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We consider the decoherence of a quantum sy§eoupled to a quantum environmebt For states chosen
uniformly at random from the unit hypersphere in the Hilbgpace of the closed syste® E we derive a
scaling relationship for the sum of the off-diagonal eletaaf the reduced density matrix 8fas a function of
the sizeDg of the Hilbert space oE. This sum decreases agIDg as long adDg > 1. We test this scaling
prediction by performing large-scale simulations whiclvedhe time-dependent Schrodinger equation for a
ring of spin-1/2 particles, four of them belonging ®and the others t&, and for this ring with small world
bonds added ik and/or betwees andE. The spin-1/2 particles experience nearest-neighboraatens that
are identical for the interactions withiand random for the interactions withih and betweers andE, or
that are all identical. Provided that the time evolutiorvesi the whole system from the initial state toward a
scaling state, a state which has similar properties assdtatenging to the class of quantum states for which we
derived the scaling relationship, the scaling predictiofds. We examine various interaction parameters and
initial states for our model system to find whether or not theetevolution reaches the class of states that have
the scaling property. For the homogeneous ring we find tleaétolution for select initial states does not reach
these scaling states. This conclusion is not modified if wksmine homogeneous random connections. For a
ring we find that some randomness in the interaction param&teequired so that most initial configurations
are driven toward the scaling state. Furthermore, if thetarhof randomness is small the time required to reach
the scaling states may be very large. For the case of all mnderactions irE the ring is driven toward the
scaling state. Adding small world bonds betweeandE with random interaction strengths may decrease the
time required to reach the scaling state or may prevent @gcstate from being reached. For the latter case
we show that increasing the complexity of the environmeradiging extra connections within the environment
suffices to observe the predicted scaling behavior.

PACS numbers: 03.65.Yz, 75.10.Jm, 75.10.Nr, 05.45.Pq

I. INTRODUCTION relax to a state described by a canonical ensemble at arcertai
temperature [1]. Second, decoherence is arguably theskarge

impediment for practical, realizable quantum compute}s [2
Decoherence of a quantum systeSrinteracting with a The large interest in technological areas like spintron-
guantum environmenE is of importance for two reasons. ics, quantum computing and quantum information process-
First, decoherence @ is the primary requirement fd8to  ing have stimulated the theoretical research of quantum dy-



namics in open and closed interacting systems. Besides this Il. THEORY, MODEL, AND METHODS
more application driven interest there persists the furetaad

and still unanswered question under which conditions aefinit  The time evolution of a closed quantum system is governed
quantum system reaches thermal equilibrium and how this cagy the time-dependent Schrodinger equation (TDSE) [2P, 21
be derived from dynamical laws. If the initial density matrix of an isolated quantum systesm i
rr_won-diagonal then, according to the time evolution dictate
by the TDSE, it remains non-diagonal. Therefore, in order
decohere the systeB) it is necessary to have the system

On the one hand there exists a variety of studies explo
ing the microcanonical thermalization in an isolated quemt
system [3—6]. On the other hand there exist various studiey . i .
investigating the process of canonical thermalization ®fs Interact _W'th an e_nwronme_lﬁ, also called a h_eat bath or
tem coupled to a (much) larger system [3, 7-13] and of twosPin _bath_ if the environment is composed of spins. Thus, the
finite identical quantum systems prepared at different gmp 1amiltonian of the whole syste®+- E takes the form

atures [14, 15]. H = Hs+ He + Hsk, 1)

In previous work [16, 17], we numerically demonstrated ) )
that a quantum system interacting with an environment at hig WhereHs andHe are the system and environment Hamilto-
temperature relaxes to a state described by the canonical efian respectively, antise describes the interaction between
semble. In this paper we focus on investigating the dynamiéhe system and environment. In what foII_ows, we first degcrib
properties of the decoherence of a quantum sysSebeing the general theor_y that Iegds to the scaling of the decob_eren
a subsystem of the whole syste®# E. We do this both  Of the systenS with the size ofE andS. We then describe
with a theoretical prediction and by simulating the dynasnic in detail the spin-12 Hamiltonians we have simulated to pro-
of a relatively large systerB8+ E of spin-1/2 particles using vide a case study for this scaling.

a time-dependent Schrodinger equation (TDSE) solver. [18]
In particular, we investigate the scaling of the degree cbde

herence ofS with the size ofE, keeping the size o fixed. A.  Time evolution
Based on similar arguments as given in Ref. [19], we find that
the degree of decoherence $flecreases as/{/Dg, where A pure state of the whole syste®# E evolves in time ac-

De is the dimension of the Hilbert space of the environmentifcording to (in units oh = 1)

the state of the whole system is chosen uniformly at random e D

from the unit hypersphere in the Hilbert space. In this paper __itH e < .

we denote states chosen uniformly at random from the unit P) = [%(0) = i;pzlc(" P.O[ip) 2)
hypersphere in the Hilbert space of the whole systemXy “

and of the environment byy”. where the set of stategi, p)} denotes a complete set of or-

We al d4d th i d hat i ; tthonormal states in some chosen basis,gdndDg are the
€ also address the question underwhat circumstances ensions of the Hilbert spaces of the system and the envi-

whole system evolves to a state which has the same degree of | - respectively. We assume thatand De are both
decoherence as a staté™ In particular we study the case finite ' ' E

in which the initial state o5+ E is a direct product of the Thé spin HamiltoniarH models a system witiNs spin-
state[ 1) of Sanq a _stateY”_of E. Ifthe initial state of the 1/2 particles and an environment witlz spin-1/2 particles.
whole syst¢n$+ Eis s!lghtly differentfrom agiven statex”, _ Thus,Ds = 2™ andDg = 2. The whole systers-+ E con-
Fhe dyna_rmcs may drive th? whole system |ntola s_tate whic ainsN = Ns+ Ng spin-1/2 particles and the dimension of
IS ngrytdlffer(\aAr/\t _from :_he tg“{ﬁn staﬁ@( ! b.Ut V;'ht'.Ch IS ci)‘:;;t its Hilbert space iD = DgDg. In our simulations we use
simiiartype. We investigate through our simutations w the spin-up — spin-down basis and use units suchhhatl

dynamics plays an important _role in the decoherence inthat I(hence, all quantities are dimensionless). Numericalig, t
can driveS+ E to a state X” by introducing small world bond real-time propagation bgt™H is carried out by means of

con(;]ections i_rEtﬁn(j/?r bett\_/\/eenst? andﬁ]an?tgy intrqducing ‘ the Chebyshev polynomial algorithm [22-25], thereby solv-
randomness in the interaction strengths ot the environmen ing the TDSE for the whole system starting from the initial

The paper is organized as follows. In Section Il our theo-State|¥(0)). This algorithm yields results that are very accu-
retical results for the scaling of the decoherenc& afe pre- ~ rate (close to machine precision), independent of the teye s
sented, together with details of the one-dimensional rihg oused [18].
spin-1/2 particles which we simulate to better understand the
scaling prediction. Sections IlI-V contain results for three-
dimensional rings under study. In particular we look at the e B. Computational aspects
fect of adding additional bonds (Small World Bonds, SWBs)
between the system and environment spins and/or between en-Computer memory and CPU time severely limit the sizes
vironment spins only (Section 1V) and of randomness in theof the quantum systems that can be simulated. The required
interaction strengths of the Hamiltonian of the environinen CPU time is mainly determined by the number of operations
(Section V). Section VI contains our conclusions and a disto be performed on the spin/2 particles. The CPU time does
cussion of our results. not put a hard limit on the simulation. However, the memory



of the computer does severely limit which system sizes can
be calculated. The stat&) of a N-spin-1/2 system is rep- - Z c( ¢, p.t). )
resented by a complex-valued vector of length= 2N. In
view of the potentially large number of arithmetic operatp

it is advisable to use 13 - 15 digit floating-point arithmetic
(corresponding to 8 bytes for a real number). Thus, to repre-

We characterize the degree of decoherence of the system by

sent a state of the quantum systenNo$pin-1/2 particles on Ps71 Ds
a conventional digital computer, we need a ledst2bytes. o(t) = Zi > A ()] ®)
Hence, the amount of memory that is required to simulate a =1 =l

quantum system withl spin-1/2 particles increases exponen- _

tially with N. For example, foN = 24 (N = 36) we need at Wherepjj (t) is the matrix elemerti, j) of the reduced density

least 256 MB (1 TB) of memory to store a single arbitrary Matrix p in the representation that diagonalizés Clearly,

state|W). In practice we need three vectors, memory for com-0 (t) is a global measure for the size of the off-diagonal terms

munication buffers, local variables and the code itself. of the reduced density matrix in the representation thajatia
The elementary operations performed by the computationdl@lizesHs. If o(t) = 0 the system is in a state of full decoher-

kernel are of the formi¥) +— U |W) whereU is a sparse uni- €nce (relative to the representation that diagonaligs

tary matrix with a very complicated structure (relative he t

computational basis). Inherent to the problem at hand is tha

each operatiob) affects all elements of the state vecé) in D. Scaling property of o

a nontrivial manner. This translates into a complicate@suh

for accessing memory, which in turn requires a sophistitate

MPI communication scheme [26]. We can prove a scaling property afby assuming that the

final state of the whole system is a sta¢’) a state that is
picked uniformly at random from the unit hypersphere in the

C. Reduced density matrix Hilbert space. The wave function of the whole system reads,

Ds D
The state of the quantum systeSiis described by the re- W) = > ZE Cip ‘E_(S)> ‘E,(JE)>, (6)
duced density matrix Z\ m

pt)=Trep(t), (3) where{‘Ei(S)>} ({‘E{JE)>}) is the set of eigenvectors b

wherep (t) is the density matrix of the whole syste®a-E at  (Hg), and the real and imaginary parts ©f, are real ran-
timet andTr g denotes the trace over the degrees of freedondlom variables. The derivation of the scaling behavior fol-
of the environment. In terms of the expansion coefficientdows Ref. [19]. In particular Egs. (A8), (A12) and (A23)
c(i, p,t), the matrix elementi, j) of the reduced density ma- of Ref. [19] are used. We introduce the following short-

trix reads hand notation for the sum over the off-diagonal elements,
De De ngj Kij = z&lz?jl(l—dj):qj for anykij, whereg; is the
pijt)=Tre z Z c( c(j,p,t)|J, p){i,q Kronecker delta function. The expectation value is given by
p=1d=1
2 DS DE DS
E(20%) =E ; S c;jpcj’p ; E(C!4CisCipCip)
i#)|p=1 ] p=lp=1

_ D;SJ p_lDZ;_l (1= 3pp) E(GpCinCioCip ) + 3w (CpCisCinCip ) )

Ds Dg Ds Dg 1 De—1 1— L1
E (|Gipl*|Cipl?) = - _—S—= _ __ Ds 7
i; le (’Clp’ ’ J!p‘ ) i; le DsDe (DSDE+1) DSDE+1 DE+D_S ( )

whereE(-) denotes the expectation value with respect to thehe Hilbert spaces of all the environments. In addition, &}.
probability distribution of the random variabl€p,. Equa- does notimpose any requirement on the geometry.

tion (7) does not require any condition on the Hamiltonian

Eq. (1). For example, iHg is composed of two or more en-

vironments that do not couple to each other, but only interac

with the system, in Eq. (7Dg is the product of the sizes of



4

thath andkg are one). The spin componer§$ and|{ are
related to the Pauli spin matrices, for examflds a direct

product of identity matrices and the Pauli spin maé'b(X =

10

For the geometry of the whole system, we focus on the one-
dimensional ring consisting of a system with = 4 spin-1/2
particles and an environment will spin-1/2 particles, see
Fig. 1. Past simulations have shown that a high connectiv-
ity spin-glass type of environment is extremely efficient to
FIG. 1. (Color online) An example of a spin system used in thedecohere a system [16, 28-30], so we may expect that the
simulations. ThéNs = 4 system spin-A2 particles are colored light one-dimensional ring is one of the most difficult geometries
gray (cyan), and thBlg = 18 environment spin-/2 particles are col-  to obtain decoherence in short times.

ored dark gray (red). The thin black segments show the cdiomnsc We assume that the spin-spin interaction strengths of the

for a one-dimensional ring, which are the only bonds (irdgoas) . oy
present in case | and Il (see text). The thick (green and vbiads systems are Isotropic,J; = J and that only the nearest-

show SWBSs inHsg. This particular example shows a spin system N€ighbor interaction strengt@’; andAf; are non-zero. Note
with K = 2, whereK denotes the maximum number of subsystemthat for a ring there are only two bonds with strengﬂjq con-
spins that are connected via SWBs with one environment $iick(  nectingSandE. We distinguish two cases: '

white lines, see also Section IV). The medium thick (bluehds
show SWBs irHE.

: ( 0 1) in positioni of the direct product with X i < Ns.

e Case I: The non-zero values Qﬁ’j andAi"”j are gener-
ated uniformly at random from the ran¢eQ, Q] and
From Eq. (7) it follows that for any fixed value @fs > 1 (=D, 4], respectively.

andDg > 1, o scales as

e Case IlI: All non-zero values of the model parameters

o~ 1 E(202) = 1 /Ds-1 1 . @®) are identicalQf"; = J andA?; = J. This corresponds to
V2 V2V DsDe+1 /2Dg a uniform isotropic Heisenberg model with interaction
strengthy.

Therefore, if the size of the syste®is fixed (which is the case
considered in this paper,decreases as'{/Dg for largeDg.

Hence, for a spin-12 systemo should decrease as /2 for We will see that these two cases show very different scal-

largeN ing properties of the decoherence depending on the initial
Igor fEi>.<edD > 1, it follows from Eq. (7) that the environ- state. We also investigate the effects of randomly addirajlsm
S ' d- world bonds (SWBs) between spins in the system and envi-

ment does not have to be very large for Eq. (8) to hold, whic L . :
is in agreement with Ref. [27]. Nevertheless, the existencllzomﬂent and between spins in the environment (see Fig. 1).

of an environment is crucial. If there is no environmentpthe  The initial state of the whole systefi E is prepared in
the o approaches to a constant (see Appendix A), even if th&V0 differentways, namely:
whole system is initially in a statex”.

o “X": We generate Gaussian random num-
bers {a(J7p)7b(Jap)} and set C(japat - 0) =
B Modeland method (a(i.p)  + i)/ /S p(@(. P)+b2(1.P)).

Clearly this procedure generates a point on the
hypersphere in thB-dimensional Hilbert space. Alter-
natively, we generate points in the hypercube by using
uniform random numbers in the intervigt1,1]. Our
general conclusions do not depend on the procedure

For testing the predicted scaling of Eq. (8) we simulate sys-
tems of spin-12 particles. For studying the time evolution
of the whole systens+ E, we consider a general quantum
spin-1/2 model defined by the Hamiltonian of Eq. (1) where

Ns—1 Ns used (results not shown).
Hs=— Zl > > XSS, 9)
=1 j=rrasxye e UDUDY: The initial state of the whole system is a
Ne_1 Ne o aa product state of the system and environment. In this
He =— 21 DDA (10) paper Ns = 4), we confine the discussion to the state
,1‘: NJ:'HGZX’Y’Z UDUDY, which means that the first, second, third, and
S E fourth spin are in the up, down, up, and down state re-
Hse = — Z 2 2 A ST (11) spectiveﬁy, and the statg of the rerFr)laining spins i¥’a
=h=tamene state in thg D/2%)-dimensional Hilbert space. Th¥*
Here,Sand! denote the spin/2 operators of the spins of the state of the environmentis prepared in the same way as

system and the environment, respectively (we use units such  the “X” state of the whole system.
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FIG. 3. Simulation results foo(t) (see Eq. (5)) for case | for dif-
ferent sizeN = Ng + 4 of the whole system. The initial state of
the whole system i8DUDY (see text). Curves from top to bottom
correspond to system sizes ranging frbim= 6 to N = 34 in steps
102 F——— N i of 2. The inset shows the time-averaged valueg @f (pluses) as a
————— ] function of the sizéNg of the environment. The data obey the scaling

property of Eg. (8) (solid line).
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Wil T results for both cases | and Il agree with Eq. (8). In par-
W ticular 'Te_insets in Fig. 2 show that for both cases I_and I,
0 200 400 600 t800 1000 1200 1400 g‘r%ﬁl;'(\lﬁ! 2< EZ)d that scales as by/De even e =2
FIG. 2. Simulation results foo(t) (see Eq. (5)) for case | (top) B. Different initial conditions

and case Il (bottom) for different sizéé = Ng + 4 of the whole

system. The initial state of the whole systemXs {see text). Curves . . . .

from top to bottom correspond to system sizes ranging fkom 6 We investigate the effects of the dynamics by preparing the

to N = 34 in steps of 2. The insets show the time-averaged value#litial state of the whole system such that it is slightlyfeiif

of o(t) (pluses) as a function of the si2d of the environment, ent from “X”. The initial state of the whole system is set to

confirming the theoretical prediction of Eq. (8) (solid ljne UDUDY. In contrast to Fig. 2, we will see that the two cases |
and Il behave differently.

I1l. SCALING ANALYSISOF o
1. Caseland UDUDY

All simulations are carried out for a systeghconsisting ] ] ]
of four spins Ns = 4) coupled to an environmer& with In Fig. 3, we present the simulation results for case I, the
the number of spindle ranging from 2 to 30. The interac- Couplings in the Hamiltonianble and Hsg are chosen uni-
tion strengths)® ; with 1 <i < Ns— 1 are always fixed to formly at random. The sizBl = Ng + 4 of the whole system
J— —015. Forcase | all non- zem“ andA" are randomly ranges from 6 to 34. An average over the long-time station-
generated from the range0.2,0.2]. For case Il all non-zero 2% steady-state values of(t) still obeys the scaling prop-

o o - erty of Eq. (8), showing thatr decreases as/{/Dg, where
r?qodeIr;dA j are equal toJ = —0.15 (isotropic Heisenberg De = 2", If Ne — o, 0 — 0. This suggests that in the ther-

modynamical limit the syster8 decoheres completely.

A. \Verification of scaling: cases | and Il with “X” 2. Case lland UDUDY

We corroborate the scaling property of Eq. (8) by numeri- We consider the case in which the whole system is de-
cally simulating the quantum spin system (see Eq. (9) tHnougscribed by the isotropic Heisenberg modéf (; = QF ; =
(11)). If we choose the initial state of the whole system to beA: ; = J). In Fig. 4 we present simulation results for dif-
an “X” state, then during the time evolution the whole systemferent system sizeld = Ng + 4 ranging from 16 to 34. From
will remain in the state X”. Hence, the condition to derive Fig. 4, it is seen that the behavior for case Il is totally eliff
Eqg. (8) are fulfilled. Fig. 2 demonstrates that the numericaknt from that of case | (see Fig. 3). In particulext) does
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FIG. 4. Same as Fig. 3 for case Il instead of case |. Curves fopm FIG. 5. (Color online) Simulation results far(t) for case | forN =
to bottom correspond to system sizes ranging fivem 16 toN = 34 22 andNs = 4. Red solid line: the initial state $DUDY (see text);

in steps of 2. The solid line in the inset is a guide to the eyes. green dashed line: the initial state ™ (see text).
-1
not scale with the dimension of the environment. From the 10
present numerical results, we cannot make any conclusions >
about the limit for largéNe. However ifo(t) approaches zero 107} N
asNg — o« (see the fifth column of Table I) it does so very 5 7 ++
slowly. 107y e
10 P
C. Computational effort . T
107 ¢ Foy
In this paper, the largest number of spins that we simulated 107 ‘ ‘ ‘ ‘ ‘
is N = 34. Using the Chebyshev polynomial algorithm and 0 5 10 15 20 25 30
a large time stept(~ 10m), the N = 34 simulation for the Ng

bottom curves in Fig. 2 (up to a timex 600) took about (B
million core hours on 16384 BG/P (IBM Blue Gene P) pro- _ ) _
cessors, using 1024 GB of memory. Similarly, it took about 4FI1G. 6. (Color online) Differencédo between the time-averaged

o - P values ofa(t) for the initial stateUDUDY and “X” of the whole
glgh%?n(é?rs ggg(r)s) to complete thé = 34 curve in Fig. 3 (up system (see Table I) as a function of the size of the environide.

Pluses: case I; circles: case Il. The dotted line is a lin¢do fihe
data (pluses) for theDUDY initial state, excluding the first three
data points, resulting iAo = 0.049//Dg.

D. Summary: initial state dependence

For an initial state X” of the whole system the scaling of, evolution of the decoherence of a system coupled to an envi-
as given by Eq. (8), works extremely well for both case | andronment. In particular, for case Il, starting from a staxé the
case |l, as seenin Fig. 2. When the initial statd BUDY, we  time-averaged values af(t) scale a® ~ 1//Dg, but such
can understand the very different behavior of cases | and ligscaling is not observed for starting from a stdteU DY.
see Figs. 3 and 4, by considering the stationary statesrtat a From Table |, it is seen that the values@for case | with
obtained. Figure 5 shows that the final values (if) forcase | the initial statdJDUDY are always slightly larger than those
are very close for both initial stateX" and UDUDY. This  with the initial state X”. Therefore, it is interesting to exam-
suggests that the final stationary state in case | has propdne the differencé\o between the values @ for the initial
ties similar to those of a stateX”, and hence case | obeys statedJDUDY and “X”. Figure 6 shows thaf\g for case |
the scaling property of Eq. (8) to a good approximation. The(red pluses) also scales a4/Dg (dotted line), except for the
time-averaged values @f(t) in Figs. 2, 3 and 4, denoted by first three data points, which is probably due to large fluctua
0, are listed in Table I. From Table I, we see that the valuegions in the calculations for these small system sizes. &her
of o for case Il with an initial staté DUDY are very dif- fore, the dynamics of case | will drive the system to a state
ferent from those with an initial statex”, and do not show “X” only when the environment approaches infinity. Figure 6
the scaling property of Eq. (8). Thus, the numerical resultsalso shows thaAo for case Il (circles) is almost constant for
suggest that the initial state and the randomness of the intesystem sized ranging from 16 to 34. Hence, it is unlikely
action strengths play a very important role in the dynamicathat case Il with the initial stated DUDY will decohere, even



adding more and more SWBs Hx speeds up the decoher-
ence process and that the final valueagf) corresponds to
the one given by Eg. (8). As seen in the inset, adding SWBs

TABLE I. The time average of(t) in the stationary regime shown
in Figs. 2, 3and 4.

prediction case | case Il to He has no noticeable effect on the early time behavior of
Ne| ofEq.(8) | uDUDY “X” UDUDY “X” of(t).
2| 3397x10t| 3416x10! 3375x10°? 3.334x 107 Adding SWBs exclusively toHsg speeds up the deco-
4| 1708x101| 1746x10°! 1727x101 1711x10°* herence process even further and even at early times clear
6| 8554x107| 8.834x107 8536x10°7 8.492x 102 changes ino(t) can be observed (see Figs. 7b, c). For spin
8| 4279x10°%| 4508x10°% 4.282x10°* 4265x10%  configurations withk = 1, o(t) reaches the value given by
10| 2139x107%) 2206x10°% 2153x 1077 2121x10%  pq (g) for sufficiently long times, as can be seen from Fig. 7b

12| 1.070x10°2| 1.149x10°2 1.071x102| 1.254x102 1.061x 102 . . ) ;
However, for configurations witK = 2 (see Fig. 7¢) oK > 2
14| 5349x10°3| 5795x10°3 5357x103| 6.756x10°% 5.346x 103 ’ 9 ( g. 7c) oK >

16| 2674x10°3| 2866x10°3 2678x10°3| 3.997x10°3 2.663x 1073 (results not showny (t) does not obey the scaling property

18| 1.337x107%| 1430x1073 1349x107°| 2694x 1073 1.343x107° Eq. (8). Restoring this scaling property seems to require
20| 6686x104| 7.065x104 6736x10-%| 2204x10-° 6.641x 10-* an environment that is much more complex than the one-
22| 3343x10%| 3542x10% 3.352x10°4| 1.909x10°% 3.347x104 dimensional one as indicated by Fig. 7d in which we present
24| 1672x10°*| 1766x10" 1674x10°*| 1722x10°° 1658x10* simulation results for the case that SWBs between all non-

26| 8358x10°°| 9.005x10° 8368x10°°| 1.599x10°° 8.283x10° neighboring environment Spins have been added.
28| 4.179x10°°| 4551x10°° 4.151x10°| 1.481x10°% 4.176x10°

30| 2.089x10°5| 2338x10° 2107x10°| 1.379x10°% 2104x10°

B. Case ll and SWBs

if the simulations could be performed for much longer times  q; case II, isotropic SWBs are addedHeg or/andHe.
and for larger system sizes. From Fig. 8, it is clear that even for long times none of the
curves approach the dotted horizontal line, the value ©f
for an initial state X”. Adding SWBs exclusively tddg does
IV. CONNECTIVITY: RING WITH SMALL WORLD not have a dramatic effect an(t) and has very little effect at
BONDS early times (see Fig. 8a).
Just as for case |, it is seen that adding a few SWBs ex-
We investigate the effects of adding small world bondsclusively toHsg for a spin configuration withk = 1 signif-
(SWBs) to the Hamiltoniandsg or/andHe for both case land  icantly decreases the time to approach the steady state, and
case Il (see Fig. 1). To analyze the addition of SWBBi§g¢  that the SWBs irHsg also lead to a decrease ant) for a
we distinguish between spin systems with< 2 andK > 2,  fixed time even at early times (see Fig. 8b). For spin con-
whereK denotes the maximum number of subsystem spingigurations withK = 2 case | and case Il seem to have simi-
that are connected via SWBs with one environment spin. Thitar decoherence properties if SWBs are added exclusively to
distinction is motivated by the distinct decoherence cti@ra  Hgg, as seen by comparing Fig. 7c and Fig. 8c. However, con-
istics for systems withk < 2 andK > 2 for case | (see next necting in addition each pair of non-neighboring environme
subsection). An example of a spin configuration Wwith=2  spins by isotropic SWBs drives the curves very far away from
is shown in Fig. 1. In particular, we are interested in whethe the value ofo (t) for an initial state X” (see Fig. 8d).
systems with SWBs will exhibit the same scaling, and whether
they will decohere from an initial state faster than eithfehe
cases studied thus far. The addition of many SWBs changes C. Summary: SWBs
the graph from a one-dimensional ring to a graph with equal

bono! I_epgths that can only be embedded in high d_imensions. Adding SWBs toHsg or/and toHe changes the rate of de-

The initial states are alway$DUDY. Furthermore, in order .,perence as seen by the approach to the asymptotic value for

not to change too many parameters simultaneously we start a&(t). In case II, adding isotropic SWBs tdsg or He effec-

simulations from the same staté™of the environment. Fur-_ tively alters some spin-spin correlations leading to a e&se

thermore, after choosing the random location (and couplingj,, the steady-state value af(t). However, this decrease is

Q% andA? for case I) of the first SWB we preserve this bond o+ g fficient to reach the steady-state value (f that com-

when adding additional SWBs. We will see that case | and,jies with the prediction Eq. (8). Adding isotropic SWBs to

case Il still behave very differently. Hse and connecting in addition each pair of non-neighboring
environment spins by isotropic SWBs drives the curves very
far away from the value ofi(t) for an initial state X”, even

A. Caseland SWBs much further away than the steady-state value for a ring-with
out SWBs. In contrast to case | systems vidtkc 2 andK > 2
For investigating the universality of the final valueaft) do not behave significantly different.

we add SWBs (random couplings in the inter{aD.2,0.2]) Comparing case Il with case | fdk < 2, we conclude

in the HamiltoniarHsg or/andHg for case |, and perform sim-  that without introducing the randomness in they, z com-

ulations forN = 24 with Ns = 4. From Fig. 7a, we see that ponents of the spin-spin couplings, the dynamics canne¢dri
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FIG. 7. (Color online) Simulation results @f(t) for case | withN = 24 andNs = 4 with SWBs added. The initial state isDUDY. The
dotted horizontal line represents the value of Eq. (8). Rdid &ne: ring without SWBs. (a) Randomly added SWBs between-neighboring
environment spins. Green long-dashed line: one SWB; ordogied line: two SWBs; purple short-dashed line: four SWise dotted-
dashed line: eight SWBs. (b) Randomly added SWBs betweesygtem and environment spins such tkat 1. Green long-dashed line:
one SWB; orange dotted line: two SWBSs; purple short-dasimed four SWBs; blue dotted-dashed line: eight SWBs. (c)d®anly added
SWBs between the system and environment spins sucKtha?. Green long-dashed line: two SWBs; orange dotted lina: 8WBs; purple
short-dashed line: six SWBs; blue dotted-dashed line:tesykBs. (d) Same as (c) except that each pair of non-neighdp@mvironment

spins is connected by a SWB. Insets: time evolution for stimes.

the system to decoherence if the initial state is differeonf

a state X”. Increasing the complexity of the environment by
adding isotropic SWBs between all non-neighboring environ
ment spins does not help in this respect, even on the Contrarpfredicted by Eq. (8) is confirmed both for case | and case I

However, for case | and configurations wikh> 2, increasing

V. RANDOMNESS IN THE ENVIRONMENT

Section Il A shows that for the initial stateX” the scaling

(see Fig. 2). However, section 111 B shows that starting from

the complexity of the environment by adding SWBs betweenye jnitial state) DUDY this scaling is approached ag\tDg
all pairs of non-neighboring environment spins allows the d {5, case | (see Figs. 3 and 6) but not for case Il (see Figs. 4

namics to drive the system to decoherence.

For both case | and case Il, adding SWBsHge andHg

and 6). Section IV shows that adding SWBs in case Il does not
significantly change the long-time behavioraft) approach-

ing the predicted value of Eq. (8). Therefore the naturakgue
tion to ask is how much randomness is requiredddr) to
obey the scaling relation Eq. (8). To answer this questian, w
start from the isotropic Heisenberg ring (case Il) and repla
the interaction strengths of a few randomly chosen bonds by

separately speeds up the decoherence in that it evolves mdi@ndomQf; (see Eq. (10)).

quickly to a stationary state. The asymptotic value dit)
is approached much faster when adding SWBddpinstead

of Hg, and the SWBs iHsg also affecta(t) at early times.

Thus a random SWB coupling to the system kg is the
most effective way to decrease the time for decoherence.

Figure 9 presents the simulation results &) by intro-
ducing 1, 2, 4, 6 and 8 random bonds in the environment
HamiltonianHg of Eq. (10). The interaction strengtlﬁlﬁj
of these randomly selected bonds are drawn randomly from
a uniform distribution in[—0.2,0.2]. Furthermore, the ran-
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FIG. 8. (Color online) Simulation results of(t) for case Il withN = 26 andNs = 4 with isotropic SWBs added. The initial statdd®UDY..
The dotted horizontal line represents the value of Eq. (8d Bolid line: ring without SWBs. (a) Randomly added SWBsween non-
neighboring environment spins. Green long-dashed line:3WBs; orange dotted line: four SWBs; purple short-dasimed §ix SWBs; blue
dotted-dashed line: eight SWBs. (b) Randomly chosen SWBgdam the system and environment spins suchkhatl. Green long-dashed
line: two SWBs; orange dotted line: four SWBs; purple shdashed line: six SWBs; blue dotted-dashed line: eight SWBsRandomly
chosen SWBs between the system and environment spins satdd th 2. Green long-dashed line: two SWBs; orange dotted liner fou
SWBSs; purple short-dashed line: six SWBs; blue dotted-elddime: eight SWBs. (d) Same as (c) except that each pairmietghboring
environment spins is connected by a SWB. Insets: time geoldior short times.

domly selected bond for the case with 1 random bond is alsof the random positions for a large number of random bonds
a random bond for the case with 2 and more randomly choseinclude the same positions and strengths as for a smaller num
bonds, thereby not changing too many parameters at a timéer of random bonds. Furthermore, the same initial stéte “
Simulations up to time = 6000 show that introducing 4, 6 of the environment is chosen for all simulations. We stud-
and 8 random bonds leads the system to relax to the predictéeld the effect of varying the positions of the randomly chrose
value ofo (see Eq. (8)). For times up to= 6000 the effect of bonds and of different initial state¥™ for the environment
one or two random bonds is not apparent. Therefore for thesier a couple systems and did not find significant changes in
two cases we performed extremely long runs as shown in theur observations.

inset of Fig. 9. The inset shows that even one random bond Figure 10 presents the results of the time evolution of the
suffices to recover the asymptotic value Eq. (8). However the g P

time scale to reach the asymptotic valuesoéan become ex- absolute valuep;j| of the individual components of the re-

: uced density matrix. For completeness we show both the
tremely long. We leave the question of how fast the approac iaconal components and the off-diagonal components. Eia-
to the predicted value af is for future study. 9 P 9 b - 719

ure 10 shows that most of the 120 off-diagonal components
For understanding the behavior@ft) in case Il with ran-  quickly relax to a small value (114 black lines in Fig. 10 (b)-
domness, we investigate the individual components of the reg(e)). The slowest decayingj| are plotted in red. There are
duced density matrix for the ring system. We study the six such components. In the steady staté@j| oscillate but
addition of one, two, up to eight randomly replaced bonds irhave nearly the same time-averaged value, in agreement with
the environment. Recall that once the position for one remdo the mean-field-type argument given in Appendix B. Thus,
bond is chosen, this is also one of the random bonds wheanly a few|p;;| are responsible for the lack of scalingmfin
there are two or more random bonds. Similarly, the locationgase Il when starting from the initial stdteEDU DY, and also
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FIG. 9. (Color online) Simulation results of(t) obtained by selec- 10t
tively replacing isotropic spin-spin interactions in tieigonment by b © - ®
random bonds. The size of the system and whole systeisted S0 R
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results for one and two random bonds for long times.
FIG. 10. (Color online) Time evolution of the componepis of the
reduced density matrix of the system with= 26 andNs = 4. The

Eq. (8) ofo(t) in the case that there are one or two random(©): 4 (d). 6 (€) and 8 (f) random bonds are introducediin Blue
bonds lines: diagonal componeni®; |; red lines: all 6 slowly decaying

components fofg;j| for one random bond; black lines: all other 114
off-diagonal components;; |.

VI. CONCLUSIONS AND DISCUSSION

The main theoretical result of the current paper is Eq. (8) fo diagonal elements obey a scaling relation, although ardiffie
the decoherence of a quantum systeooupled to a quantum one.
environmenE&. For studying decoherence we examing), Therefore as long as the dynamics drives the initial state to
which is the square root of the sum of all the off-diagonala state Z” which has similar properties a<” the scaling re-
elements of the reduced density matpixor Sin the basis lation Eq. (12) should hold. The next step is to examine under
that diagonalizes the Hamiltoniiy of the systens. We find ~ what conditions our test quantum model is driven to the state

(see also Eq. (8)) that “Z", and study the time scale needed to relax from an initial
state to the statez”. For the one-dimensional quantum spin-

o~ 1 (1_ i) (12) 1/2 ring we find that homogeneous couplings do not lead to
V2Dg 2Ds )’ an evolution to the stateZ” (Fig. 4), and hence the scaling

as 1/y/Dg is not observed. This conclusion is not modified
where the reduced density matpxfor Sis aDs x Ds matrix  if some randomly chosen homogeneous small world bonds
while the density matrix of the whole systeé8-EisaD xD  are added (Fig. 8). Also systems with random couplings and
matrix with D = DsDe. ThusDg does not have to be very random small world bonds between system and environment
large in order for the predicted scaling to hold, in partgcul spins such that the maximum number of system spins that in-
the scaling requireBg > 1> Dgl. In addition the scaling teract with one environment spin is two or larger do not egolv
requires thaS+ E is driven from an initial wave function to- to a state “Z” (Fig. 7c). In this case, the environment reggiir
ward a steady state which is well described by a state whiclh more complex connectivity than the simple one-dimensiona
we called X”. one in order to observe the scaling as/Dg (Fig. 7d). There-

We have performed large-scale real-time simulations of théore, although we find that some randomness in the interactio
time-dependent Schrodinger equationfgrspins in the sys-  strengths irE or betweerS andE the dynamics is very im-
tem and\e spins in the environment. We have simulated spin-portant to drive the whole system toward the staté s seen
1/2 systems wittN = Ns+ Ng up toN = 34, allwithNs=4.  in Figs. 3, 5, 7a,b, and 9 it is not always sufficient. Moreover
Starting from a stateX” for S+ E the simulations agree very it may take a long time to evolve toward the staf8 If there
well with the scaling prediction Eq. (12), as shown in Fig. 2.is only a little randomness (Fig. 9) or if the environménis
In Appendix C we demonstrate that in this case not only thdarge (theN = 34 results of Fig. 3). The long time that may
off-diagonal elements gb obey a scaling relation but also its be required to approach the sta#® s due to only a few off-
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diagonal elements @b, as seen in Fig. 10. We find that the = The scaling of Eq. (12) can be contrasted with the pre-
approach to the statZ" can be sped up by adding random- dicted scaling of the Hilbert space variant of a whole sys-
ness tce (Figs. 9 and 10). tem which should be proportional {® + 1)~ for the ex-

What do our results say about the approach to the quarpectation value of a local operator [31]. The results of the
tum canonical ensemble? The canonical ensemble is given lgurrent research are also relevant for methodologies far me
the diagonal elements of the reduced density mairikthe  suring finite-temperature dynamical correlations [32hwitt
off-diagonal elements (as measureddyy)) can be neglected performing the complete TDSE evolution of the whole sys-
[1, 17]. As long as has a finite Hilbert spadeg our scaling  tem.
results can be used to argue that in a strict sense, the systemwe leave as future work the coupling between a system
will not be in the canonical state unleBg — «. However, if  composed of spin-2 objects (qubits) and an environmént
the canonical distribution is to be a good approximation forcomposed of harmonic oscillators. In particular, we have re
some temperatur€g up to some chosen maximum energy cently been able to build on exact calculations of a singiie sp
Enoid > 0, then this requires that exp Enoia/ksT) > o which  coupled to specific types of spin environment [33] to devise
gives for our spin-12 systemkgT > 2Enoiq/ [NeIN(2)]. For  an algorithm that does not have computer memory constraints
this argument to hold in the canonical distribution the gieer  limited by the size oDg [34, 35]. We are working to extend
are taken to be positive values above the ground state energpiis algorithm to other types of environment and for moretha
This lack of thermalization at low temperatures for sma#l-sy one spin in the systei@
tems is supported by simulations in Ref. [17].

What do our results say about trying to prolong the time
to decoherence in order to build practical quantum enaoypti
or quantum computational devices? The important thing is
to ensure that the system is not driven toward the state “
or at least that it takes a very long time to approach the state For comparison of the scaling of(t) for the cases with and
“Z”. This can be achieved by changing the Hamiltonian ofwithout an environment, we derive the scaling for the case of
the systemH = Hs+ He + Hsg, such that it has very small no environment. In the energy basisof the (system, which
randomness particularly in the coupling between the systerig now the whole system) Hamiltonias, the density matrix
and the environmentise. Alternatively extrapolating from has elements
Fig. 10 if one can devise an experimental procedure, for ex-
ample a time-dependent procedure, to keep even a few of the pij(t) =c¢ (t)c}L(t) ) (A1)
off-diagonal elements gb large then the scaling prediction
Eq. (12) for the decoherence can be avoided, at least for re&Ve use from Ref. [19] the equations (A.12) and (A.23). The
sonable timescales. expectation value is

Appendix A: Scaling without an environment

Dg Ds ) Ds Ds 2
E (202) =E <IZ“; |ci(t)ci(t)| ) = i;;E (’Ci (t)c(t)| )

o . ! 2 ) 2 1 2 o Ds—l
— Ds(Ds 1)E(|c.(t)| Ici(t)] )_1 Bori= borl (A2)
The final scaling result for the quantigythat we measure is
1 1 /Ds—-1 1 1 1 1 3
o~ —=/E(20?) =~/ 22— ="~ — + — + + e A3
VaVEB) = 5\ Ber1™ V2 Vabs " 2vaDE /208 BvaDt (A3)
|
Therefore without an environmerd, approaches a constant Appendix B: Mean-field-like reduced density matrix

as the size of the system (which is the whole system) grows.
This also means that for the statX™ if all off-diagonal _ _
elements are the same they will have a Sizdmjf(t)‘z — We make a connection betweenand the quantum purity

1/Ds(Ds— 1) ~ 1/D% while if all the diagonal elements are & = Tr ((ﬁ)z)- We assume a ‘mean-field-type’ structure for

equal (corresponding to infinite temperatum)(t)|> = 1/Ds  the reduced density matrix, namely we assume that all off-
since Trp(t) = 1. We have performed simulations (results notdiagonal elements have the same size|n our simulations
shown) to ensure that for the case without an environraent we find that in the energy basis the imaginary part of the off-
obeys the scaling relation of Eq. (A3) and it does. diagonal elements are very small, which validates our Hypot
esis. However, the signs of the real part of the off-diagonal
elements are not the same, which brings into question our
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‘mean-field-like’ assumption. Nevertheless, we make the as

sumption that .
10" @
202 )
E=| ——~. B1 - ®
Ds(Ds—1) (B1) 10% | .
We introduce the matrix) with all its elements having the ©o0et
value 1, the matriD which is the diagonal matrix composed
of the diagonal elements @f, and the identity matrix. Note 10| .
thatJ? = DsJ. The ‘mean-field-type’ assumption then reads “@.,_.
R ®
p=D+el—cel, (B2) 10° | ‘ ‘ ‘ ‘ S
5 10 15 20 25 30 35

which as seen from the graphs in Fig. 10 should be a reason-
able assumption in the steady state regime. We will use the
relationships

N

FIG. 11. Simulation results for the time-averaged vaduef o(t)

Tr(D) =1, (see Eqg. (C1)) for case | (bullets) and case Il (squares)iffarent
( 2) <1, sizesN of the whole system. The initial state of the whole system is
Tr(1) =Tr(J) = Ds, “X” (see text). The dotted line is/3/2N.
Tr(DJ) Tr(JD) =1,
Tr(J%) = D3, (B3)

with the first relationship being a consequence of the tréce owhere 3 = 1/kgT with T denoting the temperature arkg
a density matrix being equal to unity. Then one has that Boltzmann’s constant, which is taken to be one in this paper,

P —Tr ([J ) and whereg;'s denote the eigenvaluesldg [16, 17]. The dif-
ference between the diagonal elemegitét) and the canoni-
=Tr ( D+el—el) ) cal distribution is conveniently characterized by
=Tr(D?— 2eD + €%l +eDJ + £JD — 262) + £2J%)
_ 2
=Tr(D?) + 202 . os o 2
— Tr (DZ) + B D_S 6(t) = i; pii (t) - eib(t)Ei/izieib(t)Ei ’ (Cl)
De + D_S - -
=Tr(D?)
1 1 1 1 with a fitting inverse temperature
— (1= 4+ —=+]. B4
JrDE ( Ds DEDS+DED§+ > (B4)

In the canonical ensemble the diagonal elements of the re-

duced density matrix are related to the terms in the canbnica (t)=

partition function, in particulap; = e P& /Z [16, 17]. There-

fore we have a connection between the quantum p@tgnd

how close the system is to a canonical ensemble. In the steadfithe system relaxes to its canonical distribution b&(t) and

state this difference is of the order of . o(t) are expected to vanish(t) converging to the effective
With the same ‘mean-field-like’ assumption forin the  inverse temperatute

steady state one can look at corrections to the von Neumann o hymerical simulations of which we present the results

entropy of the systemy” = —Tr (pInp). However, we do not ¢, resond to those used to make Fig. 2. The initial state for

find the final result too enlightening. those simulations isX”. We analyze the diagonal elements,

instead of the off-diagonal elements, of the reduced dgnsit

matrix and calculate the quantid(t). In Fig. 11, we present

the time-averaged valu® of 5(t) for each system size. It is

interesting to see that the quantyalso has a kind of scaling

ghroperty. As the whole system sidkincreasesy decreases

YicjEzg, INGi(t) — Inpj; (1) /(B — Ei)
YicjEzE 1 :

(C2)

Appendix C: Diagonal elements of the reduced density matrix

In the main text, we investigated the scaling property of the
off-diagonal elements of the reduced density matrix of a sys
tem coupled to an environment. For being complete in théS YD, whereD = 2V,
contents, we present some numerical and analytical results In fact the fitting inverse temperatubgt) is very close to
concerning the diagonal elements. zero for reasonably largee (data not shown). The canonical

In general, based on the fact that the system decoheres, idistribution ofSatb = 0 is represented by a diagonal density
the off-diagonal elements of the reduced density matrix apmatrix with elements ADs, whereDs = 2"s. Then, we are
proach zero, we expect that the diagonal elements take (apble to derive the scaling property féras we did to obtain
proach to) the form of the canonical distribution eéxBE;) Eq. (7). The expectation value éfis given by
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w-e(35ac 2 )-5 5 e(antion)- 2
E(8%) =E f Cip——| | = E(|Co/’|Cpl’) - =
i; leCl,p P Ds i;p:%’:l P " Ds
Ds Dg 1
e 1-5,y)E CLZCL/2+6‘/E Ci‘4 - =
ép_l,%_l(( o0) E (|Cipl (G ) +80E (IGi0l") ) ~ B
Ds  De 1 2 1
- i; pl,zpfl<(1_ %) D(D+1) +5""’D(D+1>) " Ds
_De+l 1 Ds-1
" D+1 Dsg Dsg D+1° (©3)
|
From Eq. (C3), we havé ~ 1/\/5 for Ds > 1 andDg > 1. ACKNOWLEDGEMENTS
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