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The electric dipole moments of various neutral elementary particles, such as neutron, neutrinos,
certain hypothetical dark matter particles and others, are predicted to exist by the standard model
of high energy physics and various extensions of it. However, the predicted values are beyond the
present experimental capabilities. We propose to simulate and emulate the electric dipole moment of
neutral relativistic particles and the ensuing effects in the presence of electrostatic field by emulation
of an extended Dirac equation in ion traps.
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Recently, the field of quantum simulations of physical
systems in ion traps has gained momentum including the
simulation of relativistic systems. Proposals have been
put forward for simulation of the free Dirac equation [1],
the Dirac oscillator [2], the 1D Dirac equation with vari-
ous Poincare invariant potentials [3], relativistic Landau
levels [4], the Majorana equation [5], and various quan-
tum field theories [6]. The goal of these simulations have
been to experimentally observe analogs of long predicted
but never measured effects like Zitterbewegung [7], the
Klein paradox [8] and the Unruh effect [9, 10]. Exper-
imental simulation has already been demonstrated for
Zitterbewegung in the 1D free Dirac equation [7], and
the Klein paradox in a linear potential [8]. Simulation
of other intriguing effects like cosmological particle cre-
ation [11], cosmological expansion [12], spin and flavor
of quarks [13], neutrino oscillations [14], etc. has been
proposed as well.

In this paper, we propose the simulation of a neutral
relativistic particle with an intrinsic electric dipole mo-
ment (EDM) by means of the Dirac equation. This al-
lows to experimentally emulate the behavior of EDM in
an electrostatic field and two ensuing effects, which have
not been measured so far: (i) lifting of spin degeneracy
by an electrostatic field, and (ii) Larmor-like precession
of a particle spin in an electrostatic field. In addition we
explore a few relativistic properties of these effects and
propose their emulation with trapped ions.

The standard model of particle physics as well as all
SUSY models predict that elementary particles should
possess an EDM aligned with the spin of the particle.
There are certain models where dark matter is thought
to consist of electrically neutral relativistic particles pos-
sessing EDM and/or magnetic dipole moment (MDM)
[15]. Mechanisms violating CP symmetry in the stan-
dard model are responsible for the generation of EDM of
elementary particles with predicted values dn ∼ 10−32e
cm for the neutron and de < 10−33e cm for the elec-
tron [16]. The SUSY models, which address some of the
shortcomings of the standard model, predict much larger
values for the EDM of elementary particles: de < 10−26e
cm and 10−28 < dn < 10−25e cm [17].

The experimental search for the EDM of the neutron,

whose neutral charge makes it most suitable for EDM
measurement, has been initiated some 60 years ago by
Smith, Purcell and Ramsey [18]. Decades of effort have
also been dedicated to the measurement of the electron
EDM. A long line of experiments spanning over 60 years
have set only upper limits for the EDM’s [19, 20]: |de| <
1.05× 10−27e cm and |dn| < 2.9× 10−26e cm.

Presently, research on quantum simulation concen-
trates mainly on (i) proof-of-principle tests with a few
particles, or (ii) large-scale experiments with ultracold
atoms. Each of these approaches offers benefits and
drawbacks. Large systems of ultracold atoms can be
quite beneficial when considering the scalability of the
quantum simulator, but experimental control is enor-
mously challenging. In quantum simulations involving
a small number of particles, such as with ion trap sim-
ulators, it is possible to have high-fidelity initialization,
manipulations and read-out. It is therefore natural to
use the latter to construct the basic building blocks of
quantum simulators. Until now, experiments focused on
simulating small, specific quantum simulations that are
readily implemented with trapped ions. To this end, the
emulation of the electric dipole moment of neutral parti-
cles proposed here belongs to this direction of research.
Moreover, it is a pre-requisite of the simulation of the
intriguing effects of lifting of spin splitting by an electro-
static field and Larmor-like precession of a particle spin
in an electrostatic field.

The Dirac Hamiltonian for a neutral particle with elec-
tric dipole and magnetic moments in an external electro-
magnetic field is given by [21]

Ĥ = cα̂·p̂+ β̂mc2 + da(iβ̂α̂·Bc+ 2β̂Ŝ ·E) +

+ µa(iβ̂α̂·E/c− 2β̂Ŝ ·B) , (1)

where c is the speed of light, m is the particle mass, α̂

and β̂ are the Dirac matrices, Ŝ = − i
4 α̂× α̂ is the spin

vector operator in relativistic theory, E is the electric
field, B is the magnetic field, da is the electric dipole
moment of the relativistic particle and µa its magnetic
dipole moment. The extended Dirac Hamiltonian (1) is
written in its standard form in the lab reference frame.
For da 6= 0, the Hamiltonian is not invariant with respect
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to space inversion and time reversal [21]. For a neutral
particle, such as neutron, neutrinos or some hypothetical
dark matter particles [15], moving in a constant electro-
static field with respect to the lab reference frame we have
B = 0, which simplifies the Hamiltonian to the block ma-
trix form

Ĥ =

[
mc21̂ + daσ̂ ·E cσ̂ ·p̂+ iµaσ̂ ·E/c
cσ̂ ·p̂− iµaσ̂ ·E/c −mc21̂− daσ̂ ·E

]
, (2)

where σ̂ is a vector of the Pauli matrices and 1̂ is the
2 × 2 identity matrix. In this fully relativistic Hamilto-
nian the term iµaσ̂ ·E/c coupling the magnetic dipole
moment µa to the electrostatic field E in the lab frame
of reference bears some resemblance to the spin-orbit
coupling term which appears in the nonrelativistic limit
of the Dirac equation. Classically the spin-orbit cou-
pling term is induced from the Joules-Bernoulli equa-
tions as proportional to B⊥ ∼ v×E, where v is the
speed of the particle. However the term iµaσ̂ ·E/c from
the fully relativistic Hamiltonian is not the spin-orbit
coupling term which although being relativistic in na-
ture appears in the nonrelativistic Pauli equation. The
eigenvectors of Ĥ are sought in the form of plane waves
|ψl〉 = |l(p)〉e−ip·r/h̄ where |l(p)〉 are four-component
spinors with eigenvalue El. The general solution of the
time-dependent Dirac equation ih̄∂Ψ/∂t = ĤΨ is given
by |Ψ〉 =

∑
l bl|l(p)〉e−i(p·r+Elt)/h̄ where bl are complex-

valued coefficients.
Recently, simulation of the 3D Dirac equation in its

supersymmetric representation without external poten-
tial has been proposed for simulation of Zitterbewegung
of a free electron [1]. Following this work we propose
here how to simulate Eq. (2) in the standard represen-
tation. The simulation of the 3D Dirac equation re-
quires a single ion trapped in a Paul trap, in which the
ion oscillates in the three spatial directions x, y, z with
frequencies νj (j = x, y, z). The Dirac bispinor |l(p)〉
is implemented as a linear combination of four inter-
nal ion levels |a〉, |b〉, |c〉 and |d〉, which represent the
internal degrees of freedom of the relativistic particle:
|l(p)〉 = ua|a〉+ub|b〉+uc|c〉+ud|d〉. The motional degrees
of freedom of the simulated particle can be mapped to the

ion vibrations using the relations p̂j = ih̄(â†j − âj)/(2∆j)

with j = x, y, z, where âj and â†j are the phonon cre-

ation and annihilation operators, ∆j =
√
h̄/2Mνj is the

spread in position of the ground-state wave function and
M is the ion mass[22].

The Hamiltonian (2) can be implemented by simul-
taneous application of detuned red-sideband (Jaynes-
Cummings, JC), blue-sideband (anti-Jaynes-Cummings,
AJC) and carrier interactions between appropriately cho-
sen pairs of the ion levels |a〉, |b〉, |c〉, |d〉. The detuned
JC and AJC Hamiltonians read

ĤJC
j = h̄ηjΩ̃j(σ̂

+âje
iφr + σ̂−â†je

−iφr ) + h̄δj σ̂z, (3a)

ĤAJC
j = h̄ηjΩ̃j(σ̂

+â+
j e

iφb + σ̂−âje
−iφb) + h̄δj σ̂z, (3b)

where φr and φb are the red- and blue-sideband phases,

δj is the detuning, Ω̃j are the Rabi frequencies, σ̂+ and
σ̂− are the raising and lowering operators between two
pairs of internal ion levels and ηj = k

√
h̄/2Mνj is the

Lamb-Dicke parameter, where k is the wavenumber of the
driving field [22]. Homogeneity of space requires to set
the trap frequencies in the three spatial directions equal

to each other νx = νy = νz. This ensures that Ω̃j = Ω̃,
∆j = ∆ and ηj = η for all spatial directions j.

In our proposal the mass term βm0c
2 is implemented

by the Stark shift parts of two JC and two AJC
interactions applied simultaneously on the transitions
|a〉 ↔ |d〉 and |b〉 ↔ |c〉, i.e., we have the map-
ping βm0c

2 → 2h̄δσ̂adz + 2h̄δσ̂bcz . The momentum term

cα · p̂ maps to the three terms 2η∆Ω̃(σ̂adx + σ̂bcx )p̂x,

2η∆Ω̃(σ̂ady − σ̂bcy )p̂y, 2η∆Ω̃(σ̂acx − σ̂bdx )p̂z, where the su-
perscripts in the Pauli matrices indicate the internal ion
levels between which the couplings are applied.

The term describing the interaction between
the EDM and the electrostatic field 2daβŜ ·E in
the Dirac Hamiltonian (1) is implemented by the

carrier interaction Ĥ
c(1)
j = h̄Ω

(1)
j (σ̂+eiφ + σ̂−e−iφ)

with Rabi frequency Ω
(1)
j , using the mapping

2daβŜ ·E → 2h̄Ω(1)[σ̂abx − σ̂cdx , σ̂aby − σ̂cdy , σ̂abz − σ̂cdz ].
The term describing the coupling of the electrostatic
field to the MDM is implemented with the help of carrier

interaction with Rabi frequency Ω
(2)
j , using the mapping

iµaβ̂α̂·E/c→ 2h̄Ω(2)[− ˆσady − σ̂bcy , σ̂bcx − σ̂adx , σ̂bdy − σ̂acy ].
The above terms can be implemented by setting
appropriately the phases of the carrier interactions.
This establishes the following relationship between the
parameters of the Hamiltonian (2) and the trapped ion:

(µa/c)Ej = 2h̄Ω
(2)
j , daEj = 2h̄Ω

(1)
j , (4a)

c = 2η∆Ω̃, mc2 = 2h̄δ. (4b)

While it is possible to implement the Hamiltonian (2) in
supersymmetric representation this has the drawback of
establishing correlation between the sizes of the emulated
mass term and the emulated EDM term. The presented
proposal for emulation of Eq. (2) has the advantage of
independent experimental control of the emulated mass
and the EDM terms.

In order to simplify the experimental requirements we
consider a model which can be regarded as either 1D limit
of Eq. (2) or 3D variant in which the direction of propa-
gation is along the direction of externally applied electric
field. When the external electric field and the direction
of propagation are aligned, no spin-orbit coupling term
can arise due to the invariance of the longitudinal compo-
nents of the electromagnetic field with respect to Lorentz
transformations. The choice of the direction is arbitrary
and does not change the experimental observables. For
the sake of convenience we work with the x-direction.
The model is

Ĥ1D = cαxp̂x+ β̂mc2 +2daβ̂ŜxEx+i(µa/c)β̂α̂xEx . (5)
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Note that the terms 2daβ̂ŜxEx and i(µa/c)β̂α̂xEx are in-
variant with respect to Lorentz boosts in the x-direction
and therefore there is no effective magnetic field seen by
the particle in its stationary reference frame. This is an-

other point which differentiates the i(µa/c)β̂α̂xEx term
from the spin-orbit coupling or v×E term which will dis-
appear in 1D limit. Equation (5) maps to the trapped-ion
Hamiltonian

Ĥ1D = 2η∆Ω̃(σ̂adx + σ̂bcx )p̂x + 2h̄δ(σ̂adz + σ̂bcz ) +

+ 2h̄Ω(1)(σ̂abx − σ̂cdx )− 2h̄Ω(2)(σ̂ady + σ̂bcy ). (6)

The momentum terms and the mass term in Eq. (6) can
be implemented by applying simultaneously two pairs
of detuned AJC and JC interactions on the transitions
|a〉 ↔ |d〉 and |b〉 ↔ |c〉 with φr = 3π/2 and φb = π/2,

2ηΩ̃∆σ̂adx p̂x + 2h̄δσ̂adz = ĤJC,ad
x + ĤAJC,ad

x , (7a)

2ηΩ̃∆σ̂bcx p̂x + 2h̄δσ̂bcz = ĤJC,bc
x + ĤAJC,bc

x , (7b)

with δx = δ. The implementation of the EDM term
2daβŜxEx requires two carrier interactions with Rabi
frequency Ω(1) on the transitions |a〉 ↔ |b〉 and |c〉 ↔ |d〉:
2h̄Ω(1)(σ̂abx − σ̂cdx ) = H

c(1)
ab (φ = 0) + H

c(1)
cd (φ = π).

Using independently and simultaneously two more
carrier interactions with Rabi frequency Ω(2) on
the transitions |a〉 ↔ |d〉 and |b〉 ↔ |c〉, the

MDM term i(µa/c)β̂α̂xEx can be implemented:

−2h̄Ω(2)(σ̂ady + σ̂bcy ) = H
c(2)
ad (φ = π/2) +H

c(2)
bc (φ = π/2).

The presence of the EDM term 2daβŜx ·Ex in the
Hamiltonian (2) causes two interlinked effects. First it
leads to lifting of spin degeneracy in the spectrum of the
Hamiltonian (2), which is caused just by the electrostatic
field. This effect is technically similar to the lifting of
spin degeneracy by a static magnetic field, which under-
pins the anomalous Zeeman and Paschen-Back effects in
atomic physics [24]. This is explained naturally because
the electric dipole moment of any particle is aligned with
its spin. However conceptually it is different from SU(2)
breaking by magnetic field since lifting of spin degener-
acy due to magnetic field involves only the breaking of
time-reversal invariance, while lifting of spin-degeneracy
by EDM – electric field coupling breaks both time and
space reversal symmetries. An alternative explanation
[25] can be sought in the fact that the electric dipole

term 2daβŜx ·Ex breaks the space inversion symmetry
[21] while preserving the translational invariance in an
electrostatic field. The second effect is a consequence of
the first: the precession of EDM and the associated spin
around the electrostatic field, similar to the Larmor pre-
cession of a particle spin around a static magnetic field.

While these two effects can also be modeled within
non-relativistic limit the simulation of the 1D Dirac
equation presents the opportunity to study two unusual
purely relativistic features of spin-splitting by electro-
static field. The first is the disappearance of spin-
splitting when the mass in the Dirac equation tends to

zero. The second is the reduction in the size of the spin-
splitting caused by the coupling of the electrostatic field

to the MDM embodied in the term i(µa/c)β̂α̂xEx. The
mathematical analysis follows.

For a free Dirac Hamiltonian (Ex = 0) the positive

and negative energy eigenvalues E± = ±
√
c2p2

x +m2c4

are doubly degenerate reflecting the spin degeneracy. For
a nonzero electrostatic field (Ex 6= 0) there is no degen-
eracy in the spectrum of the Hamiltonian (2),

E↑± = ±
√
c2p2

x + E2
x(µa/c)2 + (mc2 + Exda)2, (8a)

E↓± = ±
√
c2p2

x + E2
x(µa/c)2 + (mc2 − Exda)2. (8b)

The splitting ∆E = E↑+ − E
↓
+ = −(E↑− − E

↓
−) is

∆E =
√
c2p2

x + E2
x(µa/c)2 + (mc2 + Exda)2

−
√
c2p2

x + E2
x(µa/c)2 + (mc2 − Exda)2. (9)

First, in the limit m = 0 the spin splitting vanishes,
∆E = 0, despite the fact that the EDM and electro-
static field are nonzero. This is in stark contrast to non-
relativistic model where the spin-splitting does not de-
pend in any way on the mass term. Second, the term

i(µa/c)β̂α̂xEx does not lead to lifting of the degeneracy
as ∆E = 0 for da = 0 and µa 6= 0 and Ex 6= 0 by it-
self. Estimates of the EDM and MDM of several electri-
cally neutral particles show that mc2 � Exda, (µa/c)Ex.
Expanding Eq. (9) in Taylor series with respect to the
small variable (µa/c)Ex and making the approximations

E↑+ ∼ E↓+ ∼ mc2 we get for the energy splitting to

second order ∆E ≈ 2Exda − (µa)2E2
x

c2
1

m2c4 daEx. There-

fore the effect of the term i(µa/c)β̂α̂xEx is to decrease
the energy splitting caused by the EDM – Ex coupling

term. This consequence of i(µa/c)β̂α̂xEx again stresses
its distinction from the spin-orbit coupling term which
has the completely different effect to lift spin-degeneracy
by itself and thus to increase the size of spin-splitting
on top of of this from the EDM-Ex coupling. Further-
more again the mass of the particle m plays role in
the spin-splitting by being one of the determinants of
its splitting. The amount of the decrease of ∆E due
to the MDM – Ex coupling term depends on the ratio

λ =
(

(µa/c)Ex

mc2

)2

. For practically achievable strengths of

Ex, λ < 10−30, thus for conventional experimental setups
its effect can be neglected and the energy splitting can
be written in the form ∆E =

√
c2p2

x + (mc2 + Exda)2 −√
c2p2

x + (mc2 − Exda)2. However the effect of

i(µa/c)β̂α̂xEx on ∆E can be emulated and explored in
an ion trap setup.

When i(µa/c)β̂α̂xEx is neglected, the eigenspinors

corresponding to E↓± and E↑± are given by |± ↓〉 =

(v↓±,−v
↓
±,−1, 1)T /N↓± and |± ↑〉 = (v↑±, v

↑
±, 1, 1)T /N↑±,

with N↓± =
√

2 + 2|v↓±|2, N↑± =
√

2 + 2|v↑±|2, v↓± =

w↓ ±
√

1 + w↓2, and v↑± = w↑ ±
√

1 + w↑2, where w↓ =
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(mc2 −Exda)/(cpx) and w↑ = (mc2 +Exda)/(cpx). The

expectation values of the components Ŝy and Ŝz are zero

for all four eigenspinors. The expectation value of Ŝx for
the four-component spinors |± ↑〉 is + 1

2 while the one for

|± ↓〉 is − 1
2 confirming the interpretation of Eqs. (8a)

and (8b) as lifted spin degeneracy.
Consider an initial state which is a lin-

ear combination of positive energy solutions:

|Ψ(t = 0)〉 = e−ipxx/h̄
(
b↑+|+ ↑〉+ b↓+|+ ↓〉

)
. Then

the general solution of the time-dependent prob-
lem will not involve negative energy eigenfunctions:

|Ψ(t)〉 = e−ipxx/h̄
(
b↑+|+ ↑〉e−

i
h̄E

↑
+t + b↓+|+ ↓〉e−

i
h̄E

↓
+t
)

.

The expectation value of the spin component Ŝj with
respect to |Ψ(t)〉 is

〈Ŝj(t)〉 = |b↑+|2〈↑ +|Ŝj |+ ↑〉+ |b↓+|2〈↓ +|Ŝj |+ ↓〉+

+ 2Re
[
(b↑+)∗b↓+〈↑ +|Ŝj |+ ↓〉eiωt

]
. (10)

The overall behavior of 〈Ŝ〉 is a precession around Ex
with an angular frequency ω, similar to the Larmor pre-
cession of a spin in an external magnetic field. It is inter-
esting to note that despite using the Dirac 4-component
spinors the resulting behavior is similar to the nonrela-
tivistic case because of the properties of the spin opera-
tors.

The experimental signature of the lifting of spin degen-
eracy by an external electrostatic field is the Larmor-like
precession of the spin expectation value. Using the map-
ping between the relativistic particle and the ion trap
parameters the simulated precession frequency becomes

ω = 2

√
η2∆2Ω̃2p2

x/h̄
2 + (δ + Ω(1))2

− 2

√
η2∆2Ω̃2p2

x/h̄
2 + (δ − Ω(1))2. (11)

The simulation requires initialization of the trapped

ion in state |Ψ(t = 0)〉 = e−ipxx/h̄(b↑+|+ ↑〉 + b↓+|+ ↓〉).
The construction of the initial state can be done using
the same toolbox which is employed for the simulation
of the Hamiltonian (6) [7]. The system should first be
cooled to its ground state. Then the motional degrees
of freedom should be excited representing certain val-
ues of the simulated momentum through the relationship
p̂x = ih̄(â†x− âx)/(2∆x). Then using combination of car-
rier interactions with appropriate timing for the desired

values of the parameters Ω, η,∆, Ω̃, δ one can populate
the four ionic levels with the required probabilities.

The dynamics of the system can be driven by the ap-
plication of the described combination of AJC, JC stem-
ming from a single bichromatic source and carrier inter-
actions will simulate the Dirac Hamiltonian (6). Con-
trolling the transitions between four energy levels is not
trivial, but certainly feasible. Current experiments with
trapped ions involve even more than four levels, for op-
tical pumping, storage, ancillas, ionization etc. [26]. In
the proposed experimental implementation we need two

π π 

σ+ 
σ- 

(1,0) = d 

(1,1) = b 

(2,0) = a 

(2,1) = c 
F = 2 

F = 1 

FIG. 1. Coupling between hyperfine levels of 2s2S1/2 ground

state of 9Be+ in a weak magnetic field implementing the de-
sired dynamics. The energy levels are designated by hori-
zontal lines. Next to the lines the levels are represented by
atomic physics labels (F,MF ) where F is the total angular
momentum and MF is the projection of the angular momen-
tum along the magnetic field axis. The same level scheme can
be used for appropriate isotopes of other alkali-earth ions —
Mg+, Ca+, Sr+, Ba+ — since their level structure is qual-
itatively the same, and the only difference would be in the
transition frequencies.

pairs of JC and AJC fields for the simultaneous imple-
mentation of the momentum and mass term, which cou-
ple levels |a〉 and |d〉, and |b〉 and |c〉. The EDM-E term
is implemented by a pair of carrier interactions on the
transitions |a〉 ↔ |b〉 and |c〉 ↔ |d〉.

There are many possibilities for selection of the exact
transitions, depending on the chosen atomic ion, techni-
cal details and capabilities in different experimental set-
ups. One possibility is to identify the four internal de-
grees of freedom with different hyperfine levels. For ex-
ample one can make the identification |a〉 = |F = 2,m =
0〉, |b〉 = |F = 1,m = 1〉, |c〉 = |F = 2,m = 1〉 and
|d〉 = |F = 1,m = 0〉 as in the case of 9Be+ shown in
Fig. 1. The transitions |a〉 ↔ |d〉 and b〉 ↔ |c〉 can each be
addressed separately by π-polarized detuned bichromatic
field (JC + AJC) with sufficiently different frequencies
due to the difference in the transition frequencies be-
tween |a〉 ↔ |d〉 and |b〉 ↔ |c〉 stemming from the applied
weak magnetic field. The frequency offset can easily be
controlled experimentally. The transitions |a〉 ↔ |b〉 and
|c〉 ↔ |d〉 can be separately addressed by a pair of reso-
nant carrier interactions with the opposite polarizations:
σ+ and σ−. Thus the difference between the frequencies
and polarizations ensures that no unwanted interference
or shifts will be produced if the Zeeman splitting is large
enough.

Because of the multitude of fields needed it is impor-
tant to estimate the induced light shift on a certain tran-
sition by laser fields driving the other transitions. The
magnitude of the light shift is approximately equal to
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Ω2/(2∆), where Ω is the Rabi frequency of the transi-
tion and ∆ is the frequency detuning of the perturbing
field. For such a light shift to be negligible, it is neces-
sary that it must be much less than the Rabi frequency
Ω. The typical values of the Rabi frequency in a linear
Paul trap are of the order of a few hundred kHz because
Ω must be much less than the trap frequency (typically a
few MHz). Of the four different transitions in the exam-
ple in Fig. 1, light shifts have to be accounted for only for
the transitions |a〉 ↔ |d〉 and |b〉 ↔ |c〉, because the other
two transitions |a〉 ↔ |b〉 and |c〉 ↔ |d〉 are driven by
fields of different (circular) polarizations. A back-of-the-
envelope estimate then shows that for a Rabi frequency
of 200 kHz, the light shift will be below 2 kHz if the
Zeeman splitting exceeds 5 MHz.

The dynamics of the system is manifested in a preces-
sion of the emulated relativistic particle spin embodied in
oscillations of the relative phase between the two eigen-
spinors |+ ↑〉 and |+ ↓〉 with frequency ω. The two eigen-
spinors |+ ↑〉 and |+ ↓〉 map to the four internal levels of
the trapped ion and the emulated dynamics of EDM pre-
cession maps to periodic population transfer between the

four internal ion levels with frequency ω = (E↑+−E
↓
+)/h̄.

This frequency ω which is the signature of the emulated
dynamics can be measured by standard ion trap tech-
nology such as an electron shelving from any one of the
internal ion levels.

Supposing a realistic electrostatic field Ex = 10
MV/cm a neutron with experimentally set upper EDM
value of around dn ∼ 10−26e cm will lead to spin-splitting
∆E ∼ 10−19 eV corresponding to precession frequency

of ω = 10−4 Hz; for a neutron with SM predicted EDM
value dn ∼ 10−32e cm the corresponding spin-splitting
∆E ∼ 10−25 eV and ω = 10−10 Hz the precession fre-
quency is so small that it would take of the order of 300
years for one full precession of the spin. These values put
considerable challenge to present and future conventional
experiments. The emulation of the Dirac equation with
the EDM term, Eq. (6), provides the possibility for em-
ulation of the discussed effects, since they allow for em-
ulated precession frequencies in the range ω ∼ 10 − 107

Hz.
In conclusion, we have proposed a scheme for simu-

lating the EDM of neutral relativistic particles within
Dirac theory in ion traps. We have described the lifting
of spin-degeneracy caused by an electrostatic field for a
particle possessing EDM, and the consequent Larmor-
like precession of the particle spin. We have predicted a
few unusual relativistic features of the considered effects
and proposed how they can be emulated in an ion trap.
Furthermore this can serve as a stepping stone towards
more involved experimental studies of the physics of com-
bined space inversion and time-reversal violation as well
as CP-violation. The CP-violation in the effective model
stems partially from the magnetic field in the ion traps,
which breks T-symmetry. The validity of the total CPT
symmetry then requires the breaking of CP symmetry
in such a way as to compensate for the breaking of T-
symmetry. This mechanism is similar to the mechanism
by which while C and P symmetry are separately broken
the combined CP symmetry is preserved.
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