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We consider a quantum-mechanical analysis of spontaneous emission in terms of an effective two-
level system with a vacuum decay rate Γ0 and transition angular frequency ωA. Our analysis is
in principle exact, even though presented as a numerical solution of the time-evolution including
memory effects. The results so obtained are confronted with previous discussions in the literature.
In terms of the dimensionless lifetime τ = tΓ0 of spontaneous emission, we obtain deviations from
exponential decay of the form O(1/τ ) for the decay amplitude as well as the previously obtained
asymptotic behaviors of the form O(1/τ 2) or O(1/τ ln2 τ ) for τ ≫ 1. The actual asymptotic behavior
depends on the adopted regularization procedure as well as on the physical parameters at hand. We
show that for any reasonable range of τ and for a sufficiently large value of the required angular
frequency cut-off ωc of the electro-magnetic fluctuations, i.e. ωc ≫ ωA, one obtains either a O(1/τ )
or a O(1/τ 2) dependence. In the presence of physical boundaries, which can change the decay
rate with many orders of magnitude, the conclusions remains the same after a suitable rescaling of
parameters.

PACS numbers: 03.65.-w, 12.20.Ds, 32.10.-f

I. INTRODUCTION

The development concerning the manipulation of sin-
gle atoms and their interaction with the electro-magnetic
field has reached an impressive state of art in recent years
(see e.g. Refs. [1–4]). Experimental studies have e.g.
shown that artificial atoms can lead to a Lamb shift of
the order of a few percent of the typical emission line
[5]. Rather old issues concerning the necessary deviations
from exponential decay (see e.g. Refs. [6–22]) may there-
fore be confronted with our current theoretical and ex-
perimental understanding of decaying quantum systems.
Concerning experimental studies of deviations from the
conventional exponential decay we notice in particular
the study of decaying τ -leptons [23], the observed de-
viations in quantum-mechanical tunneling processes [24]
and the power-law behavior of the decay at times-scales
larger than twenty lifetimes in dissolved organic mate-
rials [25]. In nuclear physics the decay of thorium has
also been suggested as a potential target for large-time
deviations [26].
In the context elementary particle physics gauge in-

variant definitions of observable quantities are of central
importance and the definition of a the decay width of
an unstable particle is highly non-trivial (see e.g. [27])
in this respect. In studies of a possible proton decay
in Nature the time-dependence of decaying systems may
also play an important role [28]. Recently it has also
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been speculated that a non-exponential decay of slowly
decaying 14C nuclei may be of practical importance in
radio-isotope calibration methods [29].

In the presence of material bodies with non-trivial dis-
persive properties, it has been observed that the decay
time of atoms can be changed by many orders of mag-
nitude (see e.g. Refs. [30–34]), which also has been ob-
served in the laboratory [35–40] in the context of atomic
chips. A natural question to be considered could then
be to what extent deviations from an exponential decay
can be observed. This issue has been addressed in great
detail in the literature in terms of a model of a two-level
system interacting with a continuous number of degrees
of freedom of the electro-magnetic field [41–45]. Such a
model appears to be of relevance in the analysis of the
stability properties of atomic chips when applied to hy-
perfine transitions and, in addition, taking dissipative ef-
fects into account [30–34]. A related and exactly solvable
model of a two-level system, which also leads to devia-
tions from exponential decay, has been discussed in the
context of a model of qubit dephasing (see e.g. [46–48]).

Here we will investigate possible deviations from ex-
ponential decay for, in particular, small and large τ , fol-
lowing the work of Refs.[41, 43, 44]. The role of the
physical parameters at hand will be made explicit and
transparent. Analytical as well as numerical methods
will be employed and will be shown to lead to a consis-
tent picture of the small and large time deviations from
a constant decay rate. The analytical properties of the
Laplace-transformed decay amplitude plays an essential
role in the analysis. It is, of course, well-known that, un-
der various assumptions, one obtains in general a decay
probability which is larger than the conventional expo-
nential decay at sufficiently small decay times τ (for a
review see e.g. [16]) as well as a typical power-law be-
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havior in 1/τ for sufficiently large decay times τ (see e.g.
Refs.[15, 49]). In exactly solvable models one finds, e.g.,
a 1/τ2 (see e.g. Refs. [14, 18]) or a 1/τ3/2 (see e.g. Refs.
[7, 19, 21]) asymptotic behavior in the decay amplitude of
an unstable system. In the model we consider, we obtain
O(1/τ) for the decay amplitude as well as the previously
obtained asymptotic behaviors of the form O(1/τ2) or
O(1/τ ln2 τ) for τ ≫ 1 [41, 43, 44].
The paper is organized as follows. In the next section

we outline the theoretical framework and explicitly verify
unitarity of the two-level system. A regularized version
of the integral equation for the decay amplitude is de-
rived in Section IIIA and exact short-time and long-time
expansions are obtained in Section III B. Laplace tech-
niques are employed in Sections III C and IIID in order
to compare with previous asymptotic expansion results
as given in the literature and the important role of the
regularization procedure made used of is emphasized. Fi-
nal remarks are given in Section IV and various techni-
cal details of some of the calculations are, for the readers
convenience, summarized in Appendixes A, B, and C.

II. GENERAL THEORY

Let us consider a neutral atom at a fixed position rA.
In order to be specific, we will explicitly consider hyper-
fine interactions but the results obtained can easily be
rephrased in terms of electric-dipole interactions. The
magnetic moment of the atom interacts with the quan-
tized magnetic field via a conventional Zeeman coupling.
The total, un-renormalized, Hamiltonian has then the
standard form

H =
∑

α

h̄ωα |α〉〈α|

+

∫

d3r

∫ ∞

0

dω h̄ω f̂
†(r, ω) · f̂ (r, ω) + H ′ , (1)

where the effective interaction part is

H ′ = −
∑

α

∑

β

|α〉〈β| µαβ ·B(rA) . (2)

The Hamiltonian H can be regarded as a low-energy ef-
fective description of a more fundamental and renormal-
izable theory of electro-magnetic processes, i.e. quantum

electrodynamics. Here f̂(r, ω) is an annihilation operator
for the quantized magnetic field, |α〉 denotes the atomic
state and Eα is the corresponding energy. We assume
non-degenerate states, i.e. Eα 6= Eβ for α 6= β. The
magnetic moment of the atom is µαβ = 〈α|µ̂|β〉, where µ̂
is the magnetic moment operator. The magnetic moment
will typically be of the form µαβ = gS〈α|S/h̄|β〉eh̄/2me,
where S/h̄ denotes a dimensionless spin operator and
gS is an appropriate gyro-magnetic factor. The quan-
tized magnetic field B(r) = B

(+)(r) + B
(−)(r) is ex-

pressed in terms of B
(+)(r) = ∇ × A

(+)(r), where

B
(−)(r) = (B(+)(r))†, and where the vector potential

is given by

A
(+)(r) = µ0

∫ ∞

0

dω ′

∫

d3r′ ω′

√

h̄ǫ0
π
ǫI(r′, ω′)

× G(r, r′, ω′) · f̂ (r′, ω′) . (3)

Here the imaginary part of the complex permittivity is
ǫI(r, ω) and obeys the Kramer-Kronig dispersion rela-
tions. The dyadic Green tensor G(r, r ′, ω) is the unique
solution to the Helmholtz equation

−→
∇ ×

−→
∇ ×G(r, r′, ω) −

ω2

c2
ǫ(r, ω)G(r, r′, ω)

= δ(r− r
′)1 , (4)

where the arrow in
−→
∇ denotes a derivation with respect

to the first argument in the dyadic Greens function. Since
the Helmholtz equation is a linear differential equation,
the associated Green’s tensor can be written as a sum
according to

G(r, r′, ω) = G
0(r, r′, ω) +G

S(r, r′, ω) , (5)

where G0(r, r′, ω) represents the contribution of the di-
rect waves from a point-like radiation source in an un-
bounded medium, which is vacuum in our case, and
GS(r, r′, ω) describes the scattering contribution of mul-
tiple reflection waves from the body under consideration.
The presence of the vacuum part G0(r, r′, ω) in Eq.(5)
will in general give rise to divergences. A regulariza-
tion prescription is therefore required. For electric-dipole
transitions it is well-known that it is sufficient to subtract
an energy shift, corresponding to the introduction of a
renormalized mass, which leaves us with a logarithmic de-
pendence of a cut-off frequency. For magnetic transitions
this subtraction procedure is, however, not sufficient as
will we discuss in more detail below. Our strategy is to
allow for a sufficient number of subtractions to generate
a logarithmic cut-off dependence also for magnetic tran-
sitions.
For reason of simplicity, we now limit our attention

to a two-level atom approximation, i.e. an atom with
an excited state and a ground state with the angular
frequency transition ωA ≡ (Ee − Eg)/h̄ > 0. We con-
sider the Hamiltonian in Eq.(1) and apply the well-known
Weisskopf-Wigner theory for the transitions e→ g. The
solution to the time-dependent Schrödinger equation in
the rotating-wave approximation (RWA), i.e. applying
H ′ ≈ HRWA, where

HRWA = −|e〉〈g|µeg ·B
(+)(rA) + h.c. , (6)

is then (ωg ≡ Eg/h̄ and ωe ≡ Ee/h̄)

|ψ(t)〉 = ce(t) e
− iωet |e〉 ⊗ |0〉

+

∫

d3r

∫ ∞

0

dω

3
∑

m=1

× cg(r, ω,m|t) e
− i(ω+ωg)t|g〉 ⊗ |r, ω,m〉 , (7)
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as we have ignored any higher order photon state than
the 0-photon and 1-photon state. Here |e〉 and |g〉 are
the excited state and ground state for the atom, re-
spectively. Furthermore, |0〉 denotes the vacuum of the

electro-magnetic field and |r, ω,m〉 = f̂ †
m(r, ω) |0〉 is a one

photon state. We will restrict ourselves to the initial con-
ditions ce(0) = 1 and cg(r, ω,m|t = 0) = 0. More general
initial conditions will require a more cumbersome analy-
sis and will not be discussed in the present paper. The
probability amplitudes ce(t) and cg(r, ω,m|t) must now
obey the unitarity condition

|ce(t)|
2 +

∫

d3r

∫ ∞

0

dω

3
∑

m=1

|cg(r, ω,m|t)|
2 = 1 . (8)

The probability amplitude for the excited atomic state
ce(t) is then determined by (see e.g. Refs.[50, 51])

dce(t)

dt
=

∫ t

0

dt ′ K(t− t ′) ce(t
′) , (9)

where the un-regularized kernel K(t) is

K(t) = −
1

2 π

∫ ∞

0

dω e− i(ω−ωA)tΓ(rA, ω) . (10)

Here we have made use of the conventional spin-flip decay
rate for spontaneous emission as given by

Γ(r, ω) =
2µ0

h̄
µeg · Im[

−→
∇ ×G(r, r, ω)×

←−
∇] · µge , (11)

where the arrow in
←−
∇ now denotes a derivation with re-

spect to the second argument in the dyadic Greens func-
tion. Below we will also make use of the expression

cg(r, ω,m|t) =
i

c
ω

√

µ0εI(r, ω)

πh̄
×

[

µ∗
ge ·
(

−→
∇ ×G

∗(rA, r, ω)
)]

m
I(ω − ωA, t) ,

(12)

where we have defined the integral

I(ω, t) =

∫ t

0

dt′eiωt′ce(t
′) . (13)

The useful identity

3
∑

m=1

∫

d3r
ω2

c2
εI(r, ω)Gjm(r′, r, ω)Glm(r′′, r, ω) =

ImGjl(r
′, r′′, ω) , (14)

and Eq.(12) now lead to

∫

d3r

∫ ∞

0

dω

3
∑

m=1

|cg(r, ω,m|t)|
2 =

1

2π

∫ ∞

0

dω Γ(rA, ω)|I(ω − ωA, t)|
2 . (15)

It now follows from Eqs.(9) and (15) that

d

dt

(

|ce(t)|
2 +

∫

d3r

∫ ∞

0

dω

3
∑

m=1

|cg(r, ω,m|t)|
2

)

= 0 ,

(16)

i.e. the unitarity condition Eq.(8) is fulfilled for all times
as it should. We notice, what may appear to be a triv-
ial fact, that general time-dependent phase-redefinitions
of the amplitudes will not change the unitary condition
Eq.(8). This circumstance will, nevertheless, be useful
below in order to circumvent divergent vacuum fluctua-
tions of the theory.
Eq.(9), a well-known Volterra integral equation of sec-

ond kind, may be integrated with respect to time. The
result is then

ce(t) = 1 +

∫ t

0

dt′ κ(t− t ′) ce(t
′) , (17)

where

κ(t) ≡

∫ t

0

dt′K(t′) , (18)

is the time-integrated kernel, i.e.

κ(t) =
1

2 π

∫ ∞

0

dω
e− i(ω−ωA)t − 1

i(ω − ωA)
Γ(rA, ω) . (19)

In passing, we mention that a rate similar to Eq.(11)
may be derived for electric-dipole transitions (see e.g.
Refs.[50–53]). In that case, the spontaneous decay rate
Γ(r, ω) should be replaced by

ΓE(r, ω) =
2ω2

A

h̄ ǫ0 c2
deg · Im[G(r, r, ω)] · dge , (20)

where deg is the electric dipole moment for the tran-
sition e → g. By comparing Eqs.(11) and (20) it
is now straightforward to translate between magnetic-
dipole and electric-dipole transitions which will be made
use of below. When referring to electric-dipole transi-
tions we therefore assume that one make use of the ap-
propriate decay rate, i.e. Eq.(20).

III. VACUUM

A. Exact

The dyadic Green tensor for vacuum, G
0(r, r, ω), is

given by a well-known expression (see e.g. Refs.[50, 51])

Im[
−→
∇ ×G

0(r, r, ω)×
←−
∇ ] =

ω3

6π c3





1 0 0
0 1 0
0 0 1



 , (21)
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independent of the position r as it should due to the
translational invariance of the vacuum quantum state.
In this case the kernel in Eq.(19) reduces to the vacuum
kernel κn(t) and reads

κn(t) =
Γ0

2π

∫ ωc

0

dω (
ω

ωA
)n

e−i(ω−ωA)t − 1

i(ω − ωA)
, (22)

with n = 3, and where we have introduced a cut-off fre-
quency ωc in order to make the integral finite. The decay
rate of magnetic spin-flip transition for a two-level atom
with no angular momentum and negligible nuclear mo-
ment in free space is then (see e.g. Ref.[31])

Γ0 = Γ̄0S
2 , (23)

with

Γ̄0 = µ0
(µBgS)

2

3π h̄
k3A , (24)

and kA ≡ ωA/c is the wave number in vacuum. Here
we have introduced the dimensionless spin factor S 2 ≡
S 2
x +S 2

y +S 2
z , where Sj ≡ 〈g|Ŝj/h̄|e〉 is the dimensionless

matrix element component of the electron spin operators
Ŝj corresponding to the transition |e〉 → |g〉, with j =
x, y, z. Furthermore, µB = eh̄/2me is the conventional
Bohr magneton, gS ≈ 2 is the electron spin gS factor.
Clearly, the time-dependent kernel in Eq.(22) is diver-

gent as ωc → ∞ and it is not entirely clear to us how
to make sense of this kernel for all times t. Since, as we
have mentioned above, magnetic-dipole transitions are
analogues to electric-dipole transitions, we therefore ap-
peal to Bethe’s mass-renormalization [54] procedure as
far as dealing with divergences are concerned. At large t
we recall that one then e.g. can make use of the distri-
butional identity

lim
t→∞

e−i(ω−ωA)t − 1

ω − ωA
= P

(

1

ωA − ω

)

− iπδ(ω − ωA) ,

(25)

where one from the principal part P (1/(ωA − ω)) then
adds a term P (1/ω) which, when summed over all possi-
ble final states, corresponds to Bethe’s introduction of a
renormalized mass. In the electric-dipole case, the finite-
time kernel κn(t) will then be regularized in such a man-
ner that, for large t, energy shifts are reduced to at most
a logarithmic dependence of the cut-off frequency ωc. As
we will see below in Section IIID this regularization can
be carried out in terms of frequency shift and a con-
ventional mass renormalization for all times with a mass
counter term.
In the present case of magnetic transitions, which cor-

responds to an interaction which is not directly renor-
malizable in the same manner as for electric-dipole tran-
sitions (see e.g. Ref. [55]) we, nevertheless, proceed in a
manner which treat these different transitions in an equal
manner as far as divergences are concerned. We therefore

subtract the second order expansion of the denominator
in Eq.(19) for ω ≫ ωA in such a way that at most a loga-
rithmic dependence of the cut-off frequency ωc remains,
i.e.

1

ω − ωA
→

1

ω − ωA
−

(

1

ω
+
ωA

ω2
+
ω2
A

ω3

)

, (26)

which leaves us with the following regularized version of
the kernel Eq.(22):

κR0 (t) =
Γ0

2π

∫ ωc

0

dω
e−i(ω−ωA)t − 1

i(ω − ωA)
. (27)

The kernel κR0 (t) is therefore obtained from κ0(t) in
Eq.(22) using the rule Γ(r, ω) → Γ(r, ωA). With regard
to the amplitude cg(r, ω,m|t) we observe that unitarity
prevails if we in Eq.(15) also make use of the same pre-
scription. The fact that unitarity is preserved is our pri-
mary motivation for the introduction of the regulariza-
tion procedure above. Below we will, however, investi-
gate the effect of keeping a dependence ω/ωA instead of
(ω/ωA)

3 in the kernel Eq.(22). This would be in line with
the standard electric-dipole transition considerations as
used in e.g. Refs.[41–45]. As we will verify below, the
choice of regularization procedure will effect the large
time behavior of the decaying system.
In Eq.(27) we make use of a cut-off frequency ωc in

order to make the frequency integral finite. Since our
calculation is non-relativistic we can, e.g., identify this
cut-off with with mec

2/h̄, but one may also regard this as
a free parameter when one e.g. considers artificial atoms
(Ref. [5] and references cited therein). We therefore in-
troduce a dimensionless parameter cut-off parameter Λ
as defined by

Λ ≡
ωc

ωA
. (28)

The subtraction procedure of κ0(t) above enables us to
extract the leading logarithmic dependence of the cut-off
parameter Λ , and, in the end, we have therefore replaced
the vacuum kernel κ0(t) with the following regularized
kernel κR0 (t)

κR0 (t) = −
Γ0

2π

∫ (Λ−1)ωA

−ωA

dx
sin(xt)

x

− i
Γ0

2π

∫ (Λ−1)ωA

ωA

dx
cos(xt)

x
+ i

Γ0

2π
ln(Λ− 1) . (29)

The imaginary logarithmic term in this equation corre-
sponds to an induced Lamb shift due to vacuum fluctua-
tions since it can be removed by introducing an angular
frequency shift, i.e.

ω̃A ≡ ωA −
Γ0

2π
ln(Λ− 1) , (30)

and applying the transformation

ce(t)→ c̃e(t) ≡ ce(t) exp

(

− i
Γ0t

2π
ln(Λ− 1)

)

, (31)
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as can be seen by making use of Eq.(9). We also find it
convenient to define the kernel

κ̃R0 (t) = −
Γ0

2π

(

Si[(Λ̃− 1)ω̃At) + Si[ω̃At]

)

− i
Γ0

2π

(

Ci[(Λ̃ − 1)ω̃At]− Ci[ ω̃At ]

)

, (32)

where Ci(x) and Si(x) are the standard Cosine and

Sine integral, respectively (see e.g. Ref.[56]) and Λ̃ ≡
ΛωA/ω̃A ≃ Λ in view of the fact that Λ is considered to
be a large cut-off parameter. The probability amplitude
c̃e(t) is now a solution to the integral equation Eq.(17)
provided the kernel κR0 (t) is replaced by κ̃R0 (t), i.e. we
consider

c̃e(t) = 1 +

∫ t

0

dt′ κ̃R0 (t− t
′) c̃e(t

′) . (33)

The solutions of the corresponding integral equation can-
not be obtained in closed form and therefore we will re-
sort to a numerical treatment. The numerical results as
presented in the present paper involves algorithms with
arbitrary numerical precision.

B. Approximations

It is convenient to define a dimensionless time param-
eter τ ≡ Γ0t as well as the parameters bA ≡ ωA/Γ0 and

b̃A ≡ ω̃A/Γ0, i.e.

b̃A = bA −
ln(Λ− 1)

2π
. (34)

Let us now consider small time scales such that (Λ̃ −

1)b̃Aτ ≪ 1 and b̃Aτ ≪ 1. Such small times are basically
of academic interest as t≪ h̄/mec

2 = 1.29·10−21s unless,
as suggested above, a different scale can be provided by
the use of e.g. artificial atoms. Virtual particles may
then be created and our theory is not strictly valid. The
leading series expansion of the kernel κ̃R0 (t), as given by
Eq.(32), for such small time parameters τ is:

κ̃R0 (τ) ≈ −
Γ0

2π
Λ b̃Aτ − i

Γ0

2π
ln(Λ− 1) , (35)

using Λ̃ ≈ Λ. Apart from a sign, the imaginary part
of this kernel is the same as the last imaginary part of
Eq.(29). It is therefore convenient to invert the transfor-
mation Eq.(31) and consider the probability amplitude
ce(τ). Substituting the kernel κR0 (τ) into Eq.(17), we
obtain

ce(τ) ≈ 1−
Λ

4π bA
(bAτ)

2 , (36)

using the approximation ce(t
′) ≈ 1 in Eq.(17) since time

parameter τ is small. We observe that in Eq.(36) the

τ

1

0.8

0.6

0.4

0.2

0

0 0.4 0.8 1.2 1.6 2

FIG. 1: The probability |ce(τ )|
2 = |c̃e(τ )|

2 as a function of
τ ≡ Γ0t. The solid curve corresponds to the exact numeri-
cal solution, i.e. solution of Eq.(33) with the kernel κ̃R

0 (t) as
given by Eq.(32) in the main text for a two-level system in vac-
uum. The upper (dash-dotted) curve corresponds to the small

time, b̃Aτ ≪ 1, expansion Eq.(39). The lower (dotted) curve
corresponds to the exponential decay exp(−τ ) with expected
deviations at small τ . The values of the relevant parameters
are b̃A ≡ ω̃A/Γ0 = 10 and Λ = 1000.

parameter bA enters and not b̃A. In passing, we also
mention that an expansion for small times is also given
in Ref.[43] (their Eq.(3.21)) in the case of electric-dipole
transitions, with the result

ce(τ) ≈ 1−
Λ2

8π
(bAτ)

2 . (37)

The difference between equations (36) and (37), in which
case, as mentioned above, the factor (ω/ωA)

3 in Eq.(22)
is replaced by ω/ωA, illustrates the relevance of the sub-
traction procedure. Below we will see that this effect
is even more pronounced at large vales of τ . The dis-
crepancy between these last two expressions is easily ex-
plained by the fact that different regularization proce-
dures have been applied.
Let us still consider small times b̃Aτ ≪ 1 but such

that (Λ̃ − 1)b̃Aτ ≫ 1. Such time scales are of relevance
when one e.g. study the Zeno effect for quantum systems
(see e.g. Refs.[22, 57]). For such intermediate times, the
kernel in Eq.(32) is reduced to

κ̃R0 (τ) ≈ −
Γ0

4
+ i

Γ0

2π

(

γE + ln(b̃Aτ)

)

, (38)

where γE ≈ 0.577 216 is Euler’s constant. Substituting
Eq.(38) into the Eq.(33), expressed in terms of c̃e(τ) and
using c̃e(τ

′) ≈ 1, we may then carry out the time inte-
gration, with the result

c̃e(τ) ≈ 1−
τ

4
+ i

τ

2π

(

γE + ln(b̃Aτ)− 1

)

. (39)
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τ

1

0.98

0.96

0.94

0.92

0.90

0 0.02 0.04 0.06 0.08 0.1

FIG. 2: The probability |ce(τ )|
2 = |c̃e(τ )|

2 as a function of
τ ≡ Γ0t as in Fig. 1, but for a smaller τ interval.

τ

1
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−6
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10
−10

10
−12
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10
−6
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−9

10
−12

14 16 18 20

FIG. 3: The probability |ce(τ )|
2 = |c̃e(τ )|

2 as a function of
τ ≡ Γ0t. The solid curve corresponds to the exact numerical
solution, i.e. solution of Eq.(33) with the kernel κ̃R

0 (t) as
in Eq.(32) for a two-level system in vacuum. The almost
overlapping dotted curve corresponds to Eq.(41). The values

of the relevant parameters are b̃A ≡ ω̃A/Γ0 = 10 and Λ =
1000. The inset shows a limited part of the larger figure and
illustrates the accuracy of the asymptotic form Eq.(41).

The corresponding probability |c̃e(τ)|
2 = |ce(τ)|

2 is illus-
trated in Figs.1 and 2 (dash-dotted line) together with
the exact numerical solution, i.e. the numerical solution
of Eq.(33) with the exact kernel Eq.(32) (solid line).
Finally, for large times as compared to the shifted

atomic frequency transition, i.e. b̃Aτ ≫ 1, and also
(Λ̃ − 1)b̃Aτ ≫ 1, the kernel Eq.(32) is, to first leading
order

κ̃R0 (τ) ≈ −
Γ0

2
+

Γ0

2π

eib̃Aτ

b̃Aτ
. (40)

One may then show that (see next section and Appendix

B)

c̃e(τ) ≈ e−τ/2 +
eib̃Aτ

2πiτ

(

b̃A − ln(b̃Aτ)/2π

)2 , (41)

provided b̃A is sufficiently large, and where we have made
use of Λ̃ ≈ Λ. This solution includes the well-known ex-
ponential decay as well as a correction term which dom-
inates |c̃e(τ)|

2 for large values of τ . Eq.(41) is plotted
in Fig. 3 (dotted line) together with the exact numerical
solution (solid line). The last term in Eq.(41) will dom-
inate over the exponential for times τ >∼ τ∗, where τ∗ is
determined by the transcendental equation

e−τ∗/2 ≈
1

2πτ∗
(

b̃A − ln(b̃Aτ∗)/2π

)2 , (42)

valid for a sufficiently large value of b̃A. For b̃A = 10
and Λ = 1000 as in Fig. 3, the solution of this equa-
tion is, e.g., τ∗ ≈ 18.5. The τ ln2(b̃Aτ) dependence in
Eqs.(41) and (42) becomes more important than the τ
dependence only for very large time-scales τ >∼ τln, where

τln = exp(2πb̃A)/b̃A, in which case |c̃e(τ)|
2 becomes ex-

ponentially close to zero with increasing value of b̃A.

C. Asymptotic Expansion

Laplace transform techniques have been used to inves-
tigate possible deviations from exponential decay as in
Refs.[41, 43, 44]. As shown in particular by Seke and
Herfort [43, 44], careful considerations of the analytical
properties of the decay amplitude are required in order
to extract the asymptotic behavior of ce(t). The result
of Refs.[41, 43, 44] may seem to be partly contradictory.
It is therefore of some interest to investigate in detail
in what manner the asymptotic behavior according to
Eq.(41) is obtained by making use of Laplace transform
techniques. As we will see, it then becomes apparent that
the various asymptotic forms of the decay amplitude are
all valid but depends on the time-scale and other physical
parameters at hand.
In order to obtain the corresponding asymptotic ex-

pansion, as τ becomes large, we therefore find it conve-
nient to consider the Laplace transform of the differen-
tial equation for the rescaled amplitude c̃e(t) as defined
in Eq.(31), i.e.

dc̃e(t)

dt
=

∫ t

0

dt ′ K̃R
0 (t− t ′) c̃e(t

′)

− i
Γ0

2π
ln(Λ − 1)c̃e(t) , (43)

where the regularized kernel KR
n (t) is

K̃R
n (t) = −

Γ0

2 π

∫ ωc

0

dω (
ω

ωA
)ne− i(ω−ω̃A)t ,
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(44)

with, for the moment, n = 0. The Laplace transform
c̃e(s) is then given by

c̃e(s) =
1

s− K̃R
0 (s) + iΓ0 ln(Λ− 1)/2π

, (45)

where we have identified

K̃R
0 (s) = i

Γ0

2π

∫ ωc

0

dω
1

ω − ω̃A − is
=

i
Γ0

2π

(

ln(1−
ωc

is+ ω̃A
)

)

, (46)

in terms of the principal branch of the natural loga-
rithm ln-function. The inverse Laplace transform in
terms of the Bromwich integral and the dimensionless
time parameter τ can then formally, after a suitable Wick
(u = b̃A + is/Γ0) rotation, be written in the form

c̃e(τ) =
eib̃Aτ

2πi

∫ −∞+iγ

∞+iγ

due−iuτ ×

(

u− bA +
1

2π
ln(1 −

Λc

u
)

)−1

, (47)

where we have defined

Λc ≡
ωc

Γ0
, (48)

and where the positive real number γ is chosen in such
a way that the possible singularities of the integrand are
above the integration contour.
We now follow the methods of, in particular, Refs.[43,

44], where more details can be found, and use Eq.(47)
in order to extract the large τ , i.e. u → 0, asymptotic
expansion for c̃e(τ). As in Refs.[43, 44], we identify the
functions

M0(u) ≡ u− bA +
1

2π
[log(u− Λc)− log(u)], (49)

and

M1(u) ≡M0(u) + i, (50)

where the log-function now stands for the multi-valued
natural logarithm function. The appropriate Riemann
surface for the function log(u − Λc) − log(u) has been
obtained in Ref.[43]. Here one joins a second Riemann
sheet at the branch-cut along the real u-axis from u = 0
to u = Λc.
The integration contour in Eq.(47) can then be de-

formed into two curves of integration that runs paral-
lel to the Im(u)-axis. One of these curves runs from
−i∞+Λc+ǫ , above and around the branch point u = Λc

on the first Riemann sheet, and then towards−i∞+Λc−ǫ
on the second Riemann sheet, where ǫ is a small and posi-
tive real number. Similarly, the other curve of integration

runs from −i∞+ ǫ on the second Riemann sheet, above
and around the branch point u = 0 on the first Riemann
sheet, and then towards −i∞− ǫ on the first Riemann
sheet.
The functionM1(u) is obtained fromM0(u) when pass-

ing to the second sheet of the Riemann surface con-
struction. It can be shown that each of the functions
M0(u) and M1(u) have no poles and only one zero on
each of the Riemann sheets considered [43, 44]. On
the first Riemann sheet, where the original functions in
Eq.(47) are defined, there is, in addition, a zero ofM0(u)
along the real axis at u0 ≈ Λc(1 + exp[−2πΛc]). The
corresponding residue is exponentially suppressed, i.e.
Z0 ≡ 1/(dM0(u)/du)u=u0

≈ 2πΛc exp(−2πΛc), apart
from a phase factor, and the corresponding pole contri-
bution has therefore been neglected.
In the deformation of the integration contour in

Eq.(47), and on the second Riemann sheet, one now
encounters the conventional Wigner-Weisskopf like pole-
contribution at u = u1 ≈ b̃A − i/2, provided b̃A ≫ 1 due
to Eq.(50). Since dM1(u)/du = 1 + Λc/2πu(u − Λc) ≈

1 − 1/b̃A ≈ 1 for u = u1 provided b̃A ≫ 1, this pole
leads to a residue Z1 ≡ 1/(dM1(u)/du)u=u1

≈ 1. This
Wigner-Weisskopf like pole-contribution therefore con-
tributes to the amplitude c̃e(τ) with exp(−τ/2), i.e. the
expected and conventional amplitude describing expo-
nential decay. Including the two integrals emerging from
the branch points mentioned above we then, finally, ob-
tain that the result

c̃e(τ) = e−τ/2 −
eib̃Aτ

2πτ
I1 −

eib̃A(1−Λ̃)τ

2πτ
I2 , (51)

where we have defined the integrals

I1 =

∫ ∞

0

dse−s

[

1

M0(−is/τ)
−

1

M1(−is/τ)

]

, (52)

and

I2 =
∫ ∞

0

dse−s

[

1

M1(Λc − is/τ)
−

1

M0(Λc − is/τ)

]

, (53)

similar to the results of Refs.[43, 44]. In Appendix B we
now show that, as τ ≫ 1,

I1 ≈
i

(b̃A − ln(b̃Aτ)/2π)2
, (54)

provided |bA − ln(Λcτ)/2π| ≈ |b̃A − ln(b̃Aτ)/2π| ≫ 1. In
the same manner it also follows that

I2 ≈
i

(Λc − bA − ln(Λcτ)/2π)2
, (55)

provided |Λc−bA−ln(Λcτ)/2π| ≫ 1. As long as Λc ≫ bA
it is now clear that I1 will dominate over I2. Due to
Eq.(54) we now recover the result as given in Eq.(41).
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FIG. 4: The probability |ce(τ )|
2 = |c̃e(τ )|

2 as a function of
τ ≡ Γ0t. The upper curve corresponds to the exact numerical
solution, i.e. solution of Eq.(33) with the kernel κ̃R

0 (t) as in
Eq.(32) for a two-level system in vacuum which, within the
numerical accuracy of the figure, overlaps with the asymp-
totic formula Eq.(41). The lower curve corresponds to the
main result in Ref.[41], i.e. Eq.(73). The asymptotic form ac-
cording Eq.(75) is in excellent agreement with the numerical
evaluation of Eq.(73). The values of the relevant parameters

are b̃A = 10 and Λ = 1000. As a reference, the straight
line in the figure corresponds to a pure exponential decay, i.e.
|ce(τ )|

2 = e−τ .

It now also follows that I1 ≈ 1/b̃2A unless τ is exponen-

tially large, i.e. τ ≫ e2πb̃A/b̃A, in which case the decay
amplitude c̃e(τ) is exponentially small.
When compared to the analysis of Refs.[43, 44] we re-

mark that our approach to the asymptotic behavior of in-
tegrals like Eqs. (52) and (B1) has a much broader range
of applicability. In particular we notice that, as long as

τ ≪ e2πb̃A/b̃A), the I1 integral leads to a O(1/τ) behav-
ior of the decay amplitude c̃e(τ). It is only in the oppo-
site limit that the proposed O(1/τ ln2 τ) of Refs.[43, 44]

emerges, i.e. for τ ≫ e2πb̃A/b̃A. In this case the decay

amplitude, however, becomes exponentially small for b̃A
sufficiently large. We also find it important to express
the asymptotic behavior in terms of dimensionless quan-
tities like τ and not in terms of the time variable t with
a physical dimension as in Refs.[43, 44].

D. Comparison with Refs.[41, 43, 44]

As alluded to above, in many cases of the study of
deviations from the exponential decay of atomic spon-
taneous emission processes, various approximations have
been applied in order to obtain explicit and analytical ex-
pressions as, e.g., in Refs.[41, 43, 44] and references cited
therein. In these references one consider electric- dipole
transitions and, in the integral equation Eq.(17) for the

vacuum case, the kernel κ(τ) should therefore be replaced
by kernel κR1 (τ) ≡ κ1(τ) as defined by Eq.(22), i.e. with a
factor ω/ωA in the integrand rather than (ω/ωA)

3. Con-
trary to the regularization procedure employed in Section
III, this factor ω/ωA is, however, kept untouched and a
suitable subtraction is carried out at a later stage in the
analysis. As we now will verify the actual subtraction
procedure in order to make the corresponding kernel fi-
nite will effect the large time deviation from exponential
decay. If the cut-off frequency ωc again is regarded to be
a finite physical quantity, we notice that the regularized
kernel κR1 (τ) may be written in terms of κR0 (τ) as given
by Eq.(27):

κR1 (τ) =

κR0 (τ) +
Γ0

2πbAτ

(

e−i(Λ−1)bAτ − eibAτ

)

+ i
Γ0

2π
Λ . (56)

Due to this identity we realize that the kernel κR1 (τ) is
linear in the dimensionless cut-off frequency rather than
the logarithmic dependence of κR0 (τ) as in Eq.(29). We
observe that the linear Λ-term may now be absorbed in
an energy shift such that the kernel κR1 (τ) is replaced
according to:

κR1 (τ)→ κR1 (τ) =

κR0 (τ) +
Γ0

2π b′Aτ

(

e−i(Λ−1)b′Aτ − eib
′

Aτ

)

, (57)

where b′A ≡ ω
′
A/Γ0, and

ω′
A ≡ ωA −

Γ0

2π
Λ , (58)

and where also the ωA-dependence in κR0 (τ) is replaced
by ω′

A. Such a frequency shift preserves unitarity. As in
Refs.[41, 43, 44], the linear Λ-dependence can therefore
be removed altogether by applying Bethe’s mass renor-
malization [54], i.e. by including a suitable mass counter-
term in the Hamiltonian. After this removal of the linear
Λ-dependence and by also applying the transformation in
Eq.(31), the kernel κR1 (τ) is transformed into the kernel
κ̃R1 (τ) according to:

κR1 (τ)→ κ̃R1 (τ) =

κ̃R0 (τ) +
Γ0

2π b̃Aτ

(

e−i(Λ̃−1)b̃Aτ − eib̃Aτ

)

. (59)

The asymptotic form of the kernel κ̃R1 (τ) is now such that
the sub-leading contribution form the asymptotic form of
the kernel κ̃R0 (τ), as given by Eq.(40), is cancelled and
therefore

κ̃R1 (τ) ≈ −
Γ0

2
+

Γ0

2π

e−i(Λ̃−1)b̃Aτ

b̃Aτ
, (60)

for sufficiently large τ . Hence, the methods of Appendix
A would then lead to

c̃e(τ) ≈ e−τ/2 −
e−i(Λ̃−1)b̃Aτ

2πiτ Λ̃b̃2A
, (61)



9

apart from possible 1/τ2 corrections provided b̃A is suf-
ficiently large.
As in Section III C, a more precise asymptotic expan-

sion as τ becomes large, and which also takes the Lamb
shift Eq.(30) more carefully into account, can be obtained
by a consideration of a Bromwich integral. The Laplace
transform of the differential equation for the rescaled am-
plitude c̃e(t) reads

dc̃e(t)

dt
=

∫ t

0

dt ′ K̃R
1 (t− t ′) c̃e(t

′)

− i
Γ0

2π
ln(Λ − 1)c̃e(t)− i

δm c2

h̄
c̃e(t) , (62)

where the regularized kernel K̃R
1 (t) is

K̃R
1 (t) = −

Γ0

2 π

∫ ωc

0

dω
ω

ωA
e− i(ω−ω̃A)t ,

(63)

and where the unitarity preserving transformation as de-
fined by Eq.(31) has been applied. In Eq.(62) we have
also included the contribution due to the additional mass
counter-term δm c2/h̄ in the Hamiltonian which has the
role of cancelling the linear Λ-dependence in the kernel
Eq.(63). After a tedious but straightforward analysis,
following the same Laplace transformation techniques as
in Refs.[43, 44], the large τ expansion of c̃e(τ) can now be
obtained. Similar to the definitions of M0(u) and M1(u)
in Section III C, we therefore introduce the functions

N0(u) ≡ u− bA +
u

2πbA

(

log(u− Λc)− log u
)

, (64)

and

N1(u) ≡ N0(u) + i
u

bA
, (65)

where the linear Λ-dependence in Eq.(62) now has ex-
plicitly been removed by the mass renormalization pro-
cedure. The solution to the Eq.(62) can then be written
in the form

c̃e(τ) =
eib̃Aτ

2πi

∫ −∞+iγ

∞+iγ

due−iuτ 1

N0(u)
. (66)

By deforming the integration contour in Eq.(66) in the
same manner as in the derivation of Eq.(51), one then
obtains the result

c̃e(τ) = e−τ/2 −
eib̃Aτ

2πτ
J1 −

eib̃A(1−Λ̃)τ

2πτ
J2 , (67)

where we have defined the integrals

J1 =

∫ ∞

0

dse−s

(

1

N0(−is/τ)
−

1

N1(−is/τ)

)

, (68)

and

J2 =
∫ ∞

0

dse−s

(

1

N1(Λc − is/τ)
−

1

N0(Λc − is/τ)

)

. (69)

We have therefore actually reproduced the results of
Refs.[43, 44], but now expressed in terms of dimensionless
parameters.
As expanded upon in the Appendix C, the integrals

J1 and J2 can now be analyzed in manner similar to the
integrals I1 and I1 of Section III C . If τ ≫ 1 and Λc ≫ 1
and, in addition, bAτ >∼ 1+ln(Λc)/2πbA , we then obtain

J1 ≈
1

b3Aτ
. (70)

For the integral J2 it also follows that, for τ ≫ 1,

J2 ≈
1

iΛ(bA − ln(Λcτ)/2π)2
. (71)

provided |bA − ln(Λcτ)/2π| ≫ 1. The insertion of these
asymptotic expansions into Eq.(67) therefore leads to

c̃e(τ) ≈ e−τ/2 − eib̃Aτ 1

2π b3A

1

τ2

−
e−i (Λ̃−1) b̃Aτ

2π iΛ

1

τ

1

( bA − ln(Λc τ)/2π )2
. (72)

The last term in Eq.(72) with the (bA − ln(Λc τ)/2π)-
dependence has been obtained by using the technique
of the Appendix B in order to see how the claimed
τ ln2 τ dependence of Ref.[43, 44] actually emerges. Here
we again stress that our results are expressed in terms
of dimensionless quantities in contrast to the results of
Refs.[43, 44].
At this point we now quote the following explicit, but

approximative, expression for the probability amplitude
ce(τ) result of Knight and Milonni in Ref.[41]:

ce(τ) = e−τ/2+iδbτ −
eibAτ

2π i

×

∫ ∞

0

dx e−Λ x bAτ

(

1

x− i
Λ + i x

2bA
− x

2π bA
[lnx− i π

2 ]

−
1

x− i
Λ −

x
2π bA

[ln x+ i π
2 ]

)

, (73)

where δb = δω/Γ0, and

δω =
Γ0

2π
ln(Λ− 1) , (74)

is the angular frequency shift of the excited state |e〉.
This expression, which we have verified [58], is obtained
by deforming integration contours of the Bromwich inte-
gral by only considering the analytical properties of the
natural logarithm ln-function and not taking into account
the additional analytical conditions imposed by the ap-
pearance of the functions N0(u) and N1(u) as discussed
above. For large times, i.e. bAτ ≫ 1, this expression is
reduced to [41, 58]

ce(τ) ≈ e−τ/2+iδbτ −
1

2π bA

1

(bAτ)2
eibAτ . (75)
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We notice that up to a phase redefinition, this equa-
tion and Eq.(72) only differ by that last Seke-Herfort
term of Eq.(72). It is only in the limit Λ → ∞ that
Eq.(72) leads to 1/τ2 asymptotic behavior of Knight and
Milonni. It is now also clear that it is only for time-scales
τ >∼ e2πbA/Λc that the 1/τ ln2 τ asymptotic behavior of
Seke-Herfort emerges. Such time-scales are typically ex-
ponentially large leading to an exceedingly small decay
amplitude ce(τ) unless Λc is very large. But as we have
seen above, in such a case the 1/τ2 asymptotic behavior
of Knight and Milonni begins to dominate. We also re-
alize that Eq.(72) leads to a dominant 1/τ behavior for
τ <∼ e

2πbA/Λc unless Λc again is not arbitrarily large.
By a comparison of Eqs.(41) and (72) we also realize,

due to the presence of the factor 1/Λ in the Seke-Herfort
term in Eq.(72), that the regularization procedure actu-
ally effects the large-time behavior of the decay ampli-
tude ce(τ).
We illustrate some of these features in Fig. 4 and

Fig. 5. For comparison, Eqs.(73) and (75) are plotted
in Fig. 4 together with the exact numerical solution. In
Fig. 5 we have plotted the solution of Eq.(33) with the
kernel κ̃R1 (τ) of Eq.(59) together with Eqs. (73) and (75).
As long as the Seke-Herfort term in Eq.(72) dominates for
sufficiently large values of τ , this contribution will dom-
inate the conventional exponential decay term if τ >∼ τ∗,
where τ∗ is determined by the transcendental equation

e−τ∗/2 ≈
1

2πΛτ∗

(

bA − ln(Λcτ∗)/2π

)2 , (76)

With the choice of parameters as in Fig. 5 and τ >∼ τ∗ ≈
53, one finds that Eq.(72) in this case leads to 1/τ scaling
rather than the 1/τ2 asymptotic scaling for the decay
amplitude ce(τ) according to Eq.(73).

IV. FINAL REMARKS

We have seen that the procedure of regularization
the decay amplitude ce(τ) actually influences the devi-
ation from exponential decay at large values of the time-
parameter τ . It would, of course, be of interest if one e.g.
in terms of artificial atoms could experimentally inves-
tigate deviations from exponential decay at large times
and thereby infer a possible presence of the Seke-Herfort
term of Eq.(72) or the related 1/τ behavior obtained in
Eq.(41). As alluded to in the introductory remarks and
in the case of atom chips, the presence of material bod-
ies can drastically change the characteristic lifetime (see
e.g. Refs. [30–34]) and one could then perhaps expect to
encounter deviations from exponential decay. With the
parameters of Refs.[31, 33, 34], i.e. S2 = 1/8, gS ≈ 2 and
ωA/2π = 560 kHz, we have that bA ≈ 3 · 1032. Using the
cut-off Λ according to Eq.(28), i.e. Λ ≈ 2 · 1014 one finds

τ
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FIG. 5: The probability |ce(τ )|
2 = |c̃e(τ )|

2 as a function of
τ ≡ Γ0t. The upper curve corresponds to the exact numerical
solution of the Volterra equation as considered in Ref.[43, 44],
i.e. of Eq.(33) with the kernel κ̃R

1 (τ ) of Eq.(59) for a two-
level system in vacuum. For large values of τ the solution
is dominated by the 1/τ asymptotic behavior according to
Eq.(72). The lower curve corresponds to Eqs. (73) and (75),
which overlaps within the numerical accuracy of the figure,
with a characteristic 1/τ 2 asymptotic behavior for ce(τ ). The

values of the relevant parameters are b̃A = 1000 and Λ = 1000.

that bA ≈ b̃A and that τ∗ ≈ 315 and τ∗ ≈ 380 accord-
ing to Eqs.(42) and (76) respectively. Since our analysis
involves the dimensionless parameter τ this means that
even though the effective decay-rate Γ can be changed
by, say, twenty orders of magnitude (see e.g. Refs. [30–
34]), one still would have to consider several hundred
decay times in order to see deviations from exponential
decay. This means that for atom chips the conventional
exponential decay description applies with an exceedingly
high accuracy. As we, however, have remarked in the in-
troduction, experimental studies have e.g. shown that
artificial atoms can lead to a Lamb shift of the order of a
few per cent of the typical emission line [5]. We now esti-
mate the corresponding relevant parameters according to
Ref.[5]. The natural frequency is ωA/2π ≈ O(GHz) and
the effective rate Γ0 is estimated from the Lorentzian fit
to the experimental data to be Γ0 ≈ 0.5 · 10−2ωA/2π.
With a Lamb-shift of the order of one per cent of ωA, we
then have that Γ0 ln(Λ− 1)/2π ≈ 10−2ωA, i.e. the effec-

tive cut-off Λ is then given by Λ ≈ e8π
2

. One then finds
somewhat more optimistic numbers τ∗ ≈ 40 and τ∗ ≈ 200
according to Eqs.(42) and (76), respectively, which may
open the door for observing deviations from exponential
decay in system composed of artificial atoms. Finally, we
also notice the resemblance of the semi-logarithmic plots
for |ce(τ)|

2 as in Figs.3 and 4 in terms of the natural pa-
rameters τ and ∆Et = bEτ , with bE = ∆E/Γ0 for any
typical intrinsic energy-scale ∆E, and similar results ob-
tained in Refs.[7, 15] despite the fact that they refer to
different physical systems.
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Appendix A: Large time expansion

In section III B, the kernel κ̃R0 (τ) was considered for
three different regimes: small, intermediate and large
times τ for a given b̃A and given Λ. The integral in
the Volterra equation Eq.(33) may then trivially be split
into these three intervals, where one interval relieves the
other. For large times τ ≫ 1 and, in addition b̃A ≫ 1,
two of these integrals are negligible. The Volterra equa-
tion in Eq.(33) is then left with an integral corresponding
to the kernel in Eq.(40). This integral may be computed
analytically:

c̃e(τ)− 1 ≈

∫ τ−1/b̃A

0

dx

{

−
1

2
+

1

2π

ei b̃A(τ−x)

b̃A(τ − x)

}

e−x/2

= −1 + e−τ/2+1/2b̃A −
1

2πb̃A
E1[−(1/2 + ib̃A)τ ]e

−τ/2

+
1

2πb̃A
E1[−(1/2b̃A + i)] e−τ/2 ,

(A1)

where E1(z) is the exponential integral for a complex

argument z. As τ ≫ 1 and b̃A ≫ 1, the latter expres-
sion may now be simplified by making use of the leading
asymptotic expansion of the E1 functions in Eq.(A1) for
large values of the parameter τ :

c̃e(τ) ≈ e
−τ/2 +

eib̃Aτ

2πi b̃2A τ

1

1− i/2b̃A
, (A2)

i.e. Eq.(41) if b̃A ≫ 1. As alluded to in the main
text Eq.(A2) remains valid for large values of τ provided

b̃A ≫ ln(b̃Aτ)/2π, a condition that emerges from further
iterations of the Volterra equation in Eq.(33). As dis-
cussed in Appendix B, a more precise asymptotic form

than the one given by Eq.(A2) can be obtained by mak-
ing use of Laplace transform techniques.

Appendix B: Asymptotic Expansion of I1 and I2

Here we first consider the integral I1 as defined in
Eq.(52) in Section III C which we rewrite in the following
convenient form

I1 =

∫ ∞

0

dse−s

[

1

−is/τ − bA + ln(1 + Λcτ/is)/2π
−

1

−is/τ − bA + ln(1 + Λcτ/is)/2π + i

]

, (B1)

i.e., as τ becomes large,

I1 ≈ −

∫ ∞

0

dse−s

[

1

a+ ln s/2π + i/4
−

1

a+ ln s/2π − 3i/4

]

, (B2)

where we have defined

a ≡ bA −
ln(Λcτ)

2π
≈ b̃A −

ln(b̃Aτ)

2π
, (B3)

if Λ ≈ Λ̃. One now finds, by a combination of analytical
and numerical methods, that the real part of I1 can be
neglected, provided a is big enough, i.e. |a| >∼ 10, and
hence I1 ≈ i/a2. By making use of the same reasoning
as above one can now verify that I2 ≈ i/ã2, where now
ã ≡ Λc − bA − ln(Λcτ)/2π with Λc ≡ ωc/Γ0. Therefore
the contribution due to I2 can be neglected in comparison
with I1, for any reasonable range of τ , provided that
Λc ≫ b̃A.

Appendix C: Asymptotic Expansion of J1 and J2

Here we first consider the integral J1 as defined in
Eq.(68) in Section IIID for large values of τ where we,
due to the presence of the factor e−s in the integrand of
J1, make use of the approximations

N0(−is/τ) ≈ −bA

(

1 + i
s

bAτ
δ

)

, (C1)

with δ ≡ 1 + ln(Λc)/2πbA, as well as

N1(−is/τ) ≈ −bA

(

1 + i
s

bAτ
δ

)

+
s

bAτ
, (C2)

as τ becomes large. A series expansion in s/bAτ then
leads to the convergent integral

J1 ≈
1

b3Aτ

∫ ∞

0

dse−s s

(1 + isδ/bAτ)2
. (C3)
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The effective expansion time-parameter is then actually
bAτ instead of τ . We therefore find that J1 ≈ 1/b3Aτ
for sufficiently large values of the parameter bAτ , i.e.
bAτ >∼ 1 + ln(Λc)/2πbA. In the opposite limit J1 will be
suppressed by factors like ln(δ/bAτ)/(δ/bAτ)

2 in addition
to the 1/b3Aτ behavior. More care has to be taken when
considering the integral J2. For large values of τ , we then
make use of the expansions

N0(Λc − is/τ) ≈ Λ

(

a−
1

4
i+

ln s

2π

)

, (C4)

with a as in Eq.(B3), as well as

N1(−is/τ) ≈ Λ

(

a+
3

4
i+

ln s

2π

)

. (C5)

Here we have made use of the simple fact that Λc = ΛbA.
As long as |a| is big enough it can now be argued that
we can neglect ln s/2π term in the N0 and N1 functions
above. This is so since for large s >∼ e2π|a| the integrand
of J2 is exponentially suppressed while for sufficiently
small s <

∼ e−2π|a| there will only be an exponentially
small range of integration. Proceeding in this manner
and by series expansions in −i/4a and 3i/4a, we then
find that the dominant contribution to J2 is imaginary
and that J2 ≈ 1/iΛ̃a2. By numerical methods we find
that this is indeed an excellent approximation if |a| >∼ 10
when evaluating |ce(t)|
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[4] J. Fortágh and C. Zimmermann, “Magnetic Microtraps

for Ultracold Atoms”, Rev. Mod. Phys. 79, 235 (2007).
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