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The channel-state duality refers to the correspondence between quantum channels and bipartite states, and is
extremely useful and fruitful in quantum information theory. It is often called the Jamiołkowski isomorphism,
the Jamiołkowski-Choi isomorphism, or the Choi-Jamiołkowski isomorphism. We trace the original roots of this
duality from a historic perspective, clarify the somewhat misleading term of “isomorphism”, reveal the underly-
ing subtle nature, highlight the seemingly similar but actually different features, of the original correspondences
à la Pillis, Jamiołkowski, and Choi, that lead to the duality. We further illustrate some fundamental properties
and diverse applications.
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I. INTRODUCTION

The celebrated channel-state duality, usually manifestedin
the form of the Jamiołkowski-Choi isomorphism, refers to the
statement that any channel (i.e., quantum operation, or equiva-
lently, linear, completely positive, trace-preserving map) from
the state space of an input quantum system to that of an out-
put system corresponds to a bipartite state of the tensor prod-
uct of the two relevant systems [1–6]. This correspondence
links dynamics to kinematics, and is not merely mathematical,
but also has fundamental physical meaning, profound conse-
quences, and a plethora of applications.

To phrase it more explicitly, letHa be a finite dimensional
Hilbert space andL(Ha) be the Hilbert space of all linear op-
erators onHa equipped with the Hilbert-Schmidt inner prod-
uct 〈A1|A2〉 := trA†1A2. Let Hb be another finite dimensional
Hilbert space (which may or may not be identical toHa). For
any linear mapX : L(Ha) → L(Hb) sending operators on
Ha to operators onHb, consider the following two correspon-
dences

X → σX := † ⊗ X(|φ〉〈φ|) =
∑

i j

e†i j ⊗ X(ei j), (1)

X → ρX := 11⊗ X(|φ〉〈φ|) =
∑

i j

ei j ⊗ X(ei j). (2)

Here † is the adjoint operation, and11 is the identity chan-
nel, associated withHa, that is,†(A) = A†, 11(A) = A for
A ∈ L(Ha), and |φ〉 :=

∑

i |i〉 ⊗ |i〉 is the canonical maxi-
mally entangled (unnormalized) state inHa ⊗ Ha with {|i〉}
an orthonormal base ofHa, ei j := |i〉〈 j|. It should be em-
phasized that in the defining Eq. (1),† ⊗ X is only a sym-
bolic notation, and should be understood only acting on the
decomposition form|φ〉〈φ| = ∑i j ei j ⊗ ei j, rather than on any
general combination of tensor product of operators. Other-
wise, it is not well defined. This stands in sharp contrast
to 11 ⊗ X or the partial transpose t⊗ 11, which are always
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well defined. The subtle point here can be readily illustrated
by a simple example: ForA ∈ L(Ha), B ∈ L(Hb), while
iA⊗B = A⊗B, but†⊗11(iA⊗B) = −iA⊗B, which is not equal
to † ⊗ 11(A⊗ iB) = iA⊗ B in general. This is apparently due to
the fact that the partial complex conjugation depends on the
decompositions of operators. In this work, we will take the
convention to regard any non-negative operator as a quantum
state, which is very convenient for our discussion without any
loss of generality.

While both the correspondences defined by Eqs. (1) and
(2) are rather simple isomorphisms between the entire space
of linear maps fromL(Ha) to L(Hb) and the entire space of bi-
partite operators onHa⊗Hb, it is a highly non-trivial and phys-
ically relevant issue to restrict the above two correspondences
to certain subsets (e.g., positive maps, completely positive
maps, and more specifically, channels) of the space of general
linear maps, and furthermore identify the corresponding im-
age sets. This study was pioneered by Pillis [7], Jamiołkowski
[8], and Choi [9], whose results are summarized in Table I.

TABLE I: “Isomorphisms” à la Pillis, Jamiołkowski, and Choi

Who Which isomorphism
Pillis X→ σX (general map→ general operator)
Jamiołkowski X→ σX (positive map→ 1-positive operator)
Choi X→ ρX (CP map→ positive operator)

A careful study of the original and seminal papers of Pillis
[7], Jamiołkowski [8], and Choi [9] shows that the correspon-
dence defined by Eq. (1) was introduced and studied by Pillis
[7] and Jamiołkowski [8], while the correspondence defined
by Eq. (2), which is usually referred to as the Jamiołkowski-
Choi isomorphism, was employed by Choi in the equivalent
form of the so called Choi matrix (X(ei j))i j, in his elegant
proof of the operator-sum representation of channels [9]. This
operator-sum representation in turn has its motivation andori-
gin in Refs. [10, 11]. Thus, the original source leading to
the Jamiołkowski-Choi isomorphism constitutes actually two
different lines: the Pillis-Jamiołkowski isomorphism, as de-
fined by Eq. (1), and the Choi isomorphism, as defined by Eq.
(2). Since people have always lumped them together, the term
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“Jamiołkowski-Choi isomorphism” now is so popular, we will
follow this convention, and call Eq. (2) the Jamiołkowski-
Choi isomorphism.

It is remarkable that the channel-state duality can only be
established via Eq. (2), andcannotvia Eq. (1)! Moreover,
it should be emphasized that although the Jamiołkowski-Choi
isomorphism is an injection in the sense that a channel corre-
sponds to a unique bipartite state, the converse is not true:
The correspondence is not onto! There are many bipartite
states which cannot be represented asρX. This is evident since
trbρX = 1 (identity operator). Thus strictly speaking, the term
of “Jamiołkowski-Choi isomorphism” is somewhat a slight
misnomer in two senses:

(i) Firstly, the original correspondence, Eq. (1), considered
by Jamiołkowski, cannot be a correspondence between chan-
nels and states, it is just a correspondence between positive
maps and certain bipartite operators (actually 1-positiveoper-
ators, not necessarily bipartite states).

(ii) Secondly, the correspondence is never an “isomor-
phism” between channels and states, it is only a linear injec-
tion between these sets, although it is trivially an isomorphism
between the entire spaces of general linear maps and general
bipartite operators.

Apart from the above mathematical consideration of the
Jamiołkowski-Choi isomorphism, there is also a physical in-
terpretation: If one considers the system as the reduced part
of a purified ambient system, with the channel acting only on
the reduced system, then the correlations between the output
system and the ancillary can be exploited to characterize the
channel.

This paper is devoted to analyzing and synthesizing the two
correspondences defined by Eqs. (1) and (2). By tracing
carefully the original works leading to the channel-state du-
ality [7–9], which is usually identified as the Jamiołkowski-
Choi isomorphism [1–6], we clarify the subtle differences
between various related isomorphisms, reveal their remark-
able properties, investigate their intrinsic relations, and illus-
trate their interesting applications. More specifically, in Sec.
II, we characterize and reveal some fundamental properties
of the Jamiołkowski-Choi isomorphism and related isomor-
phism based on different initial states. We demonstrate, in
some sense, the base independence of Eq. (1) and the base
dependence of Eq. (2). In Sec. III, we reveal an intrinsic
link between channel-state duality and certain operator trans-
forms, and thus extend the horizon of channel-state duality
to the widely studied paradigm of coherent states and asso-
ciated integral transforms. In Sec. IV, we review a unified
picture for the different isomorphisms in a hierarchial struc-
ture of positivity [6]. We further present some applications of
the channel-state duality by translating the results from states
into channels, and vice versa, in Sections V and VI. Finally,
we conclude with some discussion in Sec. VII.

II. BASIS (IN)DEPENDENCE

The correspondencesX → σX andX → ρX, as defined
by Eqs. (1) and (2), respectively, are based on the canonical

maximally entangled state|φ〉 = ∑i |i〉⊗ |i〉 ∈ Ha⊗Ha. For an-
other maximally entangled state|ψ〉, the correspondences will
be different in general. Now the natural question arises: What
are the relationships between the correspondences based on
different maximally entangled states? Given the fundamental
importance and wide applications of the Jamiołkowski-Choi
isomorphism, it is desirable to investigate this issue.

The general framework is as follows. Based on the fiducial
state|φ〉, any maximally entangled state onHa ⊗ Ha can be
represented as

|φU⊗V 〉 = U ⊗ V |φ〉 =
∑

i

U |i〉 ⊗ V |i〉,

whereU andV are unitary operators onHa. In analogy to
Eqs. (1) and (2), we define

X → σX,U⊗V := † ⊗ X(|φU⊗V 〉〈φU⊗V |), (3)

X → ρX,U⊗V := 11⊗ X(|φU⊗V 〉〈φU⊗V |), (4)

then

σX,U⊗V = (UV† ⊗ 1)σX(UV† ⊗ 1)†, (5)

ρX,U⊗V = (UV t ⊗ 1)ρX(UV t ⊗ 1)†. (6)

Here1 denotes the identity operator (recall that in contrast,
11 denotes the identity map on operator spaces). Noting the
subtle but important difference between the above two equa-
tions: One involves the adjointV†, while the other involves
the transposeV t (with respect to the computational base{|i〉}).
In particular,

σX,U⊗U = σX for any unitaryU,

but

ρX,U⊗U = ρX only for real unitaryU,

and

ρX,Ū⊗U = ρX for any unitaryU.

To establish Eq. (5), first note that

σX,U⊗V =

∑

i j

(U |i〉〈 j|U†)† ⊗ X(V |i〉〈 j|V†)

=

∑

i j

U(|i〉〈 j|)†U† ⊗ X(V |i〉〈 j|V†)

=

∑

i j

UV†(V |i〉〈 j|V†)†VU† ⊗ X(V |i〉〈 j|V†)

= (UV† ⊗ 1)σX,V⊗V(UV† ⊗ 1)†.

Thus it suffices to show that

σX,V⊗V = σX,

or equivalently,σX,V⊗V is independent of the unitary operator
V. Indeed, consider the Hilbert spaceL(Ha)⊗ L(Hb) equipped
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with the Hilbert-Schmidt inner product, then for any operator
A† ⊗ B ∈ L(Ha) ⊗ L(Hb), we have

〈A† ⊗ B|σX,V⊗V〉
=

∑

i j

〈A†|V | j〉〈i|V†〉 · 〈B|X(V |i〉〈 j|V†)〉

=

∑

i j

〈A†|V | j〉〈i|V†〉 · 〈X†(B)|V |i〉〈 j|V†〉

=

∑

i j

tr(AV | j〉〈i|V†) · tr((X†(B))†V |i〉〈 j|V†)

=

∑

i j

〈i|V†AV | j〉〈 j|V†(X†(B))†V |i〉

= trA(X†(B))†

= 〈X†(B)|A〉
= 〈B|X(A)〉,

which is independent ofV. In summary,

〈A† ⊗ B|σX,V⊗V〉 = 〈B|X(A)〉, (7)

which provides an alternative characterization of the corre-
spondence defined by Eq. (3) specified to the special case
U = V. In particular, sinceA and B are arbitrary opera-
tors, we conclude thatσX,V⊗V is independent ofV, and thus
σX,V⊗V = σX,1⊗1 = σX.

Similarly, Eq. (6) follows from

ρX,U⊗V =

∑

i j

U |i〉〈 j|U† ⊗ X(V |i〉〈 j|V†)

=

∑

i j

UV̄†V̄ |i〉〈 j|V̄†V̄U† ⊗ X(V |i〉〈 j|V†)

= (UV̄† ⊗ 1)ρX,V̄⊗V (UV̄† ⊗ 1)†

= (UV t ⊗ 1)ρX,V̄⊗V (UV t ⊗ 1)†,

and

ρX,V̄⊗V = ρX,

which in turn is implied by (̄V ⊗ V)|φ〉 = |φ〉. In fact, the max-
imally entangled state|φ〉 is in the so-called class of isotropic
statesς (i.e., combination of the identity operator and the
canonical maximally entangled states) which have the follow-
ing invariant property [12]: (̄V ⊗ V)ς(V̄ ⊗ V)† = ς. More gen-
erally, we have

(A1 ⊗ A2)|φ〉 = (A1At
2 ⊗ 1)|φ〉 = (1 ⊗ A2At

1)|φ〉

for any operatorsA1, A2 ∈ L(Ha). To prove this, simply check
that the inner products of all these expressions with| j〉 ⊗ |k〉
leads to the same quantity〈 j|A1At

2|k〉.
In analogy to Eq. (7), we have

〈A† ⊗ B|ρX,V̄⊗V〉 = 〈B|X(At)〉,

which also readily implies thatρX,V̄⊗V = ρX,1⊗1 = ρX.

Inspired by Eqs. (3) and (4), we may further define the
following correspondence

X→ τX,U⊗V := t ⊗ X(|φU⊗V 〉〈φU⊗V |). (8)

Here t means the operation of transpose, with respect to the
canonical base{|i〉}, on the first systemHa. Clearly,

τX,U⊗V = σX,Ū⊗V (9)

and in particular,

τX = σX, (10)

although in general,τX,U⊗V , σX,U⊗V .

In view of Eqs. (9) and (10), we have a very simple method
to relate the correspondencesX → σX andX → τX. How-
ever, they are not so simply related to, and are actually very
different from, the correspondenceX→ ρX, as will be further
illustrated late.

Combining Eqs. (5) and (9), we obtain

τX,U⊗V = (ŪV† ⊗ 1)τX(ŪV† ⊗ 1)†. (11)

The above equation also follows readily from Eq. (6) by tak-
ing partial transpose with respect to the first system since

τX,U⊗V = (t ⊗ 11)ρX,U⊗V .

However, it should be emphasized that Eq. (11)cannotbe
naively derived from Eq. (5) simply by taking formal adjoint
with respect to the first system, i.e., employing the operation
†⊗11, because this latter operation is not well defined on differ-
ent tensor product decompositions of the operators, as already
illustrated in Sec. I.

In view of the formal similarity and symmetry among the
correspondences defined via Eqs. (1), (2) and (8), one might
be tempted to think that these correspondences have essen-
tially the same properties. However, they are radically differ-
ent as long as positivity is involved, as will be illustratedin
Sec. III. In particular, the correspondence defined by Eq. (1)
is reminiscent (and indeed is the origin) of the PPT (partial
positive transpose) criterion for entanglement [13, 14], and
motivates us to study the closely related partial transposecor-
respondence defined by Eq. (8). Moreover, each correspon-
dence have their own appealing features.

The characterizations and transformation properties of the
various correspondences are summarized in Tables II and III,
respectively.

TABLE II: Characterization ofσX, ρX andτX
Correspondence Characterization
X→ σX 〈A† ⊗ B|σX〉 = 〈B|X(A)〉
X→ ρX 〈A† ⊗ B|ρX〉 = 〈B|X(At)〉
X→ τX 〈A† ⊗ B|τX〉 = 〈B|X(A)〉

TABLE III: Base (in)dependence ofσX, ρX andτX
Correspondence Covariant transformation
X→ σX σX,U⊗V = (UV† ⊗ 1)σX(UV† ⊗ 1)†

X→ ρX ρX,U⊗V = (UV t ⊗ 1)ρX(UV t ⊗ 1)†

X→ τX τX,U⊗V = (ŪV† ⊗ 1)τX(ŪV† ⊗ 1)†



4

III. INVERSE AND OPERATOR TRANSFORMS

The inverse of the correspondence defined by Eq. (1) is
σ → Xσ (hereσ is a bipartite operator, not necessarily a bi-
partite state), with the linear map (not necessary a channel)
Xσ : L(Ha) → L(Hb) being defined by the partial inner prod-
uct overL(Ha) as

Xσ(A) := 〈A†|σ〉a ≡ tra(A ⊗ 1)σ, A ∈ L(Ha). (12)

In contrast, the inverse of the correspondence defined by Eq.
(2) isρ→ Xρ, with Xρ : L(Ha)→ L(Hb) being defined by

Xρ(A) := 〈At†|ρ〉a ≡ tra(At ⊗ 1)ρ, A ∈ L(Ha). (13)

Indeed, forσ ∈ L(Ha ⊗ Hb),

σXσ = († ⊗ Xσ)(|φ〉〈φ|)
=

∑

i j

e†i j ⊗ traσ(ei j ⊗ 1)

= σ,

and forA ∈ L(Ha),

XσX(A) = tra

(
∑

i j

Ae†i j ⊗ X(ei j)
)

=

∑

i j

tr(Ae†i j) · X(ei j)

= X

(
∑

i j

tr(Ae†i j) · ei j

)

= X(A).

Similarly, we can verify that

ρXρ = ρ, XρX = X

for ρ ∈ L(Ha ⊗ Hb) andX ∈ L(L(Ha), L(Hb)).
Finally, sinceτX = σX, the inverse ofX → τX is the same

as that ofX→ σX, and is thus given byτ→ Xτ with

Xτ(A) = tra(A ⊗ 1)τ, A ∈ L(Ha).

For convenience, the inverses of the various correspon-
dences are listed in Table IV.

TABLE IV: Inverse ofσX, ρX andτX (noting thatσX = τX)

Correspondence Inverse
X→ σX σ→ Xσ with Xσ(A) = tra(A ⊗ 1)σ
X→ ρX ρ→ Xρ with Xρ(A) = tra(At ⊗ 1)ρ
X→ τX τ→ Xτ with Xτ(A) = tra(A ⊗ 1)τ

The inverse correspondences actually give rise to state-
induced channels. In particular, the channel defined by Eq.
(12) may be interpreted as a quantum generalization of the
so called coherent state transform. To see this, let us first re-
call the coherent state transform (Segal-Bargmann transform)

[15–17], originally introduced by Segal and Bargmann [15],
is the isometryB : L2(R)→ H2(C) given by

B f (x) :=
∫

R
b(z, x) f (x)dx, f ∈ L2(R) (14)

whereb(z, x) = π−1/4e−z2/2+
√

2zx−x2/2, x ∈ R, z ∈ C, H2(C)
is the Bargmann space of analytical function on the complex
planeC, square integrable with respect toπ−1e−|z|

2
dxdy with

z = x + iy. The states|z〉 = b(z, ·) ∈ L2(R) are the so-called
coherent states inL2(R) satisfying the completeness relation
∫

C
|z〉〈z|dxdy/π = 1.
Now, we point out a remarkable analogy between the state-

induced channel, as defined by Eq. (12), which is the inverse
of the channel-state correspondenceX → σX and the cele-
brated coherent state transform, as defined by Eq. (14). The
analogy is summarized in Table V. If we make a formal corre-
spondence between the left column and the right column, we
see indeed that the channel-state duality is in some sense an
operator generalization of the coherent state transform. In this
sense, we may regard the channel-duality as a kind of coherent
operator transform.

TABLE V: State-induced channel vs. coherent state transform
Xσ : L(Ha)→ L(Hb) B : L2(R)→ H2(C)
Xσ(A) = tra(A ⊗ 1)σ B f (x) =

∫

R
b(z, x) f (x)dx

A ∈ L(Ha) f ∈ L2(R)
σ ∈ L(Ha) ⊗ L(Hb) b ∈ L2(R) ⊗ H2(C)
tra

∫

R

Moreover, we emphasize that in definingσX, ρX and τX,
we may replace|φ〉 by other state

∑

j |z j〉 ⊗ |z j〉, or in continu-
ous variable case,

∫

|z〉 ⊗ |z〉dµ(z), satisfying the completeness
relation

∑

j |z j〉〈z j| = 1 or
∫

|z〉〈z|dµ(z) = 1. In particular, it
may happen that{|z j〉} is a over-complete family of coherent
states [18–21], rather than an orthogonal base. Thus it is also
desirable to study the channel-state duality in terms of super-
position of coherent states. This will be pursued elsewhere.

IV. A UNIFIED PICTURE

Both Eqs. (1) and (2) lead to some isomorphisms between
linear maps and bipartite operators. However, only the cor-
respondence defined by Eq. (2) restricts to an isomorphism
between channels and certain bipartite states, while the cor-
respondence defined by Eq. (1) can never lead to such an
isomorphism, and thus cannot establish the channel-state du-
ality!

To put the various isomorphisms in a unified picture [6], we
introduce the following notation. LetLk(L(Ha), L(Hb)) be the
set of linear mapX from L(Ha) to L(Hb) which isk-positive in
the sense that11k ⊗ X is a positive map onL(Ck) ⊗ L(Ha), k =
0, 1, · · · , d, · · · , with L0(L(Ha), L(Hb)) = L(L(Ha), L(Hb)). It
is well know that wheneverk ≥ d = dimHa, Lk(L(Ha), L(Hb))
coincides with the set of completely positive maps. Let
Lk(Ha ⊗ Hb) be the set of operatorsξ on Ha ⊗ Hb such that
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〈ψ|ξ|ψ〉 ≥ 0 for any vector|ψ〉 ∈ Ha ⊗ Hb with Schmidt rankk
or less [22, 23], then clearly,Ld(Ha⊗Hb) := S (Ha⊗Hb) is the
set of (unnormalized) bipartite states onHa⊗Hb. Elements of
Lk(Ha ⊗ Hb) are calledk-positive operators. By convention,
L0(Ha ⊗ Hb) := L(Ha ⊗ Hb). Now we can make precise the
various isomorphisms established by Pillis [7], Jamiołkowski
[8], and Choi [9].

(i) In the pioneering work [7], Pillis first explicitly intro-
duced and showed thatX → σX is an isomorphism between
L0(L(Ha), L(Hb)) andL0(Ha⊗Hb) in his study of Hermiticity-
preserving maps.

(ii) As an innovative and significant advance, Jamiołkowski
first proved thatX → σX is an isomorphism between
L1(L(Ha), L(Hb)) andL1(Ha ⊗Hb) [8]. He only addressed the
issue of positive maps rather than completely positive maps.

(iii) Finally, Choi employed the matrix (X(ei j))i j which is
equivalent toρX, and established elegantly thatX → ρX is
an isomorphism betweenLd(L(Ha), L(Hb)) andLd(Ha ⊗ Hb).
Recall thatd = dimHa.

The results established by Pillis and Jamiołkowski for the
correspondenceX → σX also carry over to the correspon-
denceX → ρX. Furthermore, the results can be unified in
the following sense [4, 6]: The correspondenceX → ρX is
an isomorphism betweenLk(L(Ha), L(Hb)) andLk(Ha ⊗ Hb)
for k = 0, 1, 2, · · · , d. However, it is amazing and remarkable
that this is not true for the mapX → σX. This latter corre-
spondence may send a completely positive map to a negative
operator onHa ⊗ Hb. In particular,σ11 is not a positive oper-
ator!

More generally, the various isomorphisms derived from the
correspondencesX → σX andX → ρX are illustrated in Ta-
bles VI and VII, respectively.

TABLE VI: CorrespondenceX→ σX à la Pillis and Jamiołkowski

MapX : L(Ha)→ L(Hb) OperatorσX : Ha ⊗ Hb → Ha ⊗ Hb

Linear map Linear operator
Hermiticity-preserving mapHermitian operator
1-Positive map 1- positive operator
Completely positive map ? (Not necessary positive operator)

TABLE VII: CorrespondenceX→ ρX à la Choi

MapX : L(Ha)→ L(Hb) OperatorρX : Ha ⊗ Hb → Ha ⊗ Hb

Linear map Linear operator
Hermiticity-preserving mapHermitian operator
k-Positive map k-positive operator
Completely positive map Positive operator

We make some explanations for Table VII.
Firstly, any linear mapX ∈ L(L(Ha), L(Hb)) may be repre-

sented as

X(A) =
∑

j

X jAY j, A ∈ L(Ha)

whereX j ∈ L(Ha,Hb) andY j ∈ L(Hb,Ha). The corresponding
operatorρX is a general linear operator onHa ⊗ Hb.

Secondly, whenX is Hermiticity-preserving in the sense
that (X(A))† = X(A†), thenρX is a Hermitian operator onHa⊗
Hb in the sense thatρ†

X
= ρX. In this case,X can always be

represented as

X(A) =
∑

j

ǫ jX jAX†j

with ǫ j = 1,−1.
Thirdly,X is k-positive in the sense that11k ⊗X is a positive

map associated withCk ⊗Ha (thus the conventional positivity
is the same as 1-positivity) if and only ifρX is k-positive in the
sense that〈ψ|ρX|ψ〉 ≥ 0 for any vector|ψ〉 with Schmidt rank
less than or equal tok. A vector has Schmidt rank 1 if and only
if it is a product state (separable), it follows that this condition
reduces to that first established by Jamiołkowski [8]. Usually,
it is difficult to determine whether a map is positive or not.

Lastly, X is completely positive (a channel) in the sense
that11k ⊗ X is a positive map for anyk (it suffices fork = d,
the dimension ofHa), if and only ifρX is a positive operator (a
positive operator with unital partial trace overHb) onHa⊗Hb.
In this case,X can always be represented as

X(A) =
∑

j

X jAX†j .

Since any Hermitian operator can be represented as the
difference of two positive operators, it follows that every
Hermiticity-preserving map can be written as the difference
of two completely positive maps. To emphasize, the channel-
state duality is a particular instance of the last scenario:A
channel fromL(Ha) to L(Hb) corresponds to a bipartite state
on Ha ⊗ Hb with unital partial trace overHb.

V. COMPOSING STATES VIA CHANNELS

There is a natural composition law for channels, which may
be translated to states via the channel-state duality [1, 5]. Ac-
cordingly, the correlations in bipartite states may be endowed
with a product structure.

Consider the relations betweenρXY with ρX andρY, we de-
fine

ρX ◦ ρY := ρXY.

More explicitly,

ρXY =
∑

i j

ei j ⊗ XY(ei j)

for ρX =
∑

i j ei j ⊗ X(ei j), ρY =
∑

i j ei j ⊗ Y(ei j). This com-
position (product) of certain bipartite states has the following
interesting properties.

(i) It is not commutative. More precisely,

ρ[X,Y] = ρX ◦ ρY − ρY ◦ ρX.

Thus,ρX ◦ ρY = ρY ◦ ρX if and only ifXY = YX.
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(ii) The maximally entangled state|φ〉〈φ| = ρ11 is a unit for
this product since

ρ11 ◦ ρX = ρX ◦ ρ11 = ρX.

(iii) The quantum mutual information is decreasing under
the composition in the sense that

I(ρX ◦ ρY) ≤ min{I(ρX), I(ρY)}.

HereI(·) denotes the quantum mutual information of the asso-
ciated normalized state [24–26]. This follows from the mono-
tonicity of the quantum mutual information under local chan-
nels [24, 25]. Moreover,I(ρX ◦ ρY) = I(ρX) if and only if
Y is reversible, andI(ρX ◦ ρY) = I(ρY) if and only if X is
reversible. The extent of reversibility of the channelX is re-
lated to, and can be quantified by, the correlations in the cor-
responding stateρX. In particular, we may define an index for
the reversibility ofX as

R(X) :=
I(ρX)
I(ρ11)

.

Thus,X is reversible if and only ifR(X) = 1. In contrast, if
X is a complete decoupling channel in the sense thatρX is a
product state, thenR(X) = 0.

Conversely, one may also induce certain composition struc-
tures of channels from those of states such as the Hadamard
(Schur) product [2]. Their implications and applications re-
main further investigations.

VI. CLASSIFYING AND COMPARING CHANNELS VIA
STATES

Since bipartite states are well classified according to cor-
relations therein [27–29], we may classify channels by trans-
lating the classifications in bipartite states with the mediation
of the channel-state duality, and investigate the conditions for
channels in order to generate corresponding states with cer-
tain correlation structures. We illustrate this general idea by a
variety of examples and applications.

(i) A bipartite stateρ is a product state ifρ = ρa ⊗ ρb, other-
wise it is correlated. Now the questions arises as which chan-
nel corresponds to a product state, and which corresponds to
a correlated one, under the correspondenceX → ρX. We call
a channelX a completely decoupling channel ifρX is a prod-
uct state. From Eq. (2), we readily conclude that a channel is
completely decoupling if and only ifX is fully degenerate in
the sense that it sends any operator to a fixed one:X(A) = B0

for anyA ∈ L(Ha) and some fixedB0 ∈ L(Hb).
(ii) In the entanglement and separability paradigm [27], a

bipartite stateρ is called separable if it can be represented as

ρ =
∑

j

ρa
j ⊗ ρb

j ,

whereρa
j and ρb

j are (unnormalized) states forHa and Hb,
respectively. Otherwise it is called entangled (recall that we

have taken the convention to regard any non-negative operator
as a state). According to the elegant results of Horodeckiet
al. [30], a channelX leads to a separable state if and only if it
is an entanglement breaking channel in the sense that [30–32]

X(A) =
∑

j

tr(AEa
j ) · ρb

j , A ∈ L(Ha),

i.e., a measurement-and-preparation map. Here{Ea
j } is a

POVM onHa, andρb
j are positive operators onHb.

(iii) In the classical and quantum scenario of correlations
[29, 33], a bipartite state is called quantum-classical (corre-
lated) if it can be represented as

ρ =
∑

j

ρa
j ⊗ | j〉b〈 j|.

Hereρa
j are (unnormalized) states ofHa, and{| j〉b} is an or-

thonormal base forHb. Otherwise it is called quantum cor-
related. According to Refs. [34, 35], a channel is quantum-
classical if and only if it is a measurement map in the sense
that

X(A) =
∑

j

tr(AEa
j ) · Πb

j , A ∈ L(Ha).

Here{Ea
j } is a POVM onHa, and{Πb

j } are orthogonal positive

operators onHb.
(iv) Translating the symmetric characterization of the

Werner states and isotropic states [12, 27], we may define
the corresponding Werner channels and isotropic channels.
Recall that a bipartite stateω on Ha ⊗ Hb with Hb

= Ha

is called a Werner state if it is invariant in the sense that
(U ⊗ U)ω(U ⊗ U)† = ω. In contrast, a stateς is called
an isotropic state if (̄U ⊗ U)ς(Ū ⊗ U)† = ς. Explicitly, a
Werner state and an isotropic state are, respectively, of the
form [12, 27, 28]

ω =
d − x
d3 − d

1 +
dx − 1
d3 − d

F, x ∈ [−1, 1]

ς =
d − y
d3 − d

1 +
dy − 1
d3 − d

|φ〉〈φ|, y ∈ [0, d].

Hered = dimHa, F :=
∑

i j |i〉〈 j| ⊗ | j〉〈i|, |φ〉 :=
∑

i |i〉 ⊗ |i〉, and
1 is the identity operator onHa ⊗ Ha.

Let the channelP be the von Neumann measurement along
the base{|i〉}, i.e.,P(A) =

∑

i〈i|A|i〉|i〉〈i|. It is interesting to note
that

σP = ρP = 1, F = σ11 = ρt, |φ〉〈φ| = ρ11.

Thus

ω =
d − x
d3 − d

ρP +
dx − 1
d3 − d

ρt, x ∈ [−1, 1]

ς =
d − y
d3 − d

ρP +
dy − 1
d3 − d

ρ11, y ∈ [0, d]

which recast the Werner state and the isotropic states in a sym-
metrical position. Consequently, we may call

Xω =
d − x
d3 − d

P +
dx − 1
d3 − d

t

Xς =
d − y
d3 − d

P +
dy − 1
d3 − d

11
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the Werner channel and the isotropic channel, respectively.
These can also be derived directly from the inversion formulas
(12) and (13) .

(v) For the random unitary channel

X(A) =
∑

i

piUiAU†i , A ∈ L(Ha)

the corresponding states are

σX =
∑

i

piσ11,1⊗Ui
, ρX =

∑

i

piρ11,1⊗Ui
.

In particular, for the Pauli channel

X(A) =
3
∑

j=0

p jσ jAσ j, A ∈ L(Ha)

the corresponding state

ρX = p0|φ+〉〈φ+ | + p1|ψ+〉〈ψ+| + p2|ψ−〉〈ψ−| + p3|φ−〉〈φ−|

is essentially a Bell-diagonal state, which can be alternatively
cast in the form [36]

ρX =

3
∑

j=0

c jσ j ⊗ σ j

with c0 = 1/4, c1 = (p0 + p1 − p2 − p3)/4, c2 = (−p0 +

p1 − p2 + p3)/4, c3 = (p0 − p1 − p2 + p3)/4. Here{p j} is a
probability distribution,σ0 = 1 andσ j are the Pauli matrices,
|φ±〉 = |0〉⊗ |0〉± |1〉⊗ |1〉, |ψ±〉 = |0〉⊗ |1〉± |1〉⊗ |0〉. In fact, the
Pauli channels and the Bell-diagonal states are in one-to-one
correspondence.

(vi) Two channelsX andY are unitary equivalent ifY =
U1◦X◦U2.Here the unitary channelsU j is defined asU j(A) :=
U jAU†j with U j a unitary operator. In view of Eq. (5),X and
Y are unitary equivalent if and only ifσX andσY arelocally
unitary equivalent as bipartite states. This follows from the
equivalence betweenY = U1 ◦ X ◦ U2 and

σY =
∑

i j

e†i j ⊗ U1X(U2ei jU
†
2)U†1

= (1 ⊗ U1)σX,1⊗U2(1 ⊗ U1)†

= (1 ⊗ U1)(U†2 ⊗ 1)σX(U†2 ⊗ 1)†(1 ⊗ U1)†

= (U†2 ⊗ U1)σX(U†2 ⊗ U1)†.

Similarly, X andY are unitary equivalent if and only ifρX
andρY are locally unitary equivalent as bipartite states. In
general, it is quite difficult to determine whether two channels
are unitary equivalent or not. Now, thanks to the recent results
in Ref. [37], we can determine unitary equivalence of any two
channels easily by checking several standard invariants ofthe
derived bipartite states via the channel-state duality.

(vii) The Jamiołkowski-Choi isomorphism provides a con-
venient method for analyzing the decoherent properties of
channels via correlations. Given two channelsX andY acting
on the same space, it is desirable to tell whether there exists a

channelT such thatY = T◦X. If there is the case, we say that
Y is a coarse graining ofX, and write symbolicallyY � X,
which gives a natural partial order for the set of channels. This
is reminiscent of the “cleanness” of POVMs studied in Ref.
[38]. An extremely important issue is to determine whetherY

is a coarse graining ofX. In general, this is a quite difficult
problem. However, via the channel-state duality, we can ob-
tain some convenient necessary conditions for checking this.
More precisely, ifY = T ◦ X, then by the monotonicity of the
quantum mutual information,

I(ρY) = I(ρT◦X) ≤ I(ρX).

Consequently, whenever the above inequality is violated, then
Y cannot be the coarse graining ofX. Recall that a quantum
dynamicsX = {Xt} is Markovian if the channelsXt is always a
coarse graining ofXs whenevers < t. ThusI(ρXt ) is a decreas-
ing function oft. This observation has a remarkable applica-
tion in characterizing and quantifying non-Markovian dynam-
ics. Following Ref. [39], a measure of non-Markovianity of
a dynamical processesX = {Xt} on the systemHa may be
defined as

N0(X) :=
∫

d
dt I(ρXt )>0

d
dt

I(ρXt )dt,

which synthesizes the degree of violation of coarse graining
effect of Markovian dynamics.

Moreover, the natural question arises as how does the non-
Markovianity measure depend on the choice of the initial
maximally entangled state|φ〉? In view of Eq. (6) and the
fact that quantum mutual information cannot be changed by
local unitary operations, we haveI(ρX,U⊗V ) = I(ρX) for any
unitary operatorsU andV. Accordingly,I(ρXt ) = I(ρXt ,U⊗V ),
and thusN0(X) is indeed an intrinsic quantity independent
of the choice of the initial maximally entangled state. Sim-
ilarly, some further implications of Eq. (6) are that the vari-
ous decoherence measures introduced in [40] are also intrinsic
quantities independent of the choice of the initial maximally
entangled state.

VII. DISCUSSION

Although the channel-state duality has been extensively
studied and widely used, we have revealed some subtle
points concerning the structures and properties of the original,
closely related but quite different correspondences which lead
to the duality. The first was introduced by Pillis [7] and further
investigated by Jamiołkowski [8], while the second was sug-
gested by Choi [9]. The celebrated Jamiołkowski-Choi iso-
morphism refers to the second one, and is usually the precise
formulation of the so called channel-state duality. We have
pointed out that the Jamiołkowski-Choi isomorphism is nei-
ther the original map studied by Jamiołkowski, nor an isomor-
phism between channels and bipartite states in a strict sense.

The channel-state duality relies on the choice of a reference,
which is a maximally entangled state. We have characterized
completely the relationship between different dualities based
on different reference states.
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By exploiting the channel-state duality, we have illustrated
some applications and implications. By translating results
for channels, we obtain corresponding properties for bipartite
states, and vice verse. Richer results stem from the channel-
state duality with profound consequences, which need further
exploitation.

We have only treated finite dimensional cases. It will also
be important to study the infinite dimensional cases and con-
tinuous variable cases. Some significant advance has been
made by Holevo and others [31, 32]. Finally, we emphasized
the channel state duality can also be established via (non-
orthogonal) coherent states, rather than orthonormal states, as
long as the completeness relation is satisfied.
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