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With the aid of a quantum memory, the uncertainty about the measurement outcomes of two incompatible
observables of a quantum system can be reduced. We investigate this measurement uncertainty bound by con-
sidering an additional quantum system connected with both the quantum memory and the measured quantum
system. We find that the reduction of the uncertainty bound induced by a quantum memory, on the other hand,
implies its increasing for a third participant. We also show that the properties of the uncertainty bound can be
viewed from perspectives of both quantum and classical correlations, in particular, the behavior of the uncer-
tainty bound is a result of competitions of various correlations between different parties.

PACS numbers: 03.67.Mn, 03.65.Ta, 03.65.Yz

I. INTRODUCTION

The Heisenberg uncertainty principle [1] is one of the most
remarkable features of quantum theory which differs quantum
world essentially from the classical world. It sets limits on the
precise prediction of the outcomes of two incompatible quan-
tum measurements Q and R on a particle, and is expressed
in various forms [2–4]. However, Berta et al. [5] showed re-
cently that the uncertainty bound imposed by the Heisenberg
principle could actually be violated with the aid of a quantum
memory B that is entangled with the particle A to be mea-
sured. This quantum-memory-assisted entropic uncertainty
relation reads [5]

S(Q|B) + S(R|B) � log2
1

c
+ S(A|B), (1)

the equivalent form of which was previously conjectured by
Renes and Boileau [6]. Here, S(A|B) is the conditional von
Neumann entropy of the density operator ρAB , S(A|B) =
S(ρAB) − S(ρB). In the left-hand side (LHS) of the in-
equality, S(X |B) is that of the postmeasurement state ρXB =∑

k(Π
X
k ⊗I)ρAB(Π

X
k ⊗I) which represents uncertainty of the

measurement outcomes of X = {Q,R} conditioned on the
prior information stored in B, where ΠXk = |ΨXk 〉〈ΨXk | with
|ΨXk 〉 being the eigenstates ofX , and c = maxk,l |〈ΨQk |ΨRl 〉|2
with 1/c quantifies the complementarity of Q and R.

This generalized entropic uncertainty relation has been con-
firmed in all-optical experiments [4, 7]. Meanwhile, the re-
lated relations expressed by other entropic quantities such as
the Rényi entropy which is important in physical models [8],
are also exploited [9, 10]. Since its fundamental role, this
quantum-memory-assisted entropic uncertainty relation can
be studied from various viewpoints [11–13], and can be ap-
plied in other quantum information processions [14–16].

Uncertainty relation of Eq. (1) differs from its original one
[3] by an additional term S(A|B). It is clear that the bound of
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the entropic uncertainty, the right-hand side of inequality (1)
named as uncertainty bound (UB) hereafter, is reduced when-
ever S(A|B) < 0. It is remarkable that the quantity of con-
ditional entropy S(A|B) has many important implications in
quantum information processing. Its negativity means the in-
separability [17] and gives the lower bound of the one-way
distillable entanglement for ρAB [18]. It quantifies partial
quantum information [19] and can be related with quantum
correlation measures [12, 20–24].

In this Letter, we go one step further from bipartite state
ρAB to consider its purification |Ψ〉ABC or a tripartite state
ρABC , i.e., a third party C is entangled with both the parti-
cle A and the memory B. Some fundamental and interesting
phenomena are found: For example, there exists correlative
capacities which indicate the uncertainty reduction of UB be-
cause ofB implies its increasing for other parties; The chang-
ing of UB is induced by competitions of various quantum cor-
relations between different pairs. These results have important
conceptual implications and shed new light on the foundations
of quantum mechanics.

II. CORRELATION CAPACITIES

We begin with a simple yet meaningful observation. For
any three-partite system ABC with density matrix ρABC , we
have

S(A|B) + S(A|C) � 0, (2)

which can be proved directly by the strong subadditivity in-
equality: S(ρB) + S(ρC) � S(ρAB) + S(ρAC) [25]. Eq.
(2) indicates that whenever S(A|B) < 0, we always have
S(A|C) > 0. Therefore, the reduction of the UB on A with
quantum information stored in B excludes its reduction by
quantum information stored in C. Since the reduction of the
UB originates from the quantum correlations established be-
tween the measured particle and the quantum memory [5], this
observation may be interpreted as a fact that particleA reaches
its potential correlative capacities with the quantum memory
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FIG. 1: (Color online) Schematic representation of the “uncertainty
game” with three (a) and six (b) players.

B in the sense that any other quantum memory except B al-
ways gives increasing UB of measurement uncertainty on A.

Inequality (2) also has important physical implications. To
be convinced, let us consider a variant of the imaginary “un-
certainty game” presented in [5]: three players Alice (A), Bob
(B), and Charlie (C) share a quantum state ρABC , the form
of which is known only to Bob and Charlie. They begin the
game by preagreeing on two measurements Q and R. Alice
then measures either Q or R randomly on the particle A, and
informs Bob and Charlie of her measurement choice but not
the outcome. What we want to determine here is whether Bob
and Charlie (communication between them is forbidden) can
predict the outcomes of Alice both with improved precision
(see Fig. 1 for an illustration). As for fixed Q and R, the UB
of measurement is determined only by the conditional entropy
S(A|X) for ρAX of the observed particle A and the quantum
memories X = {B,C}, and Eq. (2) excludes the possibility
for S(A|B) and S(A|C) taking the negative values simulta-
neously, the prediction precision of Bob and Charlie cannot be
improved simultaneously in this game, i.e., the improvement
of Bob’s prediction precision implies the degradation for that
of Charlie’s, and vice versa. Particularly, for pure ρAB , Eq.
(2) simplifies to S(A|B)+S(A|C) = 0, which tells us that the
more precisely the measurement outcome is predicted by one
participant, the less precisely that will be predicted by another
one. In some sense, one may say that this implies another
kind of uncertainty relation, because it sets limits on Bob and
Charlie’s (under the constraint of no communication between
them) ability to predict correctly the measurement outcomes
of Alice simultaneously, that is to say, the certainty of predic-
tion for one participant implies the uncertainty of prediction
for another participant

The arguments above can also be easily generalized to the
N -player case, i.e., we have

N−1∑

i=1

S(A|Xi) � 0, (3)

where the particles Xi = {B,C,D, · · · } belong to Bob,
Charlie and Daniel, et al., respectively. This inequality can
be proved directly by combination of the strong subadditiv-
ity of the von Neumann entropy (Theorem 11.14 of [25]) and
the subadditivity of the conditional entropy (Theorem 11.16
of [25]), and it implies that even for the multi-player case, the
precision of predictions about Alice’s measurement outcomes
cannot be improved simultaneously for all of the participants.

Also we would like to remark here that the generalized “un-
certainty game” illustrated in Fig. 1 can be immediately tested
by similar all-optical setups as those in Refs. [4, 7].

III. COMPETITION OF QUANTUM DISCORDS

Next let us consider some quantum correlations and begin
with quantum discord [20]. The measure of the classical cor-
relation takes the form

J(B|A) = S(ρB)− min
{EA

k }
S(B|{EAk }), (4)

where S(B|{EAk }) =
∑

k pkS(ρB|EA
k
), with ρB|EA

k
=

TrA(E
A
k ρAB)/pk being the nonselective postmeasurement

state ofB after the positive operator valued measure (POVM)
on A, and pk = Tr(EAk ρAB) is the probability for obtaining
the outcome k. J(B|A) is usually interpreted as the maxi-
mum information gained about B with the measurement out-
come of A. The quantum discord is then defined by the dis-
crepancy between quantum mutual information I(A : B) =
S(ρA) + S(ρB)− S(ρAB) and J(B|A) as

D(B|A) = I(A : B)− J(B|A). (5)

The quantum discord can therefore be interpreted as the min-
imal loss of correlations due to the POVM {EAk }. It survives
for states with quantumness of correlation and vanishes for
states with only classical correlation. It attracts much atten-
tion recently because of its fundamental role in quantum in-
formation processing [26–29]. Here, we demonstrate a new
perspective of quantum discord in the uncertainty principle of
quantum mechanics.

Assume |Ψ〉ABC being the purification of the bipartite state
ρAB , we first have the following Proposition.
Proposition 1. When the UB on A is reduced with the aid

of a quantum memoryB, then bothD(B|A), J(B|A) and the
entanglement of formation (EoF), Ef (ρAB), are larger than
those between A and its purifying system C.
Proof. By using the Koashi-Winter equality for |Ψ〉ABC

[30], we obtain

Ef (ρBC) + J(B|A) = S(ρB),

Ef (ρCB) + J(C|A) = S(ρC), (6)

where Ef (ρBC) is the EoF for ρBC , defined as Ef (ρBC) =
min{pi,|ψi〉BC}

∑
i piS(TrC |ψi〉BC〈ψi|) [31], and the min-

imum is taken over all pure state decompositions ρBC =∑
i pi|ψi〉BC〈ψi|. Since Ef (ρBC) = Ef (ρCB), Eq. (6)

yields J(B|A)− J(C|A) = S(ρB)− S(ρC) = −S(A|B) >
0, and therefore J(B|A) > J(C|A). Furthermore, by com-
bining Eqs. (5) and (6), we obtain an equivalent form of the
Koashi-Winter equalities

D(B|A) + S(B|A) = Ef (ρBC),

D(C|A) + S(C|A) = Ef (ρCB), (7)

which gives D(B|A) − D(C|A) = S(C|A) − S(B|A) =
−S(A|B) > 0, and hence D(B|A) > D(C|A). Finally,
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to prove Ef (ρAB > Ef (ρAC), we note that the conditional
entropy S(A|B) < 0 is equivalent to S(ρB) > S(ρC) for
|Ψ〉ABC . Therefore by using the chain rule [32], we derive

S(ρB) + Ef (ρCA) � S(ρC) + Ef (ρAB), (8)

which implies Ef (ρAB) − Ef (ρAC) � S(ρB) − S(ρC) =
−S(A|B) > 0, and thus completes the proof. �

In fact, from Eqs. (4), (5), and S(ρB|A) = S(ρC|A) =

Ef (ρBC), with S(ρX|A) := min{EA
k } S(X |{EAk }) (X = B

or C) [30], we can obtain

D(B|A) + J(C|A) = D(C|A) + J(B|A) = S(ρA). (9)

Thus, D(B|A) > D(C|A) and J(B|A) > J(C|A) are in
fact equivalent, i.e., the fulfillment of one inequality implies
holding of another one. Moreover, we point out here that even
for mixed ρABC , we still have J(B|A) > J(C|A). This is
because for any ρABC with the purification |Ψ〉ABCD, we al-
ways have J(B|A) > J(CD|A) � J(C|A), where the first
inequality originates from Proposition 1 (by taking CD as a
combined system), and the second one is due to the fact that
the classical correlation is nonincreasing under local quantum
operations [20].

Eq. (8) also implies that J(C|B) � J(B|C), which can
be convinced by the Koashi-Winter equalities J(C|B) =
S(ρC)−Ef (ρCA), and J(B|C) = S(ρB)−Ef (ρAB). Com-
bining this with D(A|B) + J(C|B) = S(ρB) [an equivalent
form of Eq. (9)] and D(A|B) + S(A|B) = Ef (ρAC), we
further obtain

Ef (ρAC) < D(A|B) � Ef (ρAB). (10)

This equation indicates that when the UB on A is reduced,
the quantum discord D(A|B) is upper bounded by EoF be-
tween A and the quantum memory B, and lower bounded by
EoF between A and the purifying system C. Furthermore,
for pure |Ψ〉ABC Eq. (2) turns into S(A|B) + S(A|C) =
0, therefore combining this with the Koashi-Winter equali-
ties of the equivalent form of Eq. (7), we have D(A|B) +
D(A|C) = Ef (ρAB) + Ef (ρAC), and hence Eq. (10) also
means Ef (ρAC) � D(A|C) < Ef (ρAB).

We now discuss the physical mechanism responsible for
changing UB. From the proof of Proposition 1 we know that

S(A|B) = D(C|A)−D(B|A), (11)

therefore S(A|B) is determined by the competition between
the quantum discords D(C|A) and D(B|A). This relation
has also been noted by Fanchini et al. [33]. It explains why
the UB is not a monotonic function of the quantum discord
between A and the quantum memory B, as while D(B|A)
increases, D(C|A) may also increases but with a faster rate,
and as a result, this induces the increase of the uncertainty
with increasing D(B|A). To be explicitly, we consider the
mixed state ρAB of the following form

ρAB = sin2 θ|Φ〉〈Φ|+ cos2 θ|11〉〈11|, (12)
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FIG. 2: (Color online) Conditional von Neumann entropy S(A|B),
quantum discords D(B|A) and D(C|A) versus θ/π for |Ψ〉ABC of
Eq. (13) with φ = π/4. The insets are derivatives of D(x) with
respective to θ/π, with x = B|A (red), C|A (blue), and the vertical
dashed line represents constant 0.182.

where |Φ〉 = cosφ|01〉 + sinφ|10〉 in the standard basis
{|0〉, |1〉}. The purification |Ψ〉ABC for this state can be writ-
ten as

|Ψ〉ABC = sin θ cosφ|011〉+ sin θ sinφ|101〉
+cos θ|110〉, (13)

which is just the generalized W state [34].
For the purification |Ψ〉ABC of Eq. (13), both the re-

duced states ρAB and ρAC have the X structure, and there-
fore the discords D(B|A) and D(C|A) can be determined
analytically [35]. In Fig. 2 we plot dependence of S(A|B),
D(B|A) and D(C|A) on θ/π with φ = π/4, i.e., |Φ〉 =

(|01〉+ |10〉)/√2. One can see that S(A|B), and thus the UB,
increases with increasing values of bothD(B|A) andD(C|A)
when θ/π ∈ [0, 0.182], and decreases with decreasing values
of both D(B|A) and D(C|A) when θ/π ∈ [0.818, 1]. As
illustrated in the inset of Fig. 2 with θ/π ∈ [0, 0.5], this coun-
terintuitive phenomenon is caused by the faster increasing rate
of D(C|A) (the blue line) compared with that of D(B|A)
(the red line). Out of the above θ/π regions, either D(B|A)
increases more rapidly than that of D(C|A), or D(B|A) in-
creases while D(C|A) decreases, and therefore the UB de-
creases with increasing D(B|A). So the behavior of UB de-
pends on the competition of quantum discords.
Observation based on one-way unlocalizable quantum dis-

cord.—Recently, Xi et al. proposed the concept of one-way
unlocalizable quantum discord [36], which is in some sense
dual to quantum discord [20]. Here, we present some analy-
sis of the quantum-memory-assisted entropic uncertainty rela-
tion based on this measure of correlations. By using the same
semiological rules as Ref. [36], we denote Ea(ρXY ) the en-
tanglement of assistance for ρXY [37], while E←u (ρXY ) the
one-way unlocalizable entanglement [38], and δ←u (ρXY ) the
one-way unlocalizable quantum discord [36], both for ρXY
with measurements on Y , and X,Y ∈ {A,B,C}. Then we
have the following result.
Proposition 2. When the UB on A is reduced with the aid

of a quantum memory B, then both E←u (ρBA) > E←u (ρCA)
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and δ←u (ρBA) > δ←u (ρCA) are always satisfied.
Proof. By using the Buscemi-Gour-Kim equality [38], we

have

Ea(ρBC) + E←u (ρBA) = S(ρB),

Ea(ρCB) + E←u (ρCA) = S(ρC). (14)

Substraction of the second equality of Eq. (14) from that of
the first one gives rise to E←u (ρBA)−E←u (ρCA) = S(ρB)−
S(ρC) = −S(A|B) > 0, and henceE←u (ρBA) > E←u (ρCA).
Furthermore, combination of the definition of the one-way un-
localizable quantum discord [36] with the Buscemi-Gour-Kim
equality [38] implies

δ←u (ρBA) + S(B|A) = Ea(ρBC),

δ←u (ρCA) + S(C|A) = Ea(ρCB). (15)

Then we have δ←u (ρBA)− δ←u (ρCA) = S(C|A)−S(B|A) =
−S(A|B) > 0, and therefore δ←u (ρBA) > δ←u (ρCA). �

This Proposition implies that when the UB on A is reduced
using the information stored in a quantum memory B, then
both the one-way unlocalizable entanglement and the one-way
unlocalizable quantum discord between A and B are always
larger than those betweenA and the purifying system C. This
reinforces the interpretation of the potential maximal correla-
tions between A and B as the essential element responsible
for the reduction of the measurement uncertainty in Eq. (1).

IV. NEGATIVE CONDITIONAL ENTROPY

As the negativity of the conditional entropy plays such an
important role in improving the prediction precision of the un-
certainty game, we now present some possible structures of
ρAB ensuring S(A|B) < 0. By noting the Araki-Lieb in-
equality [25]

S(ρAB) � |S(ρA)− S(ρB)|, (16)

we see that if S(ρB) − S(ρA) = S(ρAB), then S(A|B) =
−S(ρA) � 0 due to the non-negativity of the von Neumann
entropy. S(A|B) is negative if S(ρA) �= 0, i.e., ρA �= |μ〉〈μ|,
with |μ〉 being the orthonormal basis of HA. Recently, a nec-
essary and sufficient equality condition for the inequality (16)
was derived in [39]. It states that S(ρB)− S(ρA) = S(ρAB)
if and only if the complex Hilbert space HB can be factorized
as HB = HBL ⊗HBR such that

ρAB = |ψ〉ABL〈ψ| ⊗ ρBR , (17)

with |ψ〉ABL ∈ HA ⊗HBL .
In fact, for state ρAB of Eq. (17), we have

S(ρAB) = S(|ψ〉ABL〈ψ|) + S(ρBR)

= S(ρBR) = S(ρB)− S(ρBL)

= S(ρB)− S(ρA), (18)

by using the additivity of the von Neumann entropy [25], and
therefore D(B|A) = D(BL|A) = S(ρA). Combination of

this with Eq. (9) gives J(C|A) = 0. Since quantum correla-
tion cannot exist without classical correlation [20], this fur-
ther implies D(C|A) = 0, and J(B|A) = S(ρA), which
confirms the arguments presented in Proposition 1, namely,
D(B|A) > D(C|A) and J(B|A) > J(C|A) if S(A|B) < 0.

As an explicit example, consider a qubit-qudit system with
ρAB = (|00〉+ |12〉)(〈00|+ 〈12|)/4 + (|01〉 + |13〉)(〈01|+
〈13|)/4 in the standard basis {|μν〉}13μν=00. As shown in Ref.
[40], this state can be factorized as in Eq. (17) with |ψ〉ABL =

(|00〉+ |11〉)/√2 and ρBR = IBR/2, and as a result gives the
negative conditional entropy S(A|B) = −S(ρA) = −1.

Finally, note that Eq. (17) is only a sufficient condition for
the negativity of S(A|B), and there are bipartite states ρAB
ensuring S(A|B) < 0, but cannot be factorized into the form
of Eq. (17). An obvious example of such states is the two-
qubit Werner state ρAB = r|Ψ〉〈Ψ| + (1 − r)I4/4 [41], with
|Ψ〉 = (|00〉+ |11〉)/√2 and r � 0.7476.

V. SUMMARY AND DISCUSSIONS

To summarize, we have established some new physical im-
plications of the quantum-memory-assisted entropic uncer-
tainty relation from the perspective of correlative capacities,
which are captured by the concepts of quantum discord, EoF,
and the one-way unlocalizable quantum discord. The chang-
ing of the uncertainty bound is a result of competitions of
various correlations between different players. We showed
that whenever the prediction precision is improved compared
with that with only classical memory, the observed particle A
reaches its potential maximal correlative capacities with the
quantum memory B in the sense that their correlations (both
quantum and classical) are always larger than those betweenA
and the purifying system C. We hope these results may shed
some new light on exploring the physical implications of the
entropic uncertainty principle, especially from the perspective
of quantum correlations.

As a concluding remark, we would also like to point out
here that the resulting certainty on the prediction of the mea-
surement outcomes of two incompatible observables with the
aid of a quantum memory may implies another kind of un-
certainty. This is convinced by a variant of the “uncertainty
game” with more than two players, e.g., the three-player case
illustrated in Fig. 1, which shows that the more precisely the
measurement outcomes of Alice are predicted by Bob, the less
precisely that will be predicted by Charlie, and vice versa.
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