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We investigate the non-adiabatic implementation of an adiabatic quantum teleportation protocol,
finding that perfect fidelity can be achieved through resonance. We clarify the physical mecha-
nisms of teleportation, for three qubits, by mapping their dynamics onto two parallel and mutually-
coherent adiabatic passage channels. By transforming into the adiabatic frame, we explain the
resonance by analogy with the magnetic resonance of a spin-1/2 particle. Our results establish a
fast and robust method for transferring quantum states, and suggest an alternative route toward
high precision quantum gates.
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Fault-tolerant quantum computation requires high-
precision quantum gates with noise thresholds be-
tween 10−4 and 10−2, depending on the fault-tolerance
scheme [1, 2]. This stringent requirement poses signifi-
cant technical challenges, even for the more mature qubit
architectures, such as those based on trapped ions [3].
Identifying gate protocols that are both fast and robust
is therefore an important research objective for quantum
information processing.
One potential approach to robust quantum gates is

based on the adiabatic principle – a fundamental tenet
of quantum mechanics [4]. According to the adiabatic
theorem, a quantum system in an eigenstate remains
there, provided that the Hamiltonian varies slowly in
time. Applications of the adiabatic theorem include
the Born-Oppenheimer approximation and the Landau-
Zener-Stückelberg-Majorana transition at an avoided
crossing [5–8], the latter having been demonstrated in
both superconducting and spin qubits [9, 10]. Other ex-
perimental implementations include adiabatic population
transfers between two or three-level systems, known as
adiabatic passages (AP) [11–14], which have been demon-
strated in atomic, molecular, and optical devices. There
are also theoretical proposals for realizing AP with su-
perconducting qubits [15] and quantum dot arrays [16].
Adiabatic quantum information processing [17] entails
the adiabatic transformation of the ground state of an
initial Hamiltonian into that of a target Hamiltonian.
Compared to the quantum circuit model, adiabatic gates
are resistant to decoherence when a finite excitation gap
persists throughout the evolution, and they are robust
to gating errors, by virtue of adiabaticity. This can be a
drawback however, since the maximum speed of an adi-
abatic gate is also proportional to the spectral gap.
In this paper we investigate a non-adiabatic form of

adiabatic quantum teleportation (AQT). Conventional
AQT was proposed in the context of fault tolerant quan-
tum computation [18]. Here, we focus on systems with
three qubits, where we can solve the evolution analyt-
ically. We show that resonances occur, enabling high-
fidelity teleportation that is both fast and quite ro-
bust against timing errors in the absence of decoher-

ence. This interesting effect can be explained in the lan-
guage of spin resonance, by transforming into the adi-
abatic frame. Our results point toward a possible new
paradigm for quantum algorithms, based on fast adia-
batic gates. Our work also provides an intriguing map-
ping between three coupled qubits and a three-level atom,
which could lead to further spin analogies from atomic
Λ-system physics. The experimental requirements for
implementing AQT have already been demonstrated in
the laboratory for triple quantum dots [10] and super-
conducting circuits [19]. Our results could therefore be
tested immediately.
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Figure 1: (color online). The couplings and the informa-
tion distribution (by color and arrow) among three qubits
are shown at the initial, intermediate, and final stages of adi-
abatic quantum teleportation.

The adiabatic quantum teleportation protocol is illus-
trated in Fig. 1. Initially, qubit 1 is isolated and pre-
pared in an arbitrary superposed state, while qubits 2
and 3 are coupled, as described below, and prepared in
the maximally entangled singlet state. The antiferromag-
netic coupling between qubits 1 and 2 (2 and 3) is then
turned on (off) slowly. When the evolution is complete,
the quantum state of qubit 1 will be teleported to qubit
3. As proposed in Ref. [18], the scheme succeeds when
the run time T satisfies the adiabatic theorem.

To explore non-adiabatic effects, we solve the exact
dynamics of the three-qubit system. It is governed by
a time-dependent Hamiltonian, which smoothly changes
from the initial Hamiltonian Hi at t = 0 to the final
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Hamiltonian Hf at t = T :

H(t) = f(t)Hi + g(t)Hf . (1)

The initial and final Hamiltonians are given by

Hi = J ( σ2x σ3x + σ2y σ3y + γ σ2z σ3z ) , (2a)

Hf = J ( σ1x σ2x + σ1y σ2y + γ σ1z σ2z ) , (2b)

where σiµ are the Pauli operators with i = 1, 2, 3 and µ =
x, y, z, and J is the strength of the qubit-qubit coupling.
The anisotropy parameter γ = 0 corresponds to an XX

coupling, available in superconducting qubits, while γ =
1 corresponds to the isotropic Heisenberg coupling of spin
qubits. The interpolation or switching functions f(t) and
g(t) satisfy f(0) = g(T ) = 1 and f(T ) = g(0) = 0. Here
we consider two ways to connect Hi to Hf : (i) a linear
interpolation with f(t) = 1 − t/T and g(t) = t/T , and
(ii) a harmonic interpolation with f(t) = cos(πt/2T ) and
g(t) = sin(πt/2T ).
AQT begins with an initial three-qubit state given by

|ψ(0)〉 =
(
a|0〉+ b|1〉

)

1
⊗ 1√

2

(
|01〉 − |10〉

)

2,3
, (3)

where a|0〉+ b|1〉 is the arbitrary state to be teleported.
The success of AQT is measured by the fidelity F (T ) =
|〈ψT |ψ(T )〉|2 where |ψ(T )〉 is the final state at time T and
|ψT 〉 = 1√

2

(
|01〉 − |10〉

)

1,2
⊗

(
a|0〉 + b|1〉

)

3
is the target

state. The dynamics of AQT is governed by the time-
dependent Hamiltonian (1), with the initial state (3).
Hamiltonian (1) satisfies the commutation relation

[H(t), Sz] = 0, so that the z-component of the total spin
angular momentum Sz ≡ 1

2 (σ1z + σ2z + σ3z) is a good
quantum number, which is conserved during evolution.
The three-qubit Hamiltonian (1) is thus block-diagonal:

H(t) = H3
︸︷︷︸

up

⊕ H3
︸︷︷︸

down

⊕H1 ⊕H1 . (4)

The two H1 operators act on |000〉 and |111〉,
while the two H3 operators act on the distinct sub-
spaces H1/2 = Span(|100〉, |010〉, |001〉) and H−1/2 =
Span(|011〉, |101〉, |110〉), and have the same form

H3(t) = J





(f − g)γ 2g 0
2g −(f + g)γ 2f
0 2f −(f − g)γ



 . (5)

Interestingly, H3 is also the AP Hamiltonian for a 3-
level atom [12–14], with the switching functions f(t) and
g(t) being the Stokes and pump pulses in the context of
AP. For the initial states we consider, the H1 operators
are never involved in the system evolution. The AQT
protocol therefore consists of two parallel, identical and
mutually-coherent APs governed by H3, corresponding
to the Sz = ± 1

2 components of the three-qubit system.
To understand the dynamics of AQT, we solve the

time-dependent Schrödinger equation with Hamiltonian

(5) in two ways. First, we consider the adiabatic limit,
for which there is a mapping between AQT and two
mutually-coherent APs. Second, we obtain numerical so-
lutions (and in one case, an analytical solution) for finite
T . We also consider the separate cases of XX and Heisen-
berg couplings.
The adiabatic theorem states that, starting from

an eigenstate |En(0)〉, the adiabatically evolved state

|ψ(t)〉 ≃ e−i/~
∫

t

0
En(t

′) dt′+γB |En(t)〉 is simply an instan-
taneous eigenstate, up to a phase factor. Here, γB is
the Berry phase, and En and |En〉 are the instantaneous
eigenvalues and eigenstates of H3(t), defined by

H3(t) |En(t)〉 = En(t) |En(t)〉 . (6)

Solving Eq. (6) for an XX coupling (γ = 0), gives
the instantaneous energy levels E0(t) = 0 and E±(t) =

±2J
√

f2 + g2, with the corresponding eigenstates

|E0(t)〉 =





cos θ
0

− sin θ



 , |E±(t)〉 =
1√
2





sin θ
±1
cos θ



 . (7)

Here, the mixing angle θ = tan−1[g(t)/f(t)] runs from
0 to π/2 as time t goes from 0 to T . For the Heisen-
berg coupling (γ = 1), the instantaneous energy lev-
els are E0(t)/J = (f + g) and E±(t)/J = [−f − g ±
2
√

f2 − fg + g2], with the corresponding eigenstates

|E0(t)〉 =
1√
3

[
1 1 1

]T
, (8a)

|E±(t)〉 =
1√
N





sin θ
− cos θ ±

√
1− cos θ sin θ

cos θ − sin θ ∓
√
1− cos θ sin θ



 , (8b)

where N ≡ 2(2 cos θ − sin θ)
√
q + 4q, q = 1− cos θ sin θ.

Equation (5) governs the evolution of both AQT and
conventional AP, as depicted in Fig. 2. For AP, the pop-
ulation of a Λ-type system is transferred from state |1〉 to
|3〉, while state |2〉 remains unpopulated [12–14]. Para-
doxically, the AP pulse sequence appears to occur in re-
verse order (S followed by P), as shown in panel (a). The
instantaneous eigenstate used in this evolution is |E0(t)〉
from Eq. (7). For AQT, on the other hand, the instanta-
neous eigenstate used is |E−〉 in Eqs. (7) or (8), leading
to slight differences between panels (a) and (b). In panels
(b) and (c), we see that the “up” state (|0〉) is transferred
from the left-most qubit to the right-most qubit, follow-
ing a similarly counter-intuitive pulse sequence. Since
the H3 operators are identical for the subspaces H1/2

and H−1/2, their separate evolutions are also identical.
Thus, as illustrated in Fig. 1, an arbitrary state a|0〉+b|1〉
of qubit 1 in Eq. (3) is transmitted to qubit 3 via two
mutually-coherent evolutions.
The adiabatic solution described above is only valid

when JT/~ ≫ 1. In this limit, Eqs. (7) and (8) give
a perfect (adiabatic) fidelity, Fad(T ) = 1. When T
is finite however, the adiabatic theorem predicts that
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Figure 2: (color online). Adiabatic passage protocols for (a)
Λ-type levels, (b) the “up” component (red |0〉) of a 3-qubit
system, and (c) the corresponding spin configurations. From
right to left: the initial, intermediate, and final stages of evo-
lution. In (a) and (b), filled circles represent populations of
levels. S and P stand for the Stokes and pump pulses.

1 − F ∝ (JT/~)−2, with possibly oscillatory modifica-
tions [6, 20, 21]. To obtain an infidelity 1 − F < 10−6,
the adiabatic gate time should be JT/~ ∼ O(103), much

longer than a conventional gate, for which JT/~ ∼ O(1).
Such slow adiabatic evolution could obviously cause
problems, despite its intrinsic fault tolerance. However,
when we perform a numerical integration of the time-
dependent Schrödinger equation governed by Hamilto-
nian (5), we find that the infidelity 1 − F as a function
of evolution time T is far from a smooth quadratic func-
tion. Instead, while it approaches the predicted upper
envelope, there are also striking resonance features where
the infidelity dips to zero, as shown in Fig. 3 (a) and (b).
Furthermore, as illustrated in Fig. 3(d), the timing re-
quirement for this adiabatic protocol, even when it is run
non-adiabatically, is much more relaxed compared to that
for a conventional Rabi type of gate shown in Fig. 3(c).
Indeed, Fig. 3(d) shows that when JT/~ > 4π, which
could still be a reasonably short evolution time, there is
no timing requirement at all for our protocol if the re-
quired fidelity is 99%. This is in clear contrast with (and
clearly superior over) the conventional Rabi-type gates,
which has a fixed timing requirement [Fig. 3(c)] given a
Rabi pulse intensity.
The origin of the unexpected resonances in AQT fi-

delity becomes clear when we consider the XX coupling
with harmonic interpolation functions. For this special
case, we can obtain an analytical solution by transform-
ing into the adiabatic frame [22], as illustrated in Fig. 4.
We define

D(t) = A−1(t)H3(t)A(t) , |ψ(t)〉 = A(t)|φ(t)〉 , (9)
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Figure 3: (color online). Infidelity 1− F is plotted as a func-
tion of JT/π~ for (a) XX and (b) Heisenberg couplings, using
harmonic and linear interpolation functions (solid red and
dotted blue lines, respectively). The black dashed line repre-
sents 1−F ∝ 1/(JT/~)2 for comparison. (c) The infidelity of
a conventional swap operation or Rabi oscillation (if 2J is re-
placed by µBBx) is given by 1−F = cos2(2JT/~). Windows
of tolerable timing errors to get 1 − F ≤ 10−2 are indicated
by blue shaded regions for (c) conventional swap gates vs. (d)
AQT with XX coupling and harmonic interpolation shown in
(a). For (d), the robustness improves monotonically in the
adiabatic limit, and always surpasses the robustness in (c).

where the column vectors of A(t) are the instantaneous
eigenstates given by Eq. (7). The Schrödinger equation
in the adiabatic frame takes the form

i~
∂

∂t
|φ(t)〉 =

[

D(t)− i~A−1(t)
∂A(t)

∂t

]

|φ(t)〉 , (10a)

= Htr|φ(t)〉 . (10b)

For harmonic interpolation and XX couplings, the trans-
formed Hamiltonian Htr becomes time-independent:

Htr = 2J





−1 0 0
0 0 0
0 0 1



+
π~

2T

1√
2





0 i 0
−i 0 −i
0 i 0



 (11a)

= ~ω0 Z + ~ω1 Y
′ , (11b)

where ~ω0 ≡ 2J is the absolute value of the ground state
energy and ω1 ≡ π/2T is the frequency of the switch-
ing functions, f(t) = cos(ω1t) and g(t) = sin(ω1t). The
matrix Y ′, which resembles the angular momentum op-
erator Iy of a spin-1 system, is responsible for the non-
adiabatic behavior. It has the same eigenvalues as Z,
i.e., 0 and ±1. The Hamiltonian in the adiabatic frame,
Htr = ~Ω(Z cosα+ Y ′ sinα), has the eigenvalues

e0 = 0 , e± = ±~Ω , with Ω ≡
√

ω2
0 + ω2

1 , (12a)

and the corresponding eigenstates

|e0〉 =
1√
2





− sinα

i
√
2 cosα
sinα



 , |e±〉 =
1

2





1∓ cosα

∓i
√
2 sinα

1± cosα



 , (12b)
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where tanα ≡ ω1/ω0.
As illustrated in Fig. 4, the time evolution in the adi-

abatic frame is analogous to the rotation of a spin-1 sys-
tem around an effective, constant magnetic field given by
Ω = ω0Ẑ + ω1Ŷ

′, where Ŷ
′ is the rotation axis associ-

ated with matrix Y ′. The state vector is initially oriented
along Ẑ, which corresponds to |E−(t)〉 in the original
frame of Eqs. (7). In the adiabatic limit ω0 ≫ ω1, the

precession axis is Ω̂ = Ẑ, so the state vector does not
precess. Thus, in the original frame, the state vector is
given by |E−(t)〉 for all t.
Non-adiabatic evolution occurs when ω1 > 0. The

state vector is initially aligned with Ẑ in the adiabatic
frame; however it precesses when Ω̂ 6= Ẑ. As the state
vector deviates from Ẑ in the adiabatic frame, it also
deviates from the adiabatic ground state |E−(t)〉 in the
original frame. After a full precession period given by
ΩT = 2πn, the state vector returns to the Ẑ direction,
or the ideal target state |E−(T )〉. The physical picture is
analogous to the magnetic resonance of a spin-1/2 parti-
cle in a static magnetic field, with a small perpendicular
ac field. In this case, the state vector precesses about a
static magnetic field in the rotating frame [23, 24].

Z

Y ′

ω0

ω1

Ω

A−1(0)

|ψ(0)〉 = |E−(0)〉

Utr(t)

Z

ω0

Y ′
ω1

Ω

A(t)

|ψ(t)〉 6= |E−(t)〉

Figure 4: (color online). Schematic representation of the time
evolution in the adiabatic frame, given by Eq. (13). The in-
stantaneous eigenvector is represented by a thick blue arrow
and the exact evolved state by a thick red arrow.

As depicted in Fig. 4, the evolved state in the original
frame is given by

|ψ(t)〉 = A(t)Utr(t)A
−1(0) |ψ(0)〉 , (13)

where the time evolution operator in the adiabatic frame
is given by Utr = e−iHtrt/~. The fidelity at time t = T
can be obtained exactly:

F (T ) =
1

4

[

cos2(ΩT )(1 + cos2 α)2 + 4 sin2(ΩT ) cos2 α

+ 2 cos(ΩT ) sin2 α(1 + cos2 α) + sin4 α
]

. (14)

The results are indistinguishable from the numerical so-
lution shown in Fig. 3(a). Perfect fidelity occurs at the
resonance condition ΩT = 2πn, which is given by

JT/~π =

√

n2 − 1

16
≈ n , n ∈ N . (15)

We have now identified two paths to perfect teleporta-
tion. The first corresponds to the asymptotic (adiabatic)
limit on the far right-hand side of Fig. 3 (a) or (b). The
second occurs at any one of the resonant conditions. Fur-
thermore, Fig. 3 (c) and (d) clearly show that compared
to the conventional swap gates, the resonant adiabatic
teleportation protocol is very robust, especially for some-
what longer (but still far from adiabatic) gate times. It is
interesting that resonances only occur in certain interpo-
lation schemes. For example, the quadratic interpolation
f(s) = 1 − s2 and g(s) = s(2 − s) has resonances, while
f(s) = 1− s2 and g(s) = s2 does not.
We now examine how the AQT protocol is affected

by external magnetic fields. For simplicity, we assume
the external magnetic fields applied to three spins are
aligned in the same direction, i.e., in z-direction. The
Sz = ±1/2 channels are then still completely decoupled
from each other in the AQT protocol. We first con-
sider a uniform magnetic field B0. The Zeeman term
HZ = ±µBB0I is added to Hamiltonian (5), where I is
the 3 × 3 identity matrix and the g factor is assumed
to be 2. Since [H3, HZ ] = 0, the uniform magnetic
field does not change the dynamics of AQT of either
the up or down channel. Its only effect is to generate
a phase difference ∆ ≡ 2µBB0T/~ between them, sim-
ilar to the Aharonov-Bohm interferometer [25]. Thus,
if AQT is perfect, i.e., on resonance or in the adiabatic
limit, qubit 3 is disentangled from qubits 1 and 2. The
initial state |ψ1(0)〉 = a|0〉 + b|1〉 of qubit 1 would be
transferred to qubit 3 with a rotation around the z-axis
by the angle ∆, |ψ3(T )〉 = a|0〉 + b ei∆|1〉. The fidelity
F = |〈ψT |ψ3〉|2, measured against the original target
state |ψT 〉 = a|0〉+ b|1〉, is given by

F = |a|4 + |b|4 + 2|a|2|b|2 cos∆

= 1− sin2 θ

2
(1 − cos∆) . (16)

where a = cos θ
2 and b = sin θ

2 e
iφ, and θ and φ represent

the azimuthal and polar angles of the qubit state |ψ1(0)〉
on the Bloch sphere. Note that Eq. (16) is nothing but
the intensity in two-slit interference experiment [26]. If
AQT is not perfect, the upper bound of the fidelity (16)
is the fidelity in the absence of external magnetic fields,
as shown in Fig. 5. In short, AQT in a uniform mag-
netic field teleports a rotated quantum state. Therefore,
a modified fidelity F ′ = 〈ψ′

T |ρ3(T )|ψ′
T 〉 between the ro-

tated target state |ψ′
T 〉 = a|0〉+ b ei∆ |1〉 and the density

matrix ρ3 of qubit 3 takes exactly the same form as the
fidelity F in the absence of the external magnetic field,
as plotted in Fig. 5.
Random external magnetic fields cause spin qubits to

decohere, and the AQT to lose fidelity, similar to quan-
tum teleportation through a noisy channel [27]. While
solving the AQT problem in the presence of magnetic-
noise-induced decoherence in general would require an
understanding of the full dynamics of the whole system-
environment, for the basic physical picture it is instruc-
tive to consider first the effects on the fidelity (16) of a
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Figure 5: (color online). Infidelity 1− F is plotted as a func-
tion of JT/π~ for (a) XX and (b) Heisenberg couplings when
a uniform magnetic field B0 is applied. At µBB0/J = 0.5
the infidelity and the modified infidelity are represented by
dashed blue lines and blue dots, respectively. The modified
infidelity (blue dots) when B0 6= 0 is identical to the infidelity
1 − F (red solid lines) when B0 = 0. The input state is an
equal superposed state |ψ1〉 =

1√
2
(|0〉 + |1〉).

simple random variation δB ẑ on top of a uniform ap-
plied field. This field variation produces a random phase
δ ≡ 2µBTδB/~, so the total phase difference between
up and down channels becomes ∆′ = ∆ + δ. The effect
of the random magnetic field is picked up by the modi-
fied fidelity F ′ = 〈ψ′

T |ρ3(T )|ψ′
T 〉. On resonance or in the

adiabatic limit, it takes the form

F ′(θ) = 1− sin2 θ

2
(1 − cos δ) . (17)

The average fidelity F̄ over all possible input states can
be obtained as

F̄ ′ =
1

4π

∫

F ′(θ) sin θ dθ dφ =
2

3
+

1

3
cos δ . (18)

The phase uncertainty δ grows over evolution time T ,
and may range from 0 to 2π for sufficiently large T . In
this case, the average of F̄ ′ over 0 ≤ δ ≤ 2π is given by

〈F̄ ′〉 = 2

3
+

1

3
〈cos δ〉 = 2

3
. (19)

The average fidelity 2/3 is the lower bound of the perfect
AQT protocol when the noise is anisotropic [27].
Let us now consider a concrete situation where the

field uncertainty is 1 Gauss. If the exchange coupling can
reach 1 µeV, the resonance condition dictates that T ∼
2n ns with n ∈ N. The magnetic phase uncertainty at the
fifth resonance peak, i.e., T ∼ 10 ns would then be δ ∼
10−3. The average fidelity is thus F̄ ′ > 1−10−6, which is
still very high. In other words, the resonances can survive
in the presence of a small magnetic uncertainty and a
reasonably short evolution time. It is important to point

out, however, that off resonance, the AQT fidelity will be
further reduced because then qubit 3 is not completely
disentangled from qubits 1 and 2 even after the end of the
protocol. Therefore, in the presence of a small uniform
magnetic noise and for reasonably short T (which could
still be much longer than ~/J), the infidelity curves in
Fig. 3 would shift upward, and the resonance dips would
not reach all the way down to zero.

In semiconductor spin qubit systems, an important de-
coherence channel is the magnetic noise from hyperfine
interaction with the nuclear spins. Since nuclear spin
dynamics is slow, while resonant AQT is quite fast, with
transfer times in the order of tens of nanoseconds, the
most significant effect of the hyperfine interaction in the
context of AQT is in the form of an inhomogeneous ran-
dom nuclear field. In other words, δBi is different on each
quantum dot and for each spin, but is static during the
AQT process. For example, in the case of GaAs quantum
dots, the magnetic field uncertainty is on the order of 2
mT, or about 50 neV. If the interdot exchange coupling is
up to a few µeV, then µBδB/J ∼ 10−2. In the presence
of such non-uniform magnetic fields, the Zeeman Hamil-
tonian HZ is still diagonal, but it no longer commutes
with H3. Thus, the dynamics of AQT would be modified.
We solve this problem numerically, and show some of the
results in Fig. 6. The resonance peaks become blunter
and the average value of the infidelity oscillations grows
over time. When µBδBi/J ∼ 10−2, the infidelity could
be less than 10−3 only at the first few resonance peaks.
Clearly, the resonant AQT is less robust in the presence of
nonuniform random magnetic noises than uniform ones.

The above results indicate that in the presence of mag-
netic noise, the fidelity for AQT is much worse in the adi-
abatic limit than at the short-time resonances, regardless
of whether the noise is uniform. Indeed, the increase in
phase uncertainty over time would render the original
AQT proposal of Ref. 18 completely ineffective. Instead,
using resonances at short times becomes a viable solution
to obtain high fidelity AQT. Practically, the best system
to realize resonant AQT might be a material system such
as isotropically purified Si, where the nuclear field noise
is minimized, and no applied magnetic field is needed to
overcome the inhomogeneous broadening due to nuclear
spins.

Another major potential decoherence channel for
exchange-coupled quantum dots is fluctuations in the ex-
change coupling itself, whether due to charge noise [31]
or electron-phonon interaction [32]. Fluctuations in J
would affect the AQT protocol as well. This can be most
clearly seen from Fig. 4. Changes in J would lead to
changes in both the direction and magnitude of the ef-
fective field experienced by the spin-1 object in Fig. 4,
leading to a different precession axis and period. The
system then would not return to the ground state at the
expected time. Similar to the discussion above on the
magnetic noise, in the presence of exchange noise, the
infidelity curves in Fig. 3 would shift upward, and the
resonance dips would not reach zero. It is important to
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Figure 6: (color online). Modified infidelity 1−F ′ is plotted as
a function of JT/π~ for (a) XX and (b) Heisenberg couplings
when random magnetic fields δBi are applied. The input state
is an equal superposed state |ψ1〉 =

1√
2
(|0〉 + |1〉).

note here that exchange noise affects all protocols that
depend on the exchange interaction. In this respect AQT
is not unique, and is not immune to such effects.
Our results can be tested experimentally using cur-

rent technology. Controllable three-qubit systems have
been demonstrated in quantum dots [10] and supercon-
ductors [19]. Single-shot measurements and the prepa-
ration of singlet states are almost routine [29]. AQT
could therefore be implemented as follows. Qubit 1 is
initially prepared in the “up” state, while qubits 2 and 3
are prepared in a singlet state. After switching f and g
according to the AQT protocol, qubit 3 is measured. Re-

peating this experiment many times provides a fidelity
estimate for AQT, over the evolution period T . The
resonant peaks of the fidelity can be examined in the
time domain by varying T . Since AQT corresponds to
two parallel APs for the two spin components of a qubit,
we could also explore interesting phenomena like coher-
ent population trapping and electromagnetically induced
transparency [30], which have also been studied in the
context of AP, for three-level atoms.
So far we have only explored AQT with three qubits,

where qubits 2 and 3 are initially in a singlet state – the
same initial state used for conventional quantum telepor-
tation. An interesting next step would be to study AQT
over longer distances. Our preliminary numerical studies
suggest that AQT could be implemented in a more gen-
eral spin chain geometry. We leave this for future work.
In conclusion, we have shown that adiabatic quantum

teleportation consists of two adiabatic passages corre-
sponding to the quantum information transfer of “up”
and “down” components of a qubit. When this protocol
is performed non-adiabatically, resonances occur in the
fidelity, in analogy with magnetic spin resonance. The
observation of resonances points toward a new paradigm
for fast and robust adiabatic gates. Our results can
be tested experimentally using superconducting or spin
qubits, with currently available technologies.
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