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The channel-state duality refers to the correspondeneeeketquantum channels and bipartite states, and is
extremely useful and fruitful in quantum information thgolt is often called the Jamiotkowski isomorphism,
the Jamiotkowski-Choi isomorphism, or the Choi-Jamiotk&inisomorphism. We trace the original roots of this
duality from a historic perspective, clarify the somewhadleading term of “isomorphism”, reveal the underly-
ing subtle nature, highlight the seemingly similar but adifudifferent features, of the original correspondences
a la Pillis, Jamiotkowski, and Choi, that lead to the dyalitVe further illustrate some fundamental properties
and diverse applications.

PACS numbers: 03.65.Ta, 03.67.-a

I. INTRODUCTION well defined. The subtle point here can be readily illusttate
by a simple example: FoA € L(H®, B e L(H), while

The celebrated channel-state duality, usually manifeésted 1A®B = A®B, buti®@1(iA®B) = -iA®B, which is not equal
the form of the Jamiotkowski-Choi isomorphism, refers te th 10 7 ® 1(A®iB) = iA® Bin general. This is apparently due to
statement that any channel (i.e., quantum operation, avaqu  the fact that the partial complex conjugation depends on the
lently, linear, completely positive, trace-preservingayom decomp_osmons of operators. In th|§ work, we will take the
the state space of an input quantum system to that of an ougonvention to regard any non-negative operator as a quantum
put system corresponds to a bipartite state of the tensak proState, which is very convenient for our discussion withawt a
uct of the two relevant systems [1-6]. This correspondenctoss of generality.
links dynamics to kinematics, and is not merely mathemhtica While both the correspondences defined by Egs. (1) and
but also has fundamental physical meaning, profound consé2) are rather simple isomorphisms between the entire space
quences, and a plethora of applications. of linear maps from.(H?) to L(HP) and the entire space of bi-

To phrase it more explicitly, let? be a finite dimensional Partite operators oH2gH?P, it is a highly non-trivial and phys-
Hilbert space andl(H?) be the Hilbert space of all linear op- ically relevant issue to restrict the above two correspands
erators orH? equipped with the Hilbert-Schmidt inner prod- to certain subsets (e.g., positive maps, completely pesiti
uct (AtAg) := trAlAy. Let HP be another finite dimensional Maps, and more specifically, channels) of the space of genera
Hilbert space (which may or may not be identicaH®). For  linear maps, and furthermore identify the corresponding im
any linear magx : L(H%) — L(HP) sending operators on @age sets. This study was pioneered by Pillis [7], Jamiotkbws
H2 to operators o, consider the following two correspon- [8, and Choi [9], whose results are summarized in Table .
dences

X — ox =1 X(o)e]) = Z eITj ®X(8)), (1) TABLE I: “Isomorphisms" ala Pi.IIis, Jamiotkowski, and Cho
] Who Which isomorphism
Pillis X — ox (general map- general operator)
X - px=1eX(¢Xel) = Z aj ® X(&j). (2) Jamiotkowski X — o (positive map— 1-positive operator)
i Choi X — px (CP map— positive operator)

Here 1 is the adjoint operation, andl is the identity chan-
nel, associated witll?, that is, +(A) = A", 1(A) = A for A careful study of the original and seminal papers of Pillis
A € L(H®), and|¢) := 3,y ® |i) is the canonical maxi- [7], Jamiotkowski [8], and Choi [9] shows that the correspon
mally entangled (unnormalized) state K ® H2 with {]i)} dence defined by Eq. (1) was introduced and studied by Pillis
an orthonormal base dfi?, ; := [i)(jl. It should be em- [7] and Jamiotkowski [8], while the correspondence defined
phasized that in the defining Eq. (1)@ X is only a sym- by Ed. (2), which is usually referred to as the Jamiotkowski-
bolic notation, and should be understood only acting on théchoi isomorphism, was employed by Choi in the equivalent
decomposition formg)(¢l = ¥ &; ® &}, rather than on any form of the so called Choi matrixX{(e;))ij, in his elegant
general combination of tensor product of operators. Otherproof of the operator-sum representation of channels [Bis T
wise, it is not well defined. This stands in sharp contrasoperator-sum representation in turn has its motivationcaind
to 1 ® X or the partial transposea 1, which are always gin in Refs. [10, 11]. Thus, the original source leading to
the Jamiotkowski-Choi isomorphism constitutes actuaily t
different lines: the Pillis-Jamiotkowski isomorphism, as de-
fined by Eq. (1), and the Choi isomorphism, as defined by Eqg.
*Electronic addresstuosl@amt .ac.cn (2). Since people have always lumped them together, the term



“Jamiotkowski-Choiisomorphism” now is so popular, we will maximally entangled state) = >, li)®|i) € H*®@H?. For an-
follow this convention, and call Eq. (2) the Jamiotkowski- other maximally entangled statg), the correspondences will
Choi isomorphism. be diferentin general. Now the natural question arises: What

It is remarkable that the channel-state duality can only bere the relationships between the correspondences based on
established via Eq. (2), anthnnotvia Eq. (1)! Moreover, different maximally entangled states? Given the fundamental
it should be emphasized that although the JamiotkowskirChdmportance and wide applications of the Jamiotkowski-Choi
isomorphism is an injection in the sense that a channel corrésomorphism, it is desirable to investigate this issue.
sponds to a unique bipartite state, the converse is not true: The general framework is as follows. Based on the fiducial
The correspondence is not onto! There are many bipartitstate|¢), any maximally entangled state ¢if ® H2 can be
states which cannot be representegsasThis is evident since represented as
trpox = 1 (identity operator). Thus strictly speaking, the term
of “Jamiotkowski-Choi isomorphism” is somewhat a slight |pusv) = U @ V|p) = Z Uli) ® VIiy,
misnomer in two senses: i

(i) Firstly, the original correspondence, Eq. (1), considie ,
by Jamiotkowski, cannot be a correspondence between chahereU andV are unitary operators oR®. In analogy to
nels and states, it is just a correspondence between mositifFas- (1) and (2), we define
maps and certain bipartite operators (actually 1-posijer-
atofs, not necessariFy bipartirtJe states)(. Y PORE X = oxuev = T ®X(gusv){dusv); ®3)

(i) Secondly, the correspondence is never an “isomor- X = pxusv = 1@ X(lpusv Xduevl), (4)
phism” between channels and states, it is only a linearinjec
tion between these sets, although itis trivially an isorhesm ~ then
between the entire spaces of general linear maps and general
bipartite operators. TX.UsV

Apart from the above mathematical consideration of the Px.UeV
Jamiotkowski-Choi isomorphism, there is also a physical in
terpretation: If one considers the system as the reduced parere 1 denotes the identity operator (recall that in contrast,
of a purified ambient system, with the channel acting only onll denotes the identity map on operator spaces). Noting the
the reduced system, then the correlations between the toutpstibtle but important dierence between the above two equa-
system and the ancillary can be exploited to characterize thtions: One involves the adjoint’, while the other involves
channel. the transpos¥! (with respect to the computational ba§g).

This paper is devoted to analyzing and synthesizing the twdn particular,
correspondences defined by Egs. (1) and (2). By tracing )
carefully the original works leading to the channel-state d oxzusu = ox forany unitaryu,
ality [7-9], which is usually identified as the Jamiotkowski
Choi isomorphism [1-6], we clarify the subtlefidirences
between various related isomorphisms, reveal their remark
able properties, investigate their intrinsic relationsg dlus-
trate their interesting applications. More specificalty Sec.
Il, we characterize and reveal some fundamental properties
of the Jamiotkowski-Choi isomorphism and related isomor- _ ;
phism based on fferent initial sta?[es. We demonstrate, in Pruey = Pz forany uniant.
some sense, the base independence of Eq. (1) an(_JI th_e t_)asq-o establish Eq. (5), first note that
dependence of Eq. (2). In Sec. lll, we reveal an intrinsic
link between channel-state duality and certain operatmstr N gt
forms, and thus extend the horizon of channel-state duality Tx eV Z(U“)(”U ) @ X(VINIVY)
to the widely studied paradigm of coherent states and asso- :
ciated integral transforms. In Sec. IV, we review a unified
picture for the diferent isomorphisms in a hierarchial struc-
ture of positivity [6]. We further present some applicasaf
the channel-state duality by translating the results frtates
into channels, and vice versa, in Sections V and VI. Finally,
we conclude with some discussion in Sec. VII.

(UV' @ Dox(UVT ® 1), (5)
(UV'® Dpx(UV!® 1) (6)

but

pxusu = px only for real unitary,

D UiXih U @ X(VINGIVY)
ij

D UVIVIRGIVIVUT @ X(VIiN(IVT)
ij
(UVT® D)oxvev(UV' @ 1)

Thus it sufices to show that

1. BASIS(IN)DEPENDENCE Txvev = 0%,

The correspondencés — ox andX — px, as defined or equivalentlygx vsv iS independent of the unitary operator
by Egs. (1) and (2), respectively, are based on the canonical Indeed, consider the Hilbert spacéH?) ® L(H) equipped



with the Hilbert-Schmidt inner product, then for any operat
A’ ® B e L(H?) ® L(HP), we have

(AT ® Bloxvev)

DAV - BIEVIIVY)
ij

DAV - KT BIVIXIVTY
ij

D AVIGIVT - tr(ET(B) VNGV
ij

DUV AVIIV (X (B)) Vi
ij

trA(X"(B))"
X'(B)IA)
(BIX(A)),

which is independent of. In summary,
(A" ® Bloxvav) = (BIX(A)), 7

which provides an alternative characterization of the eorr

3

Here t means the operation of transpose, with respect to the
canonical baséi)}, on the first systeri?. Clearly,

9)

TX,UsV = Ox UsV
and in particular,

Tx = 0%, (10)
although in generakx ugv # ox.usv-

In view of Egs. (9) and (10), we have a very simple method
to relate the correspondencés— ox andX — 7x%. How-
ever, they are not so simply related to, and are actually very
different from, the correspondenke— px, as will be further
illustrated late.

Combining Egs. (5) and (9), we obtain

Txuev = (UVT @ Drx(UVT @ 1)". (11)
The above equation also follows readily from Eq. (6) by tak-
ing partial transpose with respect to the first system since

Txuev = (1® L)ox usv-

spondence defined by Eq. (3) specified to the special case

U = V. In particular, sinceA and B are arbitrary opera-
tors, we conclude thatx yvey is independent of/, and thus

OxVeV = 019l = OX.
Similarly, Eq. (6) follows from

D UInGIuT @ X(VIixiIvT)

ij

DTUVIVIXIVIVUT @ X(VIIXIVT)
ij

(UV' @ Doy Gv (UV' © 1)

(UV'® Dpxiev(UV' @ 1),

Px.UsV

and

Px VeV = PX»

which in turn is implied by ¥ & V)|¢) = |¢). In fact, the max-
imally entangled stat@) is in the so-called class of isotropic

However, it should be emphasized that Eq. (f&apnotbe
naively derived from Eq. (5) simply by taking formal adjoint
with respect to the first system, i.e., employing the operati
t®1, because this latter operation is not well defined dfed;
ent tensor product decompositions of the operators, aaire
illustrated in Sec. I.

In view of the formal similarity and symmetry among the
correspondences defined via Egs. (1), (2) and (8), one might
be tempted to think that these correspondences have essen-
tially the same properties. However, they are radicalfiedi
ent as long as positivity is involved, as will be illustratied
Sec. lll. In particular, the correspondence defined by E}j. (1
is reminiscent (and indeed is the origin) of the PPT (partial
positive transpose) criterion for entanglement [13, 14 a
motivates us to study the closely related partial transpose
respondence defined by Eq. (8). Moreover, each correspon-
dence have their own appealing features.

The characterizations and transformation properties®f th

statesg (i.e., combination of the identity operator and the various correspondences are summarized in Tables Il and IlI

canonical maximally entangled states) which have theviello
ing invariant property [12]:Y ® V)g(V ® V) = ¢. More gen-
erally, we have

(A1 ® AD)lg) = (ALA, ® 1)[g) = (1@ AAY)[p)

for any operatorg\;, A; € L(H?). To prove this, simply check
that the inner products of all these expressions Witl® |k)
leads to the same quanti([MAlAtzlk).

In analogy to Eq. (7), we have

(AT ® Blog vey) = (BIX(AY)),

which also readily implies that; vev = ox 161 = px.

Inspired by Egs. (3) and (4), we may further define the

following correspondence

X = 1z usv = t1® X(lpusv){dusvl). (8)

respectively.

TABLE II: Characterization obtry, px andryx
Correspondence Characterization

X - ox (A" ® Blox) = (BIX(A))
X - px (A" ® Blox) = (BIX(A"))
X -1y (AT ® Blry) = (BIX(A))

TABLE Ill: Base (in)dependence ofyx, px andryx
Correspondence Covariant transformation

X —ox oxuev = (UVT @ Doy (UV' @ 1)
X - px pxusv = (UVI® Dpx(UVie 1)
X—x Truev = (UVI @ Dy (UVT @ 1)7
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I11.  INVERSE AND OPERATOR TRANSFORMS [15-17], originally introduced by Segal and Bargmann [15],
is the isometnB : L2(R) — H?(C) given by
The inverse of the correspondence defined by Eq. (1) is
o — X, (hereo is a bipartite operator, not necessarily a bi- Bf(x) := fb(z, X f(x)dx, fel?(R) (14)
partite state), with the linear map (not necessary a channel R
X, : L(H® — L(HP) being defined by the partial inner prod- 22 B2
uct overL(H?) as whereb(z x) = x4 7/ VX2 x € Rz e C, H*(C)
is the Bargmann space of analytical function on the complex
X (A) := (Al|o)a = tra(A® Do, A€ L(H?). (12)  planeC, square integrable with respecttolte %’ dxdy with
z = x+1iy. The stategz) = b(z -) € L?(R) are the so-called
In contrast, the inverse of the correspondence defined by Egoherent states IDZ(R) satisfying the completeness relation
(2)isp — X, with X, : L(H?) — L(HP) being defined by J& 12)(dxdy/m =
Now, we point out a remarkable analogy between the state-
X,(A) := (A|pYa = tra(A'® 1)p, A L(H?). (13) induced channel, as defined by Eq. (12), which is the inverse
of the channel-state correspondefite» ox and the cele-
Indeed, forr € L(H2 ® HP), brated coherent state transform, as defined by Eq. (14). The
analogy is summarized in Table V. If we make a formal corre-
ox, = (t1X,)(o)el) spondence between the left column and the right column, we
Z " o trao(e; ® 1) see indeed that the channel-state duality is in some sense an
aviHl operator generalization of the coherent state transfanrthi$
sense, we may regard the channel-duality as a kind of coheren
operator transform.

g,

and forA € L(H®),
+ TABLE V: State-induced channel vs. coherent state transfor
X, (A) = tha ZAG ® X(a))) X, : L(H? - L(H") B: LZR) — HZ(C)
X, (A) =tra(A® )0 Bf(x) = be(z, X) f(x)dx
- AeL(HY fel2(R
Ztr(A ) - %(e) oelL(H)®LH") bel2(R)®HC)
tra
Z tr(Ae]) - &)
Moreover, we emphasize that in defining, px andrx,
X(A)- we may replacgs) by other stater; zj) ® |z;), or in continu-
ous variable cas@ |2 ® |2du(2), satisfying the completeness
relationy’; zj)(zj| = 1 orflz)(zld/,c(z) = 1. In particular, it
may happen th&{z;)} is a over-complete family of coherent
states [18—21], rather than an orthogonal base. Thus is@s al

a b a b desirable to study the channel-state duality in terms oésup
for p € L(H®® HP) andXX € L{L(H), L(H7). position of coherent states. This will be pursued elsewhere

R

Similarly, we can verify that

pX/J =P XPX =X

Finally, sincerx = o, the inverse oX — tx is the same
as that ofX — o, and is thus given by — X, with

X.(A) = tra(A® 1)7, A€ L(H?). IV. A UNIFIED PICTURE

For convenience, the inverses of the various correspon- Both Egs. (1) and (2) lead to some isomorphisms between
dences are listed in Table IV. linear maps and bipartite operators. However, only the cor-
respondence defined by Eq. (2) restricts to an isomorphism

between channels and certain bipartite states, while the co

TABLE IV: Inverse ofox, px andrx (noting thatox = 7x) respondence defined by Eq. (1) can never lead to such an

Correspondence Inverse isomorphism, and thus cannot establish the channel-stiate d
X > ox o — X, with X,(A) =try(A® 1) ality!

i — t . . . . . .
X2 p— X, With X,(A) = tra(A'® L)p To put the various isomorphisms in a unified picture [6], we
X -1 7o X, with X (A) =tra(A® 1)t

introduce the following notation. Let(L(H?), L(HP)) be the

set of linear maX from L(H?) to L(HP) which isk-positive in
The inverse correspondences actually give rise to statehe sense that, ® X is a positive map oh(C¥) ® L(H?), k =

induced channels. In particular, the channel defined by E, 1,---,d,-- -, with Lo(L(H®), L(HP)) = L(L(H®), L(H®)). It

(12) may be interpreted as a quantum generalization of this well know that whenevek > d = dimH?2, Li(L(H®), L(HY))

so called coherent state transform. To see this, let us éirst r coincides with the set of completely positive maps. Let

call the coherent state transform (Segal-Bargmann tram$fo L,(H2 ® HP) be the set of operatogson H2 ® HP such that




(Wlély)y > 0 for any vectoly) € H2 @ HP with Schmidt rankk
orless [22, 23], then clearlyy(H2®HP) := S(H2®HP) is the
set of (unnormalized) bipartite statesldA® HP. Elements of
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Secondly, wherX is Hermiticity-preserving in the sense
that (X(A))" = X(A"), thenpx is a Hermitian operator oH?®
HP in the sense thaﬁt;g = px. In this caseX can always be

Lc(H2 ® HP) are calleck-positive operators. By convention, represented as

Lo(H2 ® HP) := L(H® ® HP). Now we can make precise the

various isomorphisms established by Pillis [7], Jamiotkkiv
[8], and Choi [9].
(i) In the pioneering work [7], Pillis first explicitly intro

X(A) = Y XAX]

J

duced and showed that — o is an isomorphism between Wwith ¢j = 1,-1.

Lo(L(H®), L(HP)) andLo(H2®HP) in his study of Hermiticity-
preserving maps.

Thirdly, X is k-positive in the sense thét ® X is a positive
map associated witBX ® H2 (thus the conventional positivity

(ii) As an innovative and significant advance, Jamiotkowskiis the same as 1-positivity) if and onlygf, is k-positive in the
first proved thatX — oy is an isomorphism between sense thaty|ox|y) > 0 for any vectoty) with Schmidt rank
L1(L(H®), L(H®)) andL;(H2® HP) [8]. He only addressed the less than or equal ta A vector has Schmidtrank 1 if and only
issue of positive maps rather than completely positive maps if itis a product state (separable), it follows that this dition

(ii) Finally, Choi employed the matrix3{(e;;));; which is
equivalent topx, and established elegantly th&t —» px is
an isomorphism betwedny(L(H?), L(H)) andL4(H2 @ HP).
Recall thatd = dimH?2.

reduces to that first established by Jamiotkowski [8]. Usual

it is difficult to determine whether a map is positive or not.
Lastly, X is completely positive (a channel) in the sense

that 1y ® X is a positive map for ank (it suffices fork = d,

The results established by Pillis and Jamiotkowski for thethe dimension oF), if and only if is a positive operator (a
correspondenci — o also carry over to the correspon- POsitive operator with unital partial trace ovéf) onH*@HP.
denceX — px. Furthermore, the results can be unified in In this caseX can always be represented as

the following sense [4, 6]: The correspondedte— px is
an isomorphism betwedn(L(H?), L(HP)) andLx(H? ® HP)

fork =0,1,2,---,d. However, it is amazing and remarkable

that this is not true for the maji — ox. This latter corre-

X(A) = Z X;AX.
]

spondence may send a completely positive map to a negati\%'“ce any Hermitian operator can be represented as the

operator orH2 ® HP. In particularcq is not a positive oper-
ator!

More generally, the various isomorphisms derived from th

correspondence$ — ox andX — px are illustrated in Ta-
bles VI and VII, respectively.

TABLE VI: Correspondenc& — o a la Pillis and Jamiotkowski
MapX : L(H?) — L(H?)  Operatorry : H2 @ H®? —» H2® HP
Linear map Linear operator
Hermiticity-preserving mapHermitian operator
1-Positive map 1positive operator
Completely positive map ? (Not necessary positive operator)

TABLE VII: Correspondencé& — px a la Choi
MapX : L(H?) — L(H?)  Operatopy : H*® H” - H2® HP
Linear map Linear operator
Hermiticity-preserving mapHermitian operator
k-Positive map k-positive operator
Completely positive map Positive operator

We make some explanations for Table VII.
Firstly, any linear majX € L(L(H®), L(H)) may be repre-
sented as
X(A) = Z XjAY;,  AeL(H?
j

whereX; € L(H3, HP) andY; e L(H, H?). The corresponding
operatopy is a general linear operator ¢if ® HP.

difference of two positive operators, it follows that every
Hermiticity-preserving map can be written as thé&elience

LOf two completely positive maps. To emphasize, the channel-

state duality is a particular instance of the last scenafio:
channel fromL(H?) to L(H®) corresponds to a bipartite state
on H2® HP with unital partial trace over®.

V. COMPOSING STATESVIA CHANNELS

There is a natural composition law for channels, which may
be translated to states via the channel-state duality [JA&]
cordingly, the correlations in bipartite states may be eratb
with a product structure.

Consider the relations betwepgy with px andpy, we de-
fine

PxX © Py ‘= PXY-

More explicitly,
pxy = Z 8 ® XY(8))
ij
for px = Yijaj ® X(aj), py = 2ijaj ® Y(&j). This com-
position (product) of certain bipartite states has theofeihg

interesting properties.
(i) It is not commutative. More precisely,

PIX.Y] = PX © PY — PY © PX-

Thus,px o py = py o px if and only if XY = YX.



(i) The maximally entangled statg)(¢| = pq is aunitfor  have taken the convention to regard any non-negative aperat

this product since as a state). According to the elegant results of Horodetki
al. [30], a channeK leads to a separable state if and only if it
P11 °Px = pPx o pq = PX. is an entanglement breaking channel in the sense that [B0-32
(iii) The quantum mutual information is decreasing under X(A) = th(AE?) ), AeL(HY),

the composition in the sense that i

| < min(l | i.e., a measurement-and-preparation map. HErj?e is a
(b © pr) < minfl (o), 1 (ov)}. POVM onH#, andp® are positive operators dr®.

Herel () denotes the quantum mutual information of the asso-_(iii) In the classical and quantum scenario of correlations
ciated normalized state [24—26]. This follows from the mono [29. 33], a bipartite state is called quantum-classicafrgeo
tonicity of the quantum mutual information under local chan lated) if it can be represented as

nels [24, 25]. Moreoverl (ox o py) = l(ox) if and only if _ a o iy,

Y is reversible, and(ox o py) = l(oy) if and only if X is p= Zp,— ® 16l

reversible. The extent of reversibility of the chanieis re- ] : o

lated to, and can be quantified by, the correlations in the cotierep§ are (unnormalized) states &f°, and{|j)u} is an or-
responding statex. In particular, we may define an index for thonormal base foH®. Otherwise it is called quantum cor-

the reversibility ofX as related. According to Refs. [34, 35], a channel is quantum-
classical if and only if it is a measurement map in the sense
. ox) that
RX) := I .
(b0) X(A) = Z tr(AE) - TP, A L(H).
i

Thus, X is reversible if and only iR(X) = 1. In contrast, if

X is a complete decoupling channel in the sensefhat a  Here{E?} is a POVM onH?, and(I1?} are orthogonal positive
product state, theR(X) = 0. operators orHP.

Conversely, one may also induce certain composition struc- (iv) Translating the symmetric characterization of the
tures of channels from those of states such as the Hadamajigl.rer states and isotropic states [12, 27], we may define

(Schur) product [2]. Their implications and applicatiors r o ¢orresponding Werner channels and isotropic channels.
main further investigations. Recall that a bipartite state on H2 ® H® with HP = H2

is called a Werner state if it is invariant in the sense that
(U ® U)w(U ® U)" = w. In contrast, a state is called

an isotropic state if Y ® U)g(U ® U)" = . Explicitly, a
Werner state and an isotropic state are, respectively, eof th

. N . _ form[12, 27, 28]
Since bipartite states are well classified according to cor- d-x dx— 1

VI. CLASSIFYING AND COMPARING CHANNELSVIA
STATES

relations therein [27—-29], we may classify channels bygran w = —-1+—"F, xe[-1,1]
lating the classifications in bipartite states with the raédn d—d a-d
of the channel-state duality, and investigate the conuktfor ¢ = d-y 1+ dy — 1|¢><¢| ye[o.d].
channels in order to generate corresponding states with cer d®-d d®-d ’ '
tain correlation structures. We illustrate this generabithy a  Hered = dimH?, F := 3 [i)(j| ® |j)il, I¢) := X li) ® li), and
variety of examples and applications. lis the identity operator oRl? ® H2.
(i) A bipartite statep is a product state j§ = p®®p°, other- Let the channeP be the von Neumann measurement along

wise it is correlated. Now the questions arises as whichcharthe base|i)}, i.e.,P(A) = X(i|Ali)]i)i|. Itis interesting to note
nel corresponds to a product state, and which corresponds that
a correlated one, under the correspondéfice px. We call

a channek a completely decoupling channeldf is a prod- op=pp=1 F=0g=p. [6)¢l=pg.
uct state. From Eg. (2), we readily conclude that a channel i¥hus
completely decoupling if and only KX is fully degenerate in d- x dx—1
the sense that it sends any operator to a fixed &i(8) = By w = Ggrt gt Xel-L1]
for anyA e L(H®) and some fixed®o € L(HP). d—y dy-1

(i) In the entanglement and separability paradigm [27], a S = F-d" T @_g°'L ye[0,d]

bipartite state is called separable if it can be represented as . ) ) ]
which recast the Werner state and the isotropic states ima sy

o= Zpa@)pp metrical position. Consequently, we may call
=l
] X - d-x N dx-1
Y Y ds—d
wherep? and p® are (unnormalized) states fét* and H®, d-y_ dy-1

respectively. Otherwise it is called entangled (recalt tha Xe = REPS dP M. dﬂ



the Werner channel and the isotropic channel, respectivelghannell such thatf = T o X. If there is the case, we say that

These can also be derived directly from the inversion foasul
(12) and (13) .
(v) For the random unitary channel

X(A) = Z pUAUT, AeL(H?

the corresponding states are
ox = Z Pioq 1oy Px = Z PPt 1eu;-
i i

In particular, for the Pauli channel
3
X(A) = Z piciAr, Ae L(H?)
=0

the corresponding state

Px = Pold™ o™ | + Pl Wu| + paly ™ XYT| + palg o

is essentially a Bell-diagonal state, which can be altérelgt
cast in the form [36]

3
pX=ZC]‘0’j®0’j
j=0

with co = 1/4,¢1 = (po+ P — P2 — P3)/4 C2 = (—po +
P1— P2 + P3)/4, C3 = (Po — P1 — P2 + Pp3)/4. Here{p;} is a
probability distributiongq = 1 ando; are the Pauli matrices,
[p*) = 10)®10) +|1)®|1), [¥*) = |0)®|1) +|1)®|0). In fact, the
Pauli channels and the Bell-diagonal states are in onewo-0
correspondence.

(vi) Two channelsX andY are unitary equivalent it =
U;0XoU,. Here the unitary channels; is defined adlj(A) :=
U;AU ]‘ with U; a unitary operator. In view of Eq. (5% and
Y are unitary equivalent if and only ifx andoy arelocally
unitary equivalent as bipartite states. This follows frdre t
equivalence betweeti = U; o X o U, and

oy

> ® UiX(UzeU)U]
ij

(1 ® U]_)O’X,]_@,Uz(l ® Ul)T
(1®U1)(U] ® Dox(U) ® 1) (1@ Uy’
(U @ Up)ox(U] ® Uy)'.

Similarly, X andY are unitary equivalent if and only fx

and py are locally unitary equivalent as bipartite states. In
general, it is quite diicult to determine whether two channels
are unitary equivalent or not. Now, thanks to the recentitesu

Y is a coarse graining oX, and write symbolicallyy > X,
which gives a natural partial order for the set of channelfss T

is reminiscent of the “cleanness” of POVMs studied in Ref.
[38]. An extremely importantissue is to determine whettier

is a coarse graining aX. In general, this is a quite ficult
problem. However, via the channel-state duality, we can ob-
tain some convenient necessary conditions for checkirgg thi
More precisely, iff = T o X, then by the monotonicity of the
guantum mutual information,

I(oy) = (orox) < 1(ox).

Consequently, whenever the above inequality is violatezh t

Y cannot be the coarse grainingXf Recall that a quantum
dynamicsX = {X} is Markovian if the channelX; is always a
coarse graining dXs wheneves < t. Thusl (ox,) is a decreas-
ing function oft. This observation has a remarkable applica-
tion in characterizing and quantifying non-Markovian dgma
ics. Following Ref. [39], a measure of non-Markovianity of
a dynamical processe$ = {X;} on the systenH? may be

defined as
No(X) Z=ﬁ

dt

d

[ (ox,)dt,
I(px)>0 dt

which synthesizes the degree of violation of coarse grginin
effect of Markovian dynamics.

Moreover, the natural question arises as how does the non-
Markovianity measure depend on the choice of the initial
maximally entangled statig)? In view of Eq. (6) and the
fact that quantum mutual information cannot be changed by
local unitary operations, we havéox usv) = |(ox) for any
unitary operators) andV. Accordingly,l(ox,) = 1(ox, usv),
and thusNy(X) is indeed an intrinsic quantity independent
of the choice of the initial maximally entangled state. Sim-
ilarly, some further implications of Eq. (6) are that theivar
ous decoherence measures introduced in [40] are alsogiatrin
guantities independent of the choice of the initial maxignal
entangled state.

VIl. DISCUSSION

Although the channel-state duality has been extensively
studied and widely used, we have revealed some subtle
points concerning the structures and properties of thénaiig
closely related but quite fierent correspondences which lead
to the duality. The first was introduced by Pillis [7] and et
investigated by Jamiotkowski [8], while the second was sug-
gested by Choi [9]. The celebrated Jamiotkowski-Choi iso-
morphism refers to the second one, and is usually the precise
formulation of the so called channel-state duality. We have

in Ref. [37], we can determine unitary equivalence of any twopointed out that the Jamiotkowski-Choi isomorphism is nei-

channels easily by checking several standard invariaritseof
derived bipartite states via the channel-state duality.
(vii) The Jamiotkowski-Choi isomorphism provides a con-

ther the original map studied by Jamiotkowski, nor an isomor
phism between channels and bipartite states in a stricesens
The channel-state duality relies on the choice of a referenc

venient method for analyzing the decoherent properties ofvhich is a maximally entangled state. We have characterized

channels via correlations. Given two chanr&landY acting
on the same space, it is desirable to tell whether theresexist

completely the relationship betweerftdrent dualities based
on different reference states.



By exploiting the channel-state duality, we have illustcht
some applications and implications. By translating result
for channels, we obtain corresponding properties for higar
states, and vice verse. Richer results stem from the channel
state duality with profound consequences, which needéurth
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