimator. Here
we have assumed that the observable X̂ is a discrete vari-
able. If it is continuous, the summation in Eq. (1) should
be replaced by an integral.
The quantum analog of the Fisher information is for-

mally generalized from Eq. (1) and defined as

Fλ = Tr
(
ρλ L

2
λ

)
= Tr [(∂λ ρλ) Lλ] , (2)

in terms of the symmetric logarithmic derivative (SLD)
operator Lλ, which is a Hermitian operator determined
by

∂λ ρλ =
1

2
{ρλ, Lλ} , (3)

where ∂λ ≡ ∂
∂λ and { · , · } denotes the anticommu-

tator. By diagonalizing the density matrix as ρλ =∑
i ̺i |ψi〉 〈ψi|, associated with ̺i ≥ 0 and

∑
i ̺i = 1,

the elements of the SLD operator are completely defined
under the condition ̺i + ̺j 6= 0. Therefore, Eq. (2) can
be expressed as

Fλ =
∑

i′

(∂λ̺i′)
2

̺i′
+ 2

∑

i6=j

(̺i − ̺j)
2

̺i + ̺j
|〈ψi|∂λψj〉|2 , (4)

where the first and the second summations involve sums
over all ̺i′ 6= 0 and ̺i + ̺j 6= 0, respectively. In Eq. (4),
the first term is equal to the classical Fisher information
of Eq. (2), which is called the classical term, and the
second term is called the quantum term. For pure states,
Eq. (4) reduces to

Fλ = 4
[
〈∂λψ|∂λψ〉 − |〈ψ|∂λψ〉|2

]
. (5)

An essential feature of the QFI is that we can obtain the
achievable lower bound of the mean-square error of the
unbiased estimator for the parameter λ, i.e., the so-called
quantum Cramér-Rao (QCR) theorem:

Var
(
λ̂
)
≥ 1

νFλ
, (6)

where Var (·) denotes the variance, λ̂ denotes the un-
biased estimator, and ν represents the number of re-
peated experiments. While it has found that the QCR
bound may can not be achieved in the asymptotic limit,
and other measures of the accuracy are examined by
Refs. [24–26].
As shown in a seminal work, see Ref. [30], they ob-

served that the estimability of a set of parameters param-
eterizing the family of the quantum states {ρλ}, which is
characterized by the QFI, is naturally related to the dis-
tinguishability of the states on the manifold of the quan-
tum states, which is measured by the Bures distance.
They also proved that the QFI is simply proportional to
the Bures distance [30]

D2
B [ρ (λ) , ρ (λ+ dλ)] =

1

4
Fλ dλ

2. (7)

The Bures distance measures the distance between two
quantum states, and is defined as [55–57]

D2
B (ρ, σ) := 2

(
1− Tr

√
ρ1/2σρ1/2

)
, (8)

where the second term in the bracket is the so-called
Uhlmann fidelity [56]. Meanwhile, the explicit formula
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of the QFI for the two-dimensional density matrices is
obtained by [59]

Fλ = Tr (∂λρ)
2
+

1

detρ
Tr (ρ ∂λρ)

2
. (9)

In the Bloch sphere representation, any qubit state can
be written as

ρ =
1

2
(11 + ω · σ̂) , (10)

where ω = (ωx, ωy, ωz)
T
is the real Bloch vector and σ̂ =

(σ̂x, σ̂y , σ̂z) denotes the Pauli matrices. Apparently, the
eigenvalues of the density operator are (1± ω) /2, with
the length of the Bloch vector ω ≡ |ω|. Here, the Blcoh
vector satisfies ω ≤ 1, the equality holds for pure states.
In the Bloch representation, Fλ can be represented as
follows

Fλ =

{
|∂λω|2 + (ω·∂λω)2

1−|ω|2 , ω < 1,

|∂λω|2 , ω = 1.
(11)

The first line of the above equation is only applicable for
the mixed states, which can be straightly obtained by
substituting Eq. (10) into Eq. (9).
For pure states, we have equation ρ2 = ρ. Taking

differential on both side of this equation with respect to
λ, one gets

∂λρ = ∂λρ
2 = ρ (∂λρ) + (∂λρ) ρ. (12)

The SLD operator is given as

L = 2 ∂λρ, (13)

by comparing Eq. (12) with Eq. (3). Substituting
Eqs. (10) and (13) into Eq. (2), and using the relation

Tr [(a · σ̂) (b · σ̂)] = 2a · b (14)

finally yield the second line of Eq. (11), i.e., Fλ for pure
states is the norm of the derivative of the Bloch vector.

B. Fisher information and Hellinger distance

By extending Eq. (1) into the quantum regime in a
different way, we will obtain a variant QFI [60]. Eq. (1)
can be equivalently expressed as

Fλ = 4
∑

i

(
∂λ

√
pi (λ)

)2

. (15)

By straightly replacing the summation by a trace, the
probability pi (λ) by a density matrix ρλ, and the differ-

ential ∂λ by the inner differential ∂λ· ≡ i
[
Ĝ, ·

]
with Ĝ

being a fixed self-adjoint operator and [ ·, · ] denoting the
commutator. One obtains the following equation

Iλ := 4Tr
(
∂λ

√
ρλ

)2
= −4Tr

[
ρ1/2, Ĝ

]2
. (16)

In the particular case, suppose that ρλ ≡ e−iĜλρeiĜλ,
i.e., ρλ satisfies the Landau-von Neumann equation

i∂λρλ =
[
Ĝ, ρλ

]
. Note that here we define Eq. (16) as

a paradigmatic version of the QFI. Actually, Eq. (16) is
the so-called skew information

IWY := −1

2
Tr

[
ρ
1/2
λ , Ĝ

]2
, (17)

which is introduced by Wigner and Yanase [32], with
ignorance of a negligible constant number here, i.e. I =
8IWY. The skew information (SI) is a measure of the
information contained in a quantum state ρλ with respect
of a fixed conserved observable Ĝ.
By inserting the spectrum decomposition ρ =∑
i ̺i |ψi〉 〈ψi| into Eq. (16), one obtain

Iλ =
∑

i′

(∂λ̺i′)
2

̺i′
+ 4

∑

i6=j

(√
̺i −

√
̺j
)2 |〈ψi|∂λψj〉|2 ,

(18)
where the first summation is over all ̺i 6= 0, the same
requirement as in Eq. (18). Comparing with Eq. (4), the
classical terms in Eqs. (4) and (18) are the same, but the
quantum terms are different. For pure states, Eq. (18)
reduces to

Iλ = 8
[
〈∂λψ|∂λψ〉 − |〈ψ|∂λψ〉|2

]
, (19)

which is twice as much as the QFI of Eq. (2) given in
Eq. (5). The factor-of-2 difference between Fλ and Iλ
result from their different coefficients (or weights) of the
quantum terms in Eqs. (4) and (18). For pure states,
the classical terms vanish, and only the quantum terms
contribute. Then we obtain Eqs. (5) and (19).
Similar to the relation between the QFI of Eq. (2) and

the Bures distance given in Eq. (7), there formally ex-
ists the same relation between the QFI of Eq. (17) and
quantum Hellinger distance [58]:

D2
QH [ρ (λ) , ρ (λ+ dλ)] =

1

4
Iλ dλ2. (20)

The latter is the quantum version of the classical
Hellinger distance, which measures the distance between
two probability distributions. In the space of the quan-
tum state, the quantum Hellinger distance is defined as

D2
QH (ρ, σ) := 2

(
1− Tr

√
ρ
√
σ
)
, (21)

where the last term in the bracket is called quantum affin-
ity [58].
For a 2 × 2 density matrix, we derive the explicit for-

mula of the QFI Iλ as follows:

Iλ = αTr (∂λρ)
2 − β Tr (ρ ∂λρ)

2
, (22)

where the coefficients are determined by

α =
1

1− 4 det ρ

[
4 (1− 2 det ρ)(
1 + 2

√
det ρ

) − 1

]
, (23)

β =
1

1− 4 det ρ

(
8

1 + 2
√
det ρ

− 1

det ρ

)
. (24)
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In the Bloch representation, Iλ can be represented as
follows

Iλ =





2|∂λω|2

1+
√

1−|ω|2
+Θω (ω · ∂λω)

2
, ω < 1,

2 |∂λω|2 , ω = 1,
(25)

where the coefficient is given by

Θω =
1

1− |ω|2
− 1

(
1 +

√
1− |ω|2

)2 . (26)

The first line of Eq. (25) is only applicable for mixed
states, which can be directly derived by substituting
Eq. (10) into Eqs. (22), (23) and (24).
For pure states, we have

√
ρ = ρ. (27)

With Eqs. (14) and (27), one can obtain the second line
of Eq. (25) from Eq. (16), i.e., Iλ for pure states is the
norm of the derivative of the Bloch vector up to a factor
of 2.

C. Example

Having obtained Eqs. (11) and (25), we consider a sim-
ple example to calculate the two variant QFIs for a pure
state with different parameters. We adopt the standard
notation where |1〉 ≡ |↓〉 and |0〉 ≡ |↑〉 correspond to the
ground state and excited state, respectively. Consider an
arbitrary single-qubit state

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 , (28)

of which the Bloch vector is denoted as ω =
(sin θ cosφ, sin θ sinφ, cos θ)

T
, with θ and φ referring to

the polar and azimuth angles on the Bloch sphere. Here,
the two parameters θ and φ in Eq. (28) are assumed to
be unitary encoded.
Now we compute the QFIs of the single qubit state

Eq. (28) in terms of the parameters: θ (amplitude pa-
rameter) and φ (phase parameter). With the help of Eq.
(11), one can easily obtain Fθ = 1 and Fφ = sin2 θ. For
the amplitude parameter θ, Fθ is constantly equal to 1,
independent of both two parameters θ and φ. While Fφ

about φ depends on the parameter θ and reaches the
maximum value 1, when θ = π/2, i.e., |ψ〉 is a equal-

weighted state |ψ〉 =
(
|0〉+ eiφ |1〉

)
/
√
2 [11]. According

to Eq. (25), we obtain Iθ = 2 and Iφ = 2 sin2 θ. Similar
to Fθ, Iθ is also independent of the parameters θ and
φ. Meanwhile, Iφ reaches the maximum value 2 at the
point θ = π/2. In Sec. III B, we will assume that the
qubit is initially in the equally weighted superposition of
the two states |0〉 and |1〉, so both Fφ and Iφ reach their
maximum values.

III. QFI FOR A SINGLE QUBIT UNDER
DECOHERENCE

Decoherence occurs when a quantum system interacts
with its environment, and it is unavoidable in almost all
the realistic quantum systems. A quantum noisy dynam-
ical process can be generally described by a map E , using
the Kraus representation

E(ρ) =
∑

µ

Kµ ρK
†
µ, (29)

where Kµ are the Kraus operators satisfying∑
µK

†
µKµ = 11, which leads to the map E being a

CPT map [37, 38]. In the Bloch representation, such an
non-unital trace-preserving process can be represented
by an affine map on the generalized Bloch vector [40, 61].
For qubit system, Eq. (29) can be equivalently repre-

sented as

E(ρ) = 1

2
11 +

1

2
(Aω + c) · σ̂, (30)

where A is a 3 × 3 real transformation matrix with el-
ements defined as Aij = 1

2Tr [σiE (σj)], and c ∈ R3

is the translation vector with elements given by ci =
1
2Tr [σiE (11)]. From Eqs. (10) and (30), it indicates that
under the decoherence, the Bloch vector ω of Eq. (10)
is mapped as E(ω) := Aω + c. In parameter estima-
tion, the unknown parameter is generally encoded on
the probes through a unitary or non-unitary evolution
[15]. In this paper, we do not consider the case of the
non-unitary parametrization. A and c are assumed to
be parameter-independent, i.e., the decoherence process
will not introduce the parameter.
With Eq. (11), the dynamic of the QFI based on the

SLD operator for a single qubit under decoherence chan-
nels can be generally expressed as

Fλ = |∂λE(ω)|2 + [E(ω) · ∂λE(ω)]2

1− |E(ω)|2
. (31)

Similarly, according to Eq. (25), the dynamic of the vari-
ant version of the QFI can be written as

Iλ =
2 |∂λE(ω)|2

1 +

√
1− |E(ω)|2

+ΘE(ω) [E(ω) · ∂λE(ω)]2 , (32)

Given an input state |ψ〉, the dynamics of the two QFIs
under quantum channels are fully determined by the
affine transformation matrix A and the translation vec-
tor c. It is noted that Eqs. (31) and (32) are the general
results that are applicable to all of those cases with dif-
ferent parametrization processes.

A. Dynamics of the QFIs under three decoherence
channels

Below, we will study the dynamics of the two vari-
ant versions of the QFI under three paradigmatic types
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of quantum channels [40, 43]: phase-damping channel
(PDC), depolarizing channel (DPC), and generalized
amplitude-damping channel (GADC) modeling a ther-
mal bath at arbitrary temperature, which will be re-
duced to the purely dissipative amplitude-damping chan-
nel (ADC) when the environment temperature becomes
zero. These channels are the prototype models of dissi-
pation relevant in various experimental systems,
Phase-damping channel: The PDC is a prototype

model of dephasing or pure decoherence, i.e., loss of co-
herence of a two-level state without any loss of system’s
energy. The PDC is described by the map

EPDC(ρ) = s ρ+ p (ρ00|0〉〈0|+ ρ11|1〉〈1|) , (33)

and obviously the Kraus operators are given by

KPDC =
{√

s 11,
√
p |0〉〈0|, √p |1〉〈1

}
, (34)

where p ≡ 1−s is the probability of the qubit exchanging
a quantum with the bath at time t with s = exp (−γt/2),
with γ denoting the zero-temperature dissipation rate.
For the sake of simplicity, we introduce a dimensionless
quantity τ = γt, then s = exp (−τ/2), For the PDC,
there is no energy change and a loss of decoherence occurs
with probability p. As a result of the action of the PDC,
the Bloch sphere is compressed by a factor (1 − 2p) in
the xy-plane.
According to Eq. (30), the transformation matrix A

and the translation vector c of the PDC are given in
Table I. These indicate that the Bloch vector components
along the x- and y-axis shrink with probability s, while
the z-component remains invariant under the action of
the PDC, and the Bloch vector ω is mapped as

EPDC (ω) = (s ωx, s ωy, ωz)
T . (35)

Furthermore, with Eqs. (31) and (32), we obtain the ana-
lytical results of the two variant versions of the QFI under
the PDC in Table. I. One can find that Fφ, Iθ and Iφ are
monotonic functions of t and are solely dependent on the
parameter θ. Interestingly, Fθ is constantly equal to 1 for
any time, which implies that the QFI F about the ampli-
tude parameter θ is robust under PDC. The significance
of this is that one can avoid the impact of the PDC on
the accuracy of the parameter estimation, by encoding
the parameter on the amplitude of the input state.
When θ = π/2, we have

Fθ = 1, Fφ = s2,

Iθ =
2

1 +
√
1− s2

,

Iφ = 2− 2
√
1− s2.

As is plotted in Figs. 1 (a) and (b), under the PDC,
the QFIs associated to the phase parameter, Fφ and Iφ
decreases monotonically with τ and vanish only in the
asymptotic limit τ → ∞. Interestingly, Iθ decrease from
initial value 2 to final value 1, shown in Fig. 1 (b). It is

0 2 4 6
0

1

2

I

 

 

0 2 4 6
0

0.5

1

1.5

 

 

F

0 2 4 6
0

0.5

1

F

 

 

0 2 4 6
0

1

2

I

 

 

0 2 4 6
0

0.5

1

τ

F

 

 

0 2 4 6
0

1

2

τ

I

 

 
Iθ(n̄ = 0)
Iθ(n̄ = 1)
Iφ(n̄ = 0)

Iφ(n̄ = 1)

Fθ(n̄ = 0)
Fθ(n̄ = 1)
Fφ(n̄ = 0)

Fφ(n̄ = 1)

Fθ

Fφ

Iθ

Iφ

Fθ

Fφ

Iθ

Iφ

(a): PDC

(c): DPC

(e):
GADC

(f):
GADC

(b): PDC

(d): DPC

FIG. 1: (Color online) Plots of the two variant versions of the
QFI versus τ in terms of the parameter θ and φ under three
quantum decoherence channels: PDC (a, b), DPC (c, d), and
GADC (e, f) for a single qubit system. The qubit initially
being prepared in the equally weighted state (Eq. (28) with
θ = π/2) of which the QFIs take the maximum at τ = 0. In
(e) and (f), we plot the QFIs under the GADC for a zero-
temperature n̄ = 0 and a finite-temperature n̄ = 1, respec-
tively.

indicated that the QFI Iθ depend on the diagonal and
off-diagonal elements of the density matrix. Due to the
influence of the PDC, the off-diagonal ones vanish, and
only the diagonal ones remain, which make Iθ equal to
1.
Depolarizing channel: The definition of the DPC is

given via the map

EDPC(ρ) = s ρ+ p
11

2
, (36)

and the corresponding Kraus operators are expressed as

KDPC =

{√
1 + 3s

2
11,

√
p

2
σx,

√
p

2
σy,

√
p

2
σz

}
, (37)

where s ≡ 1−p and σ = (σx, σy, σz)
T denotes the Pauli

matrices. The channel is completely positive for 0 ≤ p ≤
1. We see that for the DPC, the qubit is unchanged
with probability s or it is depolarized to the completely
mixed state 11/2 with probability p. It is seen that due to
the action of the DPC, the radius of the Bloch sphere is
reduced by a factor s, but its shape remains unchanged.
The transformation matrix A and the translation vec-

tor c for the DPC are given in Table I, and then the
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TABLE I: Analytical results for the time-evolutions of the two QFI quantities in terms of the parameters θ and φ for the single
qubit state |ψ〉 in Eq. (28) under the quantum decoherence channels. The decoherence channels can geometrically be described
as affine maps, and the transformation matrices A and the translation vectors c for each channel are listed. In order to simplify

the expression of the results, we set X = sin θ
√

1 − s2, Y = 2 cos2 θ
2

√

s (1 − s), Z =
√

1 − s̄ sin2 θ − [p̄ (α− β) − s̄ cos θ]2,

R1 = s̄ [1 + s̄+ p̄ cos (2 θ)], and R2 = p̄2s̄2 (α− β + cos θ)2 sin2 θ.

Quantum channel A c Fθ Fφ Iθ Iφ

Phase-damping
channel
(PDC)





s 0 0
0 s 0
0 0 1









0
0
0



 1 s2 sin2 θ 3+4X+2 s2 cos2 θ−cos(2 θ)

2(1+X)2
2s2 sin2 θ

1+X

Depolarizing
channel
(DPC)





s 0 0
0 s 0
0 0 s









0
0
0



 s2 s2 sin2 θ 2 − 2
√

1 − s2 2s2 sin2 θ

1+
√

1−s2

Amplitude Damping
channel
(ADC)





√
s 0 0

0
√
s 0

0 0 s









0
0
−p



 s s sin2 θ
s[3+4Y +2 s sin2 θ+cos(2 θ)]

2(1+Y )2
2s sin2 θ
1+Y

Generalized Amplitude
Damping channel

(GADC)





√
s̄ 0 0

0
√
s̄ 0

0 0 s̄









0
0

−p̄ (α− β)





R1

2
+ R2

Z
s̄ sin2 θ R1

1+Z
+R2

[

1
Z2

− 1
(1+Z)2

]

2s̄ sin2 θ
1+Z

affine-mapped Bloch vector is obtained as

EDPC (ω) = (s ωx, s ωy, s ωz)
T , (38)

which shows that all components of the Bloch vector are
shortened by a factor s. Moreover, we analytically derive
the expressions of the two QFIs with respect to θ and φ
under the DPC, given in Table I.
For θ = π/2, those expressions are explicitly simplified

as

Fθ = Fφ = s2,

Iθ = Iφ = 2− 2
√
1− s2.

The results show that, under the DPC, the two QFIs
decrease by a factor of s2 and s, respectively. The ex-
pressions of the QFI F (I) for different parameters θ
and φ are the same. As are plotted in Figs. 1 (c) and
(d), the QFIs decreases monotonically.
Generalized Amplitude-damping channel: The

GADC is given, in the Born-Markov approximation, via
its Kraus representation as

EGADC(ρ) =
3∑

i=0

Ki ρK
†
i , (39)

where the corresponding Kraus operators are

KGADC =
{√

α
(
|0〉 〈0|+

√
s̄ |1〉 〈1|

)
,
√
α p̄ |0〉 〈1| ,

√
β
(√

s̄ |0〉 〈0|+ |1〉 〈1|
)
,
√
β p̄ |1〉 〈0|

}
,

(40)
with

α ≡ n̄+ 1

2 n̄+ 1
, β ≡ n̄

2 n̄+ 1
, (41)

and

s̄ ≡ e−
1

2
τ(2 n̄+1), p̄ = 1− s̄, (42)

where s̄ and p̄ are dependent on the mean number of
excitations n̄ in the bath. In the zero-temperature limit,
i.e., n̄ = 0 and s̄ = s, Eq. (39) reduces to the purely
dissipative ADC, and its Kraus operators are represented
as

KADC =
{√

s |0〉〈0|+ |1〉〈1|, √p |1〉〈0|
}
. (43)

Similarly, in the Bloch representation, the GADC can
be described as an affine map of which the transformation
matrix A and the translation vector c being given Table
I, and the Bloch vector ω is mapped as

EGADC (ω) =
(√

s̄ ωx,
√
s̄ ωy, s̄ ωz − p̄ (α− β)

)T

. (44)

When α = 1 and β = 0, Eq. (44) reduce to the ADC
case. It indicates that the GADC squeezes the Bloch
sphere into an ellipsoid and shifts it towards the north
pole. The radius in the xy-plane is reduced by a factor√
s, while in the z-direction it is reduced by a factor s.

In the asymptotic limit τ → ∞, i.e., s = 0, p = 1, the

Bloch vector becomes EGADC (ω) = (0, 0, − (α− β))
T
,

which also implies that, under the ADC (n̄ = 0), the
qubit finally stay in the ground state. Meanwhile, the
analytical results of the two QFIs under the GADC (the
finite temperature) and the ADC (the zero-temperature)
are derived in Table I.
When θ = π/2, the dynamics of the QFI F , under the

ADC, in terms of θ and φ are the same, namely Fθ =
Fφ = s. As are shown in Figs. 1 (e) and (f), under
the GADC and ADC, the QFIs with for the different
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parameters decrease monotonically with time. It is also
shown that the QFIs for finite temperature decay more
rapidly than that for zero-temperature.

B. Numerical calculation with hierarchy equation

In this section, we focus on a simple dissipative model
of a two-level system interacting with a zero-temperature
bosonic reservoir to explicitly illustrate the behaviors of
the two QFI quantities during time evolution [31, 44].
Here, we exactly examine this model by adopting the
hierarchy equation method. The total Hamiltonian of
the system and bath without performing the RWA is

H =
1

2
ω0σz +

∑

k

ωkb
†
kbk + σxB, (45)

with B =
∑

k gkbk + h.c.. Here, the first term is the
free Hamiltonian of the qubit with transition frequency
ω0, the second term denotes the environment part with

the creation (annihilation) operators b†k (bk) of the bath
model with frequency ωk, and the last term is the interac-
tion Hamiltonian between the system and bath equipped
with the coupling constant gk. In the zero temperature
limit, the spectral density is generally represented by a
Lorentzian [44, 45]

J (ω) =
1

π

λγ

(ω − ω0)
2
+ γ2

, (46)

where λ reflects the system-bath coupling strength and
γ is the spectral width of the coupling, which is related
to the reservoir correlation time scale τB ∼ γ−1.
As is well known, this typical dissipative model is solv-

able under the RWA which is effective in the weak cou-
pling limit [44, 52]. With the RWA, the analytical time-
evolution function of the system can be equivalently de-
scribed as an ADC by redefining the Kraus operators
Eq. (43) as

K̃ADC =
{
h (t) |0〉〈0|+ |1〉〈1|,

√
(1− h2 (t)) |1〉〈0|

}

(47)
where h (t) is a crucial characteristic function as

h (t) = e−γt/2

[
cosh

(
dt

2

)
+
γ

d
sinh

(
dt

2

)]
, (48)

with d =
√
γ2 − 4λ. From Eq. (44), the affine-mapped

bloch vector reads under this dissipative environment

ẼADC (ω) =
(
h (t) ωx, h (t) ωy, 1− h2 (t)

)T
. (49)

As shown in Table I, then, one can easily recover the re-
sult of the dynamical QFI in terms of φ given in Ref. [31],

Fφ = h2(t) . (50)

With the hierarchy equation method, the exact dy-
namic of the system is derived as the following equation
in the interaction picture [52]

ρ
(I)
S (t) = T exp

{
−
∫ t

0

dt2

∫ t2

0

dt1V (t2)
×
[
CR (t2 − t1)

V (t1)
×
+ iCI (t2 − t1)V (t1)

◦
]}
ρS(0), (51)

where T is the chronological time-ordering operator and,
to simplify the description, we introduce two super-
operators A×B ≡ [A,B] and A◦B ≡ {A,B}. Assume
that the initial state is taken as ρ (0) = ρS (0) ⊗ ρB with
ρB being in the vacuum state ⊗k |0k〉. Also, CR (t2 − t1)
and CI (t2 − t1) respectively correspond to the real and
imaginary part of the bath time-correlation function
which is defined as

C (t2 − t1) ≡ 〈B (t2)B (t1)〉B = Tr [B (t2)B (t1) ρB] ,
(52)

where B (t) =
∑

k gkbke
−iωkt + h.c.. Then the time-

correlation function Eq. (52) becomes the exponential
form

C (t2 − t1) = λ exp [− (γ + iω0) |t2 − t1|] , (53)

With Eqs. (51) and (53), we further obtain the set of
hierarchical equations of the qubit as [52]

∂

∂t
̺~n (t) = −

(
iH×

S + ~n · ~ν
)
̺~n (t)− i

2∑

k=1

V ×̺~n+~ek (t)

− i
λ

2

2∑

k=1

nk

[
V × + (−1)

k
V ◦

]
̺~n−~ek (t) , (54)

where the subscript ~n = (n1, n2) is a two-dimensional
index with n1(2) ≥ 0, and ρS (t) ≡ ̺(0,0) (t). The vec-
tors are ~e1 = (1, 0), ~e2 = (0, 1), and ~ν = (ν1, ν2) =
(γ − iω0, γ + iω0). We emphasize that ̺~n (t), with ~n 6=
(0, 0), are auxiliary operators introduced only for the
sake of computing, they are not density matrices, and
are all set to be zero at t = 0. Through solving the above
hierarchy equations, the dynamics of the system can be
exactly determined without making the RWA.
Figure 2 displays the dynamics of the QFI of Eq. (2)

and the variant QFI of Eq. (16) versus time for differ-
ent parameters initially encoded in the qubit state. The
spectral width of the coupling is set by γ = 0.2ω0. In
the Markovian regime (inset plots with λ = 0.01γ), the
QFIs Fθ(φ) and Iθ(φ) are monotonically go to zero. Both
the numerical and the analytical results are consistent
in the weak coupling limit. While, in the non-Makovian
regime (γ = 0.1λ), due to the strong coupling with the
reservoir, the dynamics of these two information quanti-
ties exhibit the oscillations and revivals over time. The
times when Iθ(φ) vanish completely coincide with those
for Fθ(φ). The surprising aspect here is that the quan-
tities of Iθ(φ) for the two parameters θ and φ decrease
quickly to zero from the initial value of 2, and then
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FIG. 2: (Color online) Two QFIs Eq. (2) (a, b) and Eq. (16)
(c, d) versus time for different parameters initially embedded
in the qubit under the dissipative process. The solid lines
display the numerical results by using the hierarchy equation
method. These are compared to the analytical results with
RWA (dashed lines), all plotted in the non-Markovian regime
(λ = 0.1γ). The insets show in the Markovian regime (λ =
0.01γ)

later on revive with almost the same amount as Fθ(φ)

do. Since the hierarchical equations we obtained exactly
depict the dynamics of the system, the oscillating devi-
ations between the numerical and the analytical results
can be interpreted as the contribution of the counter-
rotating-wave terms which have been omitted by making
the RWA [52]. Such deviations behave evidently for both
two information quantities in terms of θ. As shown in
Ref. [31], they addressed these oscillations and revivals
in Figs. 2 (a) and (b) by introducing the definition of
the QFI flow. Analogously, we also introduce a variant
QFI flow (or skew information flow) as the change rate
of information quantity I, i.e., σ := ∂Iλ/∂t. Also, σ > 0
indicates that there is a information flow from the en-
vironment to the system, corresponding to the revivals,
and σ < 0 denotes that the flow from the system to
the environment, accounting for the decays, as shown in
Figs. 2 (c) and (d).

IV. GENERALIZATION

A. Representation of the QFI in terms of the
generalized Bloch vector for a qudit system

We have examined the QFIs under decoherence for a
single qubit in the Bloch representation. Now, we con-
sider a more general case, i.e., the qudit (a d-dimensional
quantum system). A general qudit state can be written

in the Bloch representation as [62, 63]

ρ =
1

d
11d +

1

2
ω · η̂, (55)

where 11d is a d × d identity operator, η̂ = {η̂i}d
2−1

i=1 are
the generators of the Lie algebra su (d) (see appendix

A), and ω ∈ Rd2−1 denotes the generalized Bloch vector
whose ith element is Tr (ρ η̂i).
Since we have the following relation

1/d ≤ Tr
(
ρ2
)
≤ 1, (56)

where Tr
(
ρ2
)
is the purity. The purity equal to one,

corresponding to pure states, and 1/d, corresponding to
mixed states. With Eq. (55), we get

Tr
(
ρ2
)
=

1

d
+

1

2
|ω|2 , (57)

by using following relation

Tr [(a · η̂) (b · η̂)] = 2a · b. (58)

Thus, from Eqs. (56) and (57), we obtain the length of
the generalized Bloch vector satisfying

0 ≤ ω ≤
√
2 (d− 1) /d, (59)

where the first equality holds for the maximal mixed state
and the second for pure states.
Owning to the completeness of the generators of Lie

algebra, any Hermitian matrix can be described by the
common set of generators. Based on this representation,
we give the new expressions of the two QFIs in terms of
the Bloch vector. Firstly, we consider the QFI in Eq. (2).
Fλ can be represented as

Fλ =

{
(∂λω)

T M−1 ∂λω, ω <
√
2 (d− 1) /d,

|∂λω|2 , ω =
√
2 (d− 1) /d,

(60)

where M is a real symmetry matrix defined as

M =
2

d
11d2−1 − ωωT +G. (61)

The superscript T in the above equations denotes the
transpose operation and M−1 denotes the matrix inverse
of M. 11d2−1 is the identity matrix of dimension d2 − 1
and G is a

(
d2 − 1

)
×

(
d2 − 1

)
real symmetric matrix

whose ij-element is

[G ]ij =

d2−1∑

k=1

gijk ωk, (62)

where gijk is the completely symmetric tensor defined
in Eq. (A.7). Hence, M is also real symmetric matrix.
Since M may have some zero eigenvalues, the inverse is
defined on the support of M [61]. Here, the first line of
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Eq. (60) only applies to mixed states, and the detailed
derivation can be found in appendix B.
For pure states, Fλ is generally expressed as the norm

of the derivative of the Bloch vector shown in Eq. (60).
It can be easily derived by using Eq. (58) and following
the same procedure used in deriving the second line of
Eq. (11).
From Eq. (61), we can see that the matrix M is de-

pendent of ω. Then we can conclude that Fλ given by
Eq. (60) only depends on the two elements: the Bloch
vector of the density matrix and the derivative of it.
Moreover, it deserves to emphasize that Eq. (60) is also
valid for arbitrary quantum state, since a density ma-
trix always can be expressed as the form of Eq. (55) by
expanding over the generators of the Lie algebra.
When d = 2, we have G = 0, due to gijk = 0. Then,

the real symmetric matrix M reduces to

M = 113 − ωωT. (63)

The inverse of M is verified as

M−1 = 113 +
ωωT

1− |ω|2
. (64)

Substituting the above equation into Eq. (60) finally re-
covers the first line of Eq. (11).
We next take account of the QFI in Eq. (16). We firstly

expand

√
ρ = y11d + x · η̂. (65)

Then, Iλ can be represented as follows

Iλ =

{
8
[
(∂λy)

2
+ 2

d |∂λx|
2
]
, ω <

√
2 (d− 1) /d,

2 |∂λω|2 , ω =
√
2 (d− 1) /d,

(66)
where y and x are completely determined by the follow-
ing d2 quadratic nonlinear equations:

y2 +
2

d
|x|2 =

1

d
, (67)

2 y xk +
d2−1∑

i,j=1

gijk xi xj =
ωk

2
, (68)

for k = 1, 2, ..., d2−1. The first line of the above equation
is applicable for mixed states, and the detailed derivation
is given in appendix C.
For pure states, Iλ is generally expressed as the norm

of the derivative of the Bloch vector up to a factor of 2
shown in Eq. (66). It can be obtained by using Eq. (58)
and following the same procedure used in deriving the
second line of Eq. (25).
For the case of d = 2, equations (67) and (68) reduce

to

y2 + |x|2 =
1

2
, (69)

4 yx = ω, (70)

with gijk = 0. By solving the above equations (see ap-
pendix C), one can obtain

y =

√
1 +

√
1− |ω|2

2
, (71)

x =
ω

2

√
1 +

√
1− |ω|2

. (72)

Inserting the above solutions into the first line of Eq. (66)
and making some simplification recovers the first line
given in Eq. (25).

B. QFI for an N-qubit system in noisy environment

Below, we study the dynamic of the QFI for an N -
qubit system in noisy environment. In the Bloch repre-
sentation, the two QFIs for qudit are described in terms
of the generalized Bloch vector ω, as is shown in Eqs. (60)
and (66) respectively. The Bloch vector is assumed to be
the function of an unknown parameter λ on the system.
Meanwhile, we emphasize that Eqs. (60) and (66) are
also applicable for the multi-qubit system with exchange
symmetry. Since, a collection of N qubits is represented
by the collective operators [64]

Jα =

N∑

i=1

σiα
2
, (α = x, y, z) , (73)

where σiα denotes the pauli matrix of the ith qubit.
Such an N -qubit ensemble with total angular momen-
tum j = N/2 can be approximately viewed as a qudit
system, when it has the symmetry under the exchange of
two qubits. The collective basis of this system is {|j,m〉}
for m = 0,±1,±2, ...,±j, which is so-called Dicke state,
Jz |j,m〉 = m |j,m〉. Hence, Eqs. (60) and (66) are also
valid for those multi-qubit systems.
Assume that the dimension of the decohered state E(ρ)

is the same of that of ρ. Similar to Eq. (30), an N -qubit
system with exchange symmetry described by Eq. (55)
under decoherence can be expressed as [40, 61]

E(ρ) = 1

d
11d +

1

2
(Aω + c) · η̂, (74)

with d = N +1. Here, A is a matrix of dimension d2 − 1
with elements

Aij =
1

2
Tr [η̂i E( η̂j)] , (75)

and c is a d2 − 1 dimensional vector with elements

ci =
1

d
Tr [η̂i E( 11d)] . (76)

Equation (74) illustrates that a Markovian quantum dy-
namic can be geometrically described as an affine trans-
formation, i.e.,

E : ω 7→ Aω + c. (77)
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FIG. 3: (Color online) The Schematic representation of Ram-
sey interferometry in presence of collisional dephasing.

As we mentioned at the beginning of Sec. III, in the pa-
rameter estimation, the unknown parameter is generally
imprinted into the probes through unitary or non-unitary
evolution [15]. It is noted that equation (60) is applicable
to the cases with different the parametrization processes,
by replacing the Bloch vector ω with the affine-mapped
Bloch vector E(ω).
To be more specific, we consider an experimentally re-

alizable Ramsey interferometry [65], to estimate a phys-
ical parameter in a Bose-Einstein condensate (BEC) of
N two-level atoms interacting with a common thermal
reservoir. This experiment we model is shown schemat-
ically in Fig. 3. Those two-level atoms may be con-
sidered as qubits or probes, which are prepared in an
N -qubit Greenberger-Horne-Zeilinger (GHZ) state (or
Schrödinger-cat state)

|ψGHZ〉 =
1√
2

(
|0〉⊗N

+ |1〉⊗N
)
. (78)

Considering all the qubits being initially prepared in |0〉,
then a GHZ state is generated by putting a Hadamard
gate acts on the first qubit, followed by a sequence of
controlled-NOT gates linking the first one with each of
the remaining ones [11, 13, 65]. It is well known that
such a state saturates the ultimate Heisenberg limit (HL)
1/N on precision of measurement. This result gives a
quadratic improvement over the standard quantum limit
(SQL), which is achievable with product states [11, 65].
As is shown in Fig. 3, the parameter ϕ of interest is

unitary imprinted on the state of the probe qubits. The
unitary operator is given by

U tot
ϕ = U⊗N

ϕ =
[
exp

(
−iϕ

2
σz

)]⊗N

= e−iϕJz , (79)

where Jz is the z component of the total angular momen-
tum for all qubits [65]. After the unitary evolution, then
the state of the probes becomes

∣∣∣ψ̃GHZ

〉
=

1√
2

(
|0〉⊗N

+ eiNϕ |1〉⊗N )

=
1√
2

(∣∣∣∣
N

2
,
N

2

〉
+ ei Nϕ

∣∣∣∣
N

2
,−N

2

〉)
,(80)

up to a global phase factor e−iNϕ/2. The second equal-
ity above is valid in the standard representation of the
generator Jz. According to the appendix D, the Bloch
vector of the state of Eq. (80) reads

ωϕ =
(
cos (Nϕ) , 0, ..., 0︸ ︷︷ ︸

(d2−d)/2

, sin (Nϕ) , 0, ..., 0︸ ︷︷ ︸
(d2−d)/2

,

1

2
, ...,

1√
2m (m+ 1)

, ...,
1√

2 (d− 1) (d− 2)
,

2− d√
2d (d− 1)

)T

, (81)

form = 1, ..., d−2. For the sake of clarity, we take N = 2
(i.e., d = 3) for example. The Bloch vector for N = 2 in
Eq. (81) becomes

ωϕ =
(
cos (2ϕ) , 0, 0, sin (2ϕ) , 0, 0,

1

2
, − 1

2
√
3

)T
,

of dimension 8. As is shown in Eq. (81), ωϕ only con-
tains two ϕ-dependent elements. From Eq. (60), we find
that that those ϕ-independent elements of ωϕ will not
contribute to computation of Fϕ.

In the realistic experiment, decoherence always exists.
As is shown in Fig. 3, we consider the effect of the col-
lisional dephasing on this measurement protocol, which
is induced by the interaction between the qubits and the
common thermal reservoir [66, 67]. The master equation
of the system in the Lindblad form can be described as
[67, 68]

ρ̇ (t) = L ρ ≡ γ
(
2Ĵzρ (t) Ĵz − ρ (t) Ĵ2

z − Ĵ2
z ρ (t)

)
, (82)

where L denotes the Lindblad superoperator, γ denotes
the dephasing rate, and ρ is the reduced density operator
of the system in the interaction picture. For the single
qubit case, Eq. (82) reduces to

ρ̇ (t) = L ρ ≡ γ

2
[σzρ (t)σz − ρ (t)] , (83)

which corresponds to a single-qubit dephasing channel
(i.e., DPC). Here, we use the interaction representation
which does not affect the result of the calculation, since
the QFI F remains invariant under the unitary evolution
being independent of the parameter ϕ. From Eq. (82),
the time evolution of the density matrix elements is given
as follows

ρm,n (t) = 〈j,m| ρ (t) |j, n〉 = ρm,n (0) e
−(m−n)2τ , (84)

where we have set τ = γt. In the Bloch representation,
the corresponding affine transformation matrix for the
collisional dephasing in Eq. (82) can be obtained as
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A = Diag
(
e−N2τ , e−(N−1)2τ , e−(N−1)2τ , e−(N−2)2τ , ..., e−4τ ,

d−1︷ ︸︸ ︷
e−τ , ..., e−τ

︸ ︷︷ ︸
(d2−d)/2

e−N2τ , e−(N−1)2τ , e−(N−1)2τ , e−(N−2)2τ , ..., e−4τ ,

d−1︷ ︸︸ ︷
e−τ , ..., e−τ

︸ ︷︷ ︸
(d2−d)/2

, 1, 1, ..., 1︸ ︷︷ ︸
d−1

)
, (85)

and c = 0 (see appendix D). Apparently, both transfor-
mation matrix A and translation vector c are indepen-
dent of ϕ. After the dephasing process, the Bloch vector
of Eq. (81) is affine-mapped as

E (ωϕ) =
(
e−N2τ cos (Nϕ) , 0, ..., 0, e−N2τ sin (Nϕ) ,

0, ..., 0,
1

2
, ...,

1√
2k (k + 1)

, ...,

1√
2 (d− 1) (d− 2)

,
2− d√
2d (d− 1)

)T

, (86)

which is given by inserting A of Eq. (85) and c = 0

into Eq. (77). The dynamic of the QFI associated to the
parameter ϕ may be evaluated as, from Eqs. (60) and
(86),

Fϕ = N2e−2N2τ , (87)

which shows that the quantity of the QFI is monoton-

ically decreased by a factor of e−2N2τ . This result is
consistent with Ref. [69]. While the dynamic of the
QFI under the local dephasing process were studied in
Refs. [6, 7].
To clearly see the effect of the decoherence process, we

define a time scale τc which is the time over which the
QFI reduce from the HL (i.e., Fϕ = N2) to the SQL
(i.e., Fϕ = N) [6]. For the collisional dephasing, the
characteristic time reads

τc =
logN

2N2
. (88)

After τc above, the GHZ state cannot be used to per-
form over shot-noise estimation. As is plotted in Fig. 4,
the characteristic time decreases exponentially as N in-
creases. It illustrates that the advantage of a GHZ state
deteriorates in the case of collisional dephasing.
We further observe the optimal precision of frequency

measurements in this situation. In the standard Ramsey
spectroscopy, the parameter of interest is the frequency
of the atomic transition which is denoted as ω′, and the
uncertainty of the frequency depends on the available
physical resources, which we take to be the probe size
N and the total time T of the experiment. Taking the
time of a single shot as t, then the number of the trials

1 10 20 30
0

0.03

0.06

0.09

N
τ
c

FIG. 4: (Color online) Plot of the characteristic time τc in
Eq. (88) (blue dash-circle curve).

is ν = T/t, and the quantum Cramér-Rao inequality of
Eq. (6) can be rewritten as

∆ω′√T ≥ 1√
Fω′/t

, (89)

in the asymptotical limit ν → ∞ [14]. As is well known,
entangled states may provide a HL-scaling limit on the
measurement precision in the absence of noise. In the
seminal paper of Refs. [13, 14], they found that GHZ
states do not offer any improvement in precision in the
presence of the local dephasing, and only provide a SQL-
scaling limit (i.e., ∆ω′√T ∼ 1/

√
N). Besides, a achiev-

able lower bound for the ultimate limit of precision in
noisy systems are investigated in Refs. [15, 16]. It is
shown that when local decoherence is taken into account,
the maximal possible quantum enhancement amounts
generically to a constant factor in the asymptotic limit
of infinite probes.
Now, we consider the effect of the collective dephasing

on the precision measurement. From Eq. (87), we can
directly obtain the QFI in terms of ω′ as

Fω′ = N2e−2N2τ t2, (90)

by setting ϕ = ω′t. Taking the optimal time as topt =
1/(2γN2) as is shown in Refs. [13, 14], the ultimate pre-
cision of frequency reads

∆ω′√T ≥
√
2γe, (91)
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by substituting Eq. (90) into Eq. (89). Counterintu-
itively, this result shows that GHZ states even can not
provide a SQL scaling of precision in the presence of the
collective dephasing. This indicates that the collective
noise may make serious destroy in the quantum parame-
ter estimation.

V. DISCUSSION AND CONCLUSION

We have discussed the time evolution of the two variant
versions of the QFIs in the presence of quantum noises.
With the help of the Bloch representation, we derived
the explicit formula of the two information quantities for
a single qubit system. The analytical expressions of the
dynamics of the two QFIs under three typical quantum
decoherence channels were obtained. Both information
quantities in those channels are decreased monotonically
with time, only except the case that the Fθ remained
invariant under PDC. It manifested that the QFI defined
in Eq. (2) about the amplitude parameter θ is robust for
the PDC.
We also considered a simple dissipative model of a sin-

gle qubit coupling with a bosonic reservoir at zero tem-
perature. By applying the hierarchy equation method,
we exactly calculated the dynamical QFIs during time
evolution. We found that the numerical results qualita-
tively coincided with the analytical ones using the RWA.
The deviation between them is accounted as the contri-
bution of the counter-rotating-wave terms. In the weak
coupling regime, we observed that two QFIs about dif-
ferent parameters were monotonically decreased. When
the strength of the coupling become more stronger, the
behavior of the non-Markovian could be observed from
the QFIs perspective.
Finally, we generalized the results to the qudit system,

expressing the two QFIs in terms of the generalized Bloch
vector. Those expressions were valid for the N -qubit sys-
tem with symmetry exchange. We also considerd the QFI
in the presence of the collisional dephasing with the ini-
tial state being prepared as a GHZ state. The affine
matrices for this dephasing process was derived and the
Bloch vector of the GHZ state also was expressed as the
Bloch vector. We found the dynamical QFI exponentially

decrease by a factor of e−2N2τ .
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Appendix A: Generators of the Lie algebra su (d)

In group theory, the generators of the Lie algebra have
the following properties: i) Hermitian:

η̂†i = η̂i; (A.1)

ii) traceless:

Tr η̂i = 0; (A.2)

iii) orthogonality and normalization with respect to the
trace metric relation:

1

2
Tr (η̂i η̂j) = δij . (A.3)

Moreover, they also satisfy two relations as follows,
characterized by the structure constants fijk and gijk,

[η̂i, η̂j ] = 2 i
∑

k

fijk η̂k, (A.4)

{η̂i, η̂j} =
4

d
δij 11d + 2

∑

k

gijk η̂k, (A.5)

where 11d is the unit matrix of dimension d, and fijk
(gijk) denotes the completely antisymmetric (symmetric)
tensor. The structure constants are determined by

fijk =
1

4 i
Tr ([η̂i, η̂j ] η̂k) , (A.6)

gijk =
1

4
Tr ({η̂i, η̂j} η̂k) . (A.7)

Employing completeness relation of generators of su (d),
one can expand an arbitrary d-dimensional Hermitian
matrix X as

X =
1

d
Tr (X) 11d +

d2−1∑

k=1

xk η̂k, xk ∈ R, (A.8)

with xk = Tr (X η̂k).
Below, we systematically construct the generators η̂ =

{ηj}d
2−1

j=1 of the Lie algebra su (d) which are given as fol-

lows [62, 63]. On a d-dimensional Hilbert space H ∈ Cd

spanned by an orthonormal set of states {|m 〉}dm=1, we
first construct two sets of block off-diagonal Hermitian
traceless matrices,

Ŝm,n = |m〉 〈n|+ |n〉 〈m| , (A.9)

Âm,n = −i (|m〉 〈n| − |n〉 〈m|) , (A.10)
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for 1 ≤ m < n ≤ d. The above two sets contain the same
number of elements as

(
d2 − d

)
/2. Then, we construct

d− 1 real diagonal traceless matrices

D̂k =

√
2

k (k + 1)

[ k∑

m=1

|m〉 〈m| − k |k + 1〉 〈k + 1|
]
,

(A.11)
for (1 ≤ k ≤ d− 1). Hitherto, the generators for the Lie
algebra su (d) are obtained by the new set [62, 63],

{η̂i}d
2−1

i=1 =
{
Ŝm,n, Âm,n, D̂k

}
. (A.12)

The generators for d = 2 coincide with the Pauli matri-
ces with the structure constants fijk being Levi-Civita
symbol ǫijk and gijk = 0. The generators of su (3) are
described by the Gell-Mann matrices given by [63]

η̂1 =




0 0 1
0 0 0
1 0 0



 ; η̂2 =




0 1 0
1 0 0
0 0 0



 ;

η̂3 =




0 0 0
0 0 1
0 1 0



 ; η̂4 =




0 0 −i
0 0 0
i 0 0



 ;

η̂5 =




0 −i 0
i 0 0
0 0 0



 ; η̂6 =




0 0 0
0 0 −i
0 i 0



 ;

η̂7 =




1 0 0
0 −1 0
0 0 0



 ; η̂8 = 1√
3




1 0 0
0 1 0
0 0 −2



 . (A.13)

Appendix B: Derivation of equation (60)

Now, we provide the detailed derivation of the first line
of Eq. (60). In order to express Fλ in terms of the Bloch
vector, We should firstly write all the Hermitian opera-
tor in the same representation, expanding them over the
common generators of the Lie algebra su(d) [61]. The
density matrix ρ is described by Eq. (55), and the SLD
operator is supposed to be expanded as

L = a11d + b · η̂, (B.1)

where a and b are respectively real number and real vec-
tor to be determined.
Suppose ρ contains some unknown parameter λ, i.e.,

the Bloch vector ω is λ-dependent. Then we have

∂λρ =
1

2
(∂λω)

T
η̂. (B.2)

By substituting Eqs. (B.1) and (B.2) into Eq. (2), we find
that Fλ can be rewritten as

Fλ = (∂λω)T b. (B.3)

Here, we use Eq. (58) and the traceless property of gen-
erators. Equation (B.3) shows that when b is derived,
then the problem is solved.

To determine b, we should use Eq. (3). Furthermore,
by using Eq. (A.5), we have following relation

{a · η̂, b · η̂} =
∑

ij

aibj {η̂i, η̂j}

=
4

d
aTb 11d + 2

∑

ijk

gijkaibj η̂k,(B.4)

With the help of Eqs. (55), (B.1), and (B.4), the right-
hand side (RHS) of Eq. (3) reads

1

2
{ρ, L} =

1

2

(
{11

d
, a11 + b · η̂}+

{1
2
ω · η̂, a11}+ {1

2
ω · η̂, b · η̂}

)

=
1

d

(
a+ ωTb

)
11 +

∑

k

(1
d
bk +

1

2
aωk +

1

2

∑

ij

gijkωibj

)
ηk.

The left-hand side (LHS) of Eq. (3) is given by Eq. (B.2).
By comparing the terms on both side of Eq. (3), one
obtains

a+ ωTb = 0, (B.5)

(∂λω)T η̂ =
∑

k

(2
d
bk + aωk +

∑

ij

gijkωibj

)
ηk

=
2

d
bTη̂ + aωTη̂ +

∑

ijk

gijkωibj η̂k

=
2

d
bTη̂ + aωTη̂ +

∑

jk

bjGjkη̂k

=
2

d
bTη̂ + aωTη̂ + bTGη̂. (B.6)

Here, the matrix element of G in Eq. (B.6) is given by
Gjk =

∑
i gijkωi satisfying Gjk = Gkj . With Eq. (B.5),

we have

a = −ωTb = −bTω. (B.7)

By insetting the above equation into Eq. (B.6), we obtain

(∂λω)
T
η̂ = bT

(
2

d
− ωωT +G

)
η̂,

= bTMη̂, (B.8)

by setting

M ≡ 2

d
− ωωT +G.

Hence, equation (B.8) directly gives the following equa-
tion

(∂λω)
T
= bTM. (B.9)
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Suppose that we have the inverse matrix M−1. After
Eq. (B.11), we will make further discussions about M−1.
We have

b = M−1 (∂λω) . (B.10)

from Eq. (B.9). Finally, inserting Eq. (B.10) into
Eq. (B.3) yields

Fλ = (∂λω)
TM−1 (∂λω) (B.11)

To calculate Fλ, we need to find the inverse of M.
Generally, it may or may not exist, i.e., M may have
some zero eigenvalues. In this case, we defineM−1 on the
support of M, i.e., supp(M), which is defined as a space
spanned by those eigenvectors with nonzero eigenvalues.
It is reasonable to do so. By inserting Eq. (B.9) into
Eq. (B.3), we rewrite Fλ as

Fλ = bTMb. (B.12)

Suppose M has spectral decomposition

M =

d2−1∑

i=1

miviv
T
i , (B.13)

where vi denotes eigenvector with eigenvalue mi. We
assume mi 6= 0 for i = 1, ..., n and mi = 0 for i = n +
1, ..., d2 − 1. With Eq. (B.13), equation (B.12) reads

Fλ =

n∑

i=1

mib
Tviv

T
i b (B.14)

It is shown that Fλ is defined on supp(M).

Appendix C: Derivation of equation (66)

In this appendix, we give the detailed derivation of Iλ
in terms of the Bloch vector for mixed states given by
Eq. (66). We first expand the Hermitian matrix as

√
ρ = y 11d + x · η̂, (C.1)

where y = Tr
(√
ρ
)
/d and x is an unknown d2−1 dimen-

sional real vector. With Eq. (C.1), Iλ in Eq. (16) can be
rewritten as

Iλ = 8

[
(∂λy)

2 +
2

d
|∂λx|2

]
, (C.2)

by using the properties of the generators of the Lie alge-
bra given in App. A. Furthermore, we have the following
equation

ρ = (
√
ρ)

2
. (C.3)

In the Bloch representation, the left-hand side of the
equation above is given by Eq. (55), and the right-hand
side reads

(
√
ρ)

2
=

(
y2 +

2

d
|x|2

)
11d2−1+

∑

k

(2yxk + gijkxixj) η̂k.

By comparing the terms on both sides, one finds that
y and x are completely determined by the following d2

quadratic nonlinear equations:

y2 +
2

d
|x|2 =

1

d
, (C.4)

d2−1∑

i,j=1

gijk xi xj + 2 y xk =
ωk

2
, (C.5)

for k = 1, 2, ..., d2 − 1.
Below, we give the detailed derivation for Eqs. (71)

and (72). Multiplying the LHS of Eq. (70) by 4 yxT and
the RHS by ωT, we obtain

16 y2 |x|2 = |ω|2 . (C.6)

By replacing |x|2 in equation above by

|x|2 =
1

2
− y2, (C.7)

given by Eq. (69), we get the following equation

16 y4 − 8y2 + |ω|2 = 0. (C.8)

Solving the above equation, we obtain two solutions

y2+ =
1 +

√
1− |ω|2

4
, (C.9)

y2− =
1−

√
1− |ω|2

4
. (C.10)

We suppose that ρ has spectral decomposition

ρ =
∑

i

̺i |ψi〉 〈ψi| = ̺1 |ψ1〉 〈ψ1|+ (1− ̺1) |ψ2〉 〈ψ2| .

(C.11)
Then we can derive the following inequality

y =
1

2
Tr (

√
ρ) =

1

2

∑

i

√
̺i ≥

1

2
. (C.12)

Then the solution y2− in Eq. (C.10) can be neglected.
Due to y being nonnegative real number, we finally
get Eq. (71) from Eq. (C.9). Furthermore, substituting
Eq. (71) into Eq. (70) directly yields Eq. (72).

Appendix D: Derivation of the affine transformation
matrix A and c for the collisional dephasing

We firstly verify the elements of the Bloch vector can
be directly written out from the elements of the density
matrix. A d-dimensional density matrix is described by
the generalized Bloch vector in Eq. (55) in the Bloch
representation. The elements of the generalized Bloch
vector is defined by

ωi = Tr (ρ η̂i) . (D.1)
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In the appendix A, we systematically construct the gener-
ators of Lie algebra su (d) in Eq. (A.12), which is defined
by three sets given by Eqs. (A.9), (A.10), and (A.11).
Then ω also can be divided into three parts as

{ωi}d
2−1

i=1 =
{
ωS
m,n, ω

A
m,n, ω

D
k

}
. (D.2)

We find that the elements of the Bloch vector are directly
given by the elements of the density matrix

ωS
m,n = Tr

(
ρ Ŝm,n

)
= 2ℜ (ρm,n) , (D.3)

ωA
m,n = Tr

(
ρ Âm,n

)
= −2ℑ (ρm,n) , (D.4)

ωD
k = Tr

(
ρ D̂k

)

=

√
2

k (k + 1)

[ k∑

m=1

ρm,m − k ρk+1,k+1

]
.(D.5)

The master equation of the collisional dephasing model

is described by Eq. (82), and the time evolution of the
density matrix elements is given by Eq. (84). With
Eqs. (84), (D.3), (D.4), and (D.3), the elements of the
affine-mapped Bloch vector is given by

ωS
m,n (t) = e−(m−n)2τ 2ℜ [ρm,n (0)]

= e−(m−n)2τωS
m,n (0) , (D.6)

ωA
m,n (t) = −e−(m−n)2τ 2ℑ [ρm,n (0)]

= e−(m−n)2τωA
m,n (0) , (D.7)

ωD
k (t) = ωD

k (0) . (D.8)

Equation (D.8) illustrates that ωD
k remains unchanged

under the collsional dephasing, since ωD
k depend on the

diagonal elements of the density matrix which left un-
changed by dephasing. Writing in the form of affine map
in Eq. (74), we finally obtain A in Eq. (85) and c = 0
from Eqs. (D.6), (D.7), and (D.8).
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