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We study fault-tolerance of quantum low-density parity check (LDPC) codes such as generalized
toric codes with finite rate suggested by Tillich and Zémor. We show that any family of quantum
LDPC codes where each syndrome measurement involves a limited number of qubits, and each qubit
is involved in a limited number of measurements (as well as any similarly-limited family of classical
LDPC codes), where distance scales as a positive power α of the number of physical qubits (α less
than one for “bad” codes), has a finite error probability threshold. We conclude that for sufficiently
large quantum computers, quantum LDPC codes can offer an advantage over the toric codes.
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A practical implementation of a quantum computer
will rely on quantum error correction (QEC) [1–3] due to
the fragility of quantum states. There is a strong belief
that surface (toric) codes [4, 5] can offer the fastest route
to scalable quantum computer due to the error thresh-
old around 1% and the locality of required gates [6–10].
Unfortunately, in the nearest future, the surface codes
(in fact, any two-dimensional codes with local stabilizer
generators[11]) can only lead to proof of the principle re-
alizations as they encode a limited number of qubits (k),
making any implementation of a useable quantum com-
puter large (e.g., 2.2 × 108 physical qubits are required
for a useful realization of Shor’s algorithm [12]).

A large family of quantum low-density parity-check
(LDPC) codes (a non-local generalization of toric codes)
has been constructed by Tillich and Zémor[13]. These
quantum hypergraph-product codes (QHPCs) contain
families of Calderbank-Shor-Steane (CSS) codes [14]
where the number of encoded qubits k scales linearly with
the blocklength n, the number of physical qubits directly
involved in the code. The finite asymptotic rate R ≡ k/n
substantially improves upon the toric codes where R = 0
(Fig. 1). This construction can also be modified to gen-
eralize the rotated toric codes[15] (e.g., checkerboard
codes) with a finite-factor rate improvement[16]. Just as
for the toric codes, the distance d (the minimal number
of qubits in an error the code cannot detect) of QHPCs
scales as a square root of the block length, d ∝ n1/2.

In general, removing the restriction of locality should
considerably improve the code parameters. Non-local
two-qubit gates are relatively inexpensive with floating
gates [17], superconducting and trapped-ion qubits, as
well as more exotic schemes with teleportation[18–23].
Thus, one can consider a much wider class of quantum
LDPC codes[24, 25] for which, compared to general quan-
tum codes, each quantum measurement involves fewer
qubits, measurements can be done in parallel, and also
the classical processing can be enormously simplified.

Furthermore, at sufficiently large blocklengths often
necessary for achieving small computational error, a fault
tolerant family of quantum LDPC codes with a finite
asymptotic rate will require fewer physical qubits com-
pared to a realization based on copies of toric code. Un-
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FIG. 1. (Color online) Left: Two stabilizer generators (ar-
rows) and two pairs of anticommuting logical operators (lines)
of a [[450, 98, 5]] code in Eq. (1) formed by circulant matri-
ces H1 = H2 with the first row [1, 1, 0, 1, 0, 0, 0, 1, 0 . . . 0] (red
and blue, respectively, X and Z operators, green—overlap
of Z and X operators, dark and light gray—dual sublattices
of physical qubits). Other stabilizer generators are obtained
by shifts over the same sublattice with periodic boundaries.
Shaded regions: each gray square uniquely corresponds to
a pair of logical operators, thus 98 encoded logical qubits.
Right: same for the toric code [[450, 2, 15]].

fortunately, the parameters as well as the fault tolerance
of general quantum LDPC codes are largely unexplored.

In this Rapid Communication, we discuss error-
correction properties and fault-tolerance of families of
finite-rate quantum (and where noted classical) LDPC
codes whose relative distance δ ≡ d/n tends to zero in
the limit of large blocklength. Even though we term such
codes as ”bad” (as good codes should have both the rate
and the relative distance finite, see Ref. [26]) these are
the best finite-rate quantum LDPC codes with explicitly
known distance. For random uncorrelated (qu)bit errors
(e.g., quantum depolarizing channel), we establish the
existence and give a lower bound for the single (qu)bit
error rate below which the decoding with probability one
is possible, and analyze the scaling of successful decoding
probability with the blocklength. This result is obtained
by separating errors into small independent clusters on
a graph, a construction analogous to the cluster theorem
[27]. We also give related bounds for fault-tolerant op-
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eration in the presence of syndrome measurement errors.
A similar analysis for errors when the erroneous (qu)bits
are known (erasure channel) allows us to establish an up-
per limit for the achievable rate of a quantum LDPC code
with power-law scaling of the distance with blocklength.
These results are important since, unlike for regular QEC
codes, there are very few general lower (existence) or up-
per bounds for quantum LDPC codes[28].

Definitions. A binary linear code C with parameters
[n, k, d] is a k-dimensional subspace of the vector space
Fn2 of all binary strings of length n. Code distance d is
the minimal weight (number of non-zero elements) of a
non-zero string in the code. A linear code is uniquely
specified by the binary parity check matrix H, namely
C = {c ∈ Fn2 |Hc = 0}, where operations are done mod 2.

A quantum [[n, k, d]] (qubit) stabilizer code Q is a 2k-
dimensional subspace of the n-qubit Hilbert space H⊗n2 , a
common +1 eigenspace of all operators in an Abelian sta-
bilizer group S ⊂Pn, −11 6∈ S , where the n-qubit Pauli
group Pn is generated by tensor products of the X and
Z single-qubit Pauli operators. The stabilizer is typically
specified in terms of its generators, S = 〈S1, . . . , Sn−k〉;
measuring the generators Si produces the syndrome vec-
tor. The weight of a Pauli operator is the number of
qubits it affects. The distance d of a quantum code is
the minimum weight of an operator U which commutes
with all operators from the stabilizer S , but is not a part
of the stabilizer, U 6∈ S . A code of distance d can detect
any error of weight up to d− 1, and correct up to bd/2c.

A Pauli operator U ≡ imXvZu, where v,u ∈ {0, 1}⊗n
and Xv = Xv1

1 Xv2
2 . . . Xvn

n , Zu = Zu1
1 Zu2

2 . . . Zun
n , can

be mapped, up to a phase, to a quaternary vector, e ≡
u + ωv, where ω2 ≡ ω ≡ ω + 1. A product of two
quantum operators corresponds to a sum (mod 2) of the
corresponding vectors. Two Pauli operators commute if
and only if the trace inner product e1∗e2 ≡ e1 ·e2+e1 ·e2
of the corresponding vectors is zero, where e ≡ u + ωv.

With this map, generators of a stabilizer group are
mapped to rows of a parity check matrix H of an addi-
tive (forming a group with respect to addition but not
necessarily over the full set of F4 operations) code over
F4, with the condition that the trace inner product of any
two rows vanishes[29]. The vectors generated by rows of
H correspond to stabilizer generators; these vectors form
the degeneracy group and are omitted from the distance
calculation. For a more narrow set of CSS codes the par-
ity check matrix is a direct sum H = Gx ⊕ωGz, and the
commutativity condition simplifies to GxG

T
z = 0.

An LDPC code, quantum or classical, is a code with
a sparce parity check matrix. For a regular (j, l) LDPC
code, every column and every row of H have weights j
and l respectively, while for a (j, l)-limited LDPC code
these weigths are limited from above by j and l.

The QHPCs [13] (Fig. 1) are constructed from two bi-
nary matrices, H1 (dimensions r1 × n1) and H2 (dimen-

sions r2 × n2), as a CSS code with the stabilizer [16]

Gx = (E2 ⊗H1,H2 ⊗ E1), Gz = (HT2 ⊗ Ẽ1, Ẽ2 ⊗HT1 ).
(1)

Here each matrix is composed of two blocks constructed
as Kronecker products (denoted with “⊗”), and Ei and

Ẽi, i = 1, 2, are unit matrices of dimensions given by
ri and ni, respectively. In the original construction[13],
given the binary parity check matrix H1 = HT2 of
an (h, v)-limited classical LDPC code [nc, kc, dc], the
QHPC (1) is a CSS code with the parameters [[n =
n2c + (nc − kc)2, k = k2c , d = dc]], and column and row
weights limited by j ≤ max(h, v), ` ≤ h+ v. An original
classical LDPC code produces a quantum LDPC code,
and the corresponding distance scales as d ∝ n1/2.
Our key observation is that for LDPC codes, quan-

tum or classical, large-weight errors are mostly those
composed of disjoint small-weight clusters that can be
detected or corrected independently. Indeed, e.g., for a
regular (j, `) LDPC code, two random (qu)bits have non-
zero values in the same row with probability z/n, where
z ≡ (`− 1)j. Correcting any of such disjoint errors does
not affect the syndrome for the others.

More generally, for a (j, `)-limited LDPC code, we rep-
resent all (qu)bits as nodes of a graph G1 of degree at
most z: two nodes are connected by an edge iff there is
a row in the parity check matrix which has non-zero val-
ues at both positions. An error with support in a subset
E ⊆ V (G1) of the vertices defines the subgraph G1(E) in-
duced by E . Generally, we will not make a distinction
between a set of vertices and the corresponding induced
subgraph. In particular, a (connected) cluster in E cor-
responds to a connected subgraph of G1(E). Different
clusters affect disjoint sets of rows of the parity check
matrix. This implies the following

Lemma 1. For a distance-d LDPC code, any error
whose support is a union of disconnected clusters on G1
of weights wi < d, is detectable.

In the case of an erasure channel (quantum or classi-
cal), we actually know which (qu)bits are affected. In
known locations, a code of distance d can correct all er-
rors of weight d − 1 or smaller. Therefore, correcting
clusters one-by-one, we can guarantee success if all the
clusters have weights wi < d. It is then obvious that
the problem of error correction for an erasure channel is
related to the problem of site percolation on graphs[30].

For any (j, `)-limited LDPC code, the vertices of the
graph G1 have degrees at most z ≡ (`− 1)j. In what fol-
lows, we will need the cluster size distribution [the prob-

ability n
(p)
s (x) that the point x is a member of a cluster

of size s] below the percolation threshold. Although one
expects exponential tail in the cluster size distribution,
ns(p) ≤ exp(−sg(p)) for all s ≥ s0 and some g(p) > 0 and
s0 > 0, this can be violated for sufficiently heterogeneous
graphs[31]. Restricting the range of p, we have
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Lemma 2. For any graph G with vertex degrees limited
by z, the site- or bond-percolation cluster size distribution
has exponential tail for p < p0 ≡ (z − 1)−1.

Proof. A size-s cluster containing x on G, after cutting
any loops, can be mapped to a size-s cluster on z-regular
tree Tz (Bethe lattice), with x mapped to the root.
Such a mapping can only increase the perimeter (size
of the boundary, i.e., number of sites outside the clus-
ter but neighboring with a site inside it). Any size-s
cluster on Tz has the perimeter tz(s) ≡ s(z − 2) + 2;
for a cluster on G we have t ≤ tz(s). Let us now use
the standard expression for the cluster size distribution,

n
(p)
s (x) =

∑
t as,t(x)ps(1 − p)t, where as,t(x) ≥ 0 is the

number of x-containing site-percolation clusters of size s
and perimeter t. For p ≤ p0,

(1− p)t ≤ (1− p0)t
(1− p)tz(s)

(1− p0)tz(s)
, (2)

which gives the exponential tail

n(p)s (x) ≤ n(p0)s (x)
(1− p)2

(1− p0)2
αsz, αz ≡

p(1− p)z−2

p0(1− p0)z−2
.

(3)

since αz(p) < 1 for p < p0 and n
(p0)
s

def
≤ 1.

Notice that the threshold for exponential tail coincides
with the lower boundary of the (bond) percolation transi-
tion for degree-limited graphs[32], which is also the lower
boundary for the site percolation transition[33]; both
boundaries are achieved on z-regular tree Tz.

We can now formulate the following

Theorem 1. For an infinite family of (j, l)-limited
LDPC codes, quantum or classical, where the distance d
scales as a power law at large n, d ≥ Anα, with some
α > 0 and A > 0, asymptotically certain recovery is
possible for (qu)bit erasure probabilities p < pe, where
pe ≥ p0 = (z−1)−1 and z ≡ (`−1)j. A non-zero thresh-
old pe also exists for such code families with the distance
scaling logarithmically at large n, d ≥ A0 lnn.

Proof. The conditions match those of Lemmas 1 and 2.
For p < p0, we just need to ensure that the probability
to find a cluster of size s ≥ d anywhere on G1 vanishes

at large n, i.e., n
∑
s≥d n

(p)
s /s→ 0. The sufficient condi-

tion on the distance is d > lnn/| lnαz|, which is always
the case at large n with power-law distance, and gives
αz(p) ≤ e−A0 with logarithmically increasing distance.
The latter equation is satisfied for small enough p by
continuity of αz(p) since αz(0) = 0.

Given the upper limit on the rate of stabilizer codes in
Theorem 3.8 of Ref. 28, we also obtain the limit on the
rate of quantum codes in Theorem 1:

Corollary 2. Any family of (j, `)-limited LDPC quan-
tum codes with power-law scaling of the minimum dis-
tance with the block length n, has rate R limited by

R < 1− 2

[
z − 1− (z − 3)

(
z − 2

z − 1

)`−1]−1
. (4)

The situation gets a bit more complicated for the depo-
larizing channel (memoryless binary symmetric channel
in the classical case), where the positions of the errors
are unknown. A bound on single-(qu)bit error probabil-
ity which guarantees almost certain error correction for
large codes is given by

Theorem 3. For an infinite family of (j, l)-limited
LDPC codes, quantum or classical, where the distance
d scales as a power law at large n, asymptotically certain
recovery is possible for (qu)bit depolarizing probabilities
p < pd ≥ p1, where 4p1(1 − p1) = p20(1 − p0)2(z−2) <
[e(z − 1)]−2, p1 < 1/2, and e is the base of the natu-
ral logarithm. A threshold pd > 0 also exists for code
families with distance scaling logarithmically at large n.

Proof. The clusters can be irrecoverably misidentified
only if there exists a set of s ≥ d connected vertices
on G1 with m ≥ ds/2e errors. We will call such sets
violating (s,m)-sets. To estimate the probability of en-
countering such a set, we notice that an (s,m) set with
an additional error at the perimeter can be extended to
become an (s + 1,m + 1) set. Thus, one only needs to
count connected sets of size s ≥ d, with perimeter free

of errors. For s ≥ d, the probability ñ
(p)
s (x) that one of

violating (s,m) sets includes the point x, can be limited

as ñ
(p)
s (x) < f

(p)
s (x), where

f (p)s (x) ≡
∑
t

ast(x)

u∑
m=ds/2e

(
s

m

)
pm(1− p)s−m+t. (5)

The sum over m can be limited by 2sps/2(1 − p)s/2+t,
which gives a bound in terms of the regular cluster size

distribution, f
(p)
s ≤ [4(1−p)/p]s/2n(p)s (x). Using Eq. (3),

we have the condition 4(1−p)/pα2
z < 1 to have exponen-

tial tail for ñ
(p)
s (x). This condition is satisfied for p < p1.

The rest of the proof follows that of Theorem 1.

Note that this bound is rather loose as there are many
sets which differ just by error-free regions. We believe
a more accurate general bound should be a factor of e2

larger, p1 = [2(z− 1)]−2, as can be obtained by counting
chains on a z-regular tree (to reduce multiple counts).

We also note that the threshold in Theorem 3 cor-
responds to maximum-likelihood (ML) decoding[34] and
is not related to a particular decoder, as is commonly
done for classical LDPC codes. For a practical approach
in the quantum case, one can identify putative clusters
by first adding all positions corresponding to a non-zero
syndrome element, then at each step adding up to `− 1
positions from each of the non-zero-syndrome rows which
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include qubit(s) already in the cluster. A corrected clus-
ter can be dropped [Theorem 3]; putative clusters which
cannot be corrected individually need to be joined with
one or more such cluster(s) nearby using a variant of the
algorithm for toric codes[5, 8, 9]. Below the percolation
threshold the actual clusters will typically have size of
order s . lnn/| lnαz|, scaling logarithmically with n.
Thus, for p < p1, we expect that the number of classi-
cal operations for exhaustive search of the correct error
configuration in each cluster will scale as a power of n.

So far our discussion has been limited to idealized
performance of the code, which assumes that the syn-
drome is measured perfectly. With qubit measurement
errors, LDPC codes suddenly appear at a disadvantage,
as a single-qubit error accompanied by the errors of some
of the stabilizer generators (up to j) which involve this
qubit, could remain undetected. In other words, the ef-
fective distance to such combined errors cannot exceed
the minimum column weight plus one. In order to pre-
vent errors from spreading, either we have to keep the
measurement error small, or we have to combine the in-
formation from different syndrome measurement cycles.
To help with the bookkeeping, we constructed an auxil-
iary classical code combining different time slices. The
code is based on the parity-check matrix of the origi-
nal code, and the repetition codes (in the simplest case)
for each measured syndrome[35]. This generalizes the
auxiliary three-dimensional gauge model used in the de-
coding of the surface codes[5]. The corresponding graph
G1 has up to 2j additional neighbors per qubit, which
corresponds to possible syndrome measurement errors
in the two neighboring layers. The percolation prob-
lem works similarly to that with perfect measurements.
Overall, the analysis in Theorem 3 can be repeated with
z → z′ ≡ j(` + 1), which in the case of isotropic er-
ror probability p = pmeas gives a finite lower bound
p ≥ [2e(z′ − 1)]−2 for such fault-tolerant measurements.

Combining repeated syndrome measurements is only
part of the story of fault-tolerant implementation of a
code. We implicitly assumed that the hardware allows for
parallel measurement of non-overlapping stabilizer gener-
ators, that this can be done in fixed time even though the
corresponding qubits may not necessarily lie next to each
other, and also that all gates are done fault-tolerantly
[36], so that errors do not spread. With these assump-
tions, the full syndrome can be measured in approxi-
mately z steps, which would take bounded time indepen-
dent of the size of the code. Fault-tolerant operation also
implies some implemetation of logical operators, e.g., as
suggested in Ref. 37.

Our results apply to QHPCs and related codes[13, 16].
As an example, we start with a random (h, v)-regular
binary LDPC code (h < v, ensemble A in Ref. [38])
with H1 = HT2 . The rate of such a code is limited,
Rc ≡ kc/nc ≥ 1 − h/v. With high probability at
large nc, the code will have the relative distance in ex-

cess of δc ≡ δc(h, v) given in Ref. 38. Such [nc, kc, dc]
codes produce QHPCs (1) which are (v, v + h)-limited
LDPC codes [z = v(v + h − 1)] with the asymptotic
rates R ≥ (v − h)2/(h2 + v2) and the distance scaling

as d/
√
n = δcv/

√
h2 + v2. For large n, all errors can be

corrected with certainty for single-qubit error probabil-
ities below p1, see Theorem 3. For h = 3, v = 4, we
obtain QHPCs [[n, n/25, 0.09

√
n]] with numerically es-

timated threshold probabilities that are close (within a
factor of two[39]) to the toric code thresholds of around
1% [5, 8, 9] and 19% [10], with and without the syn-
drome errors, respectively (e.g., these values are much
higher than the lower bound in Theorem 3).

Suppose we need to maintain quantum information for
N QEC cycles with a fault probability less than Pf . We
can crudely estimate the minimal required blocklength

from the equation Pf = NMf
(p)
d (x)d/n, where f

(p)
d (x)

is given by Eq. (5), M is the number of syndrome mea-
surements per QEC cycle (M = 2 for toric code and
M = 2v(v+h−1) for QHPC). Taking Pf/N = 10−9, we
need at least 30000 physical (1200 logical) qubits, fewer
than in k/2 copies of the toric code for the same Pf/N .

In conclusion, we established a sufficient condition
for an LDPC code family with asymptotically vanishing
relative distance to have a finite probability threshold
to correct all errors with certainty, including the case
of syndrome measurement errors, see Theorem 3. Exis-
tence of such a threshold is one of necessary conditions
for achieving fault-tolerance in a quantum computer, and
it should facilitate search for new efficient quantum codes
with less stringent requirements on the number of phys-
ical qubits. In particular, we established the existence
of such a threshold for the finite-rate quantum LDPC
codes constructed in the framework of QHPCs[13, 16].
According to our estimates, QHPCs require lower (more
stringent) error thresholds compared to toric codes, but
they use fewer physical qubits at large code blocklengths.

The simplest versions of hypergraph-product codes
correspond to the Wen-plaquette model[40] with topolog-
ical order described by Z2 symmetry. It is an open ques-
tion whether some classification of hypergraph-product
codes with respect to topological order can be done. Er-
ror correction threshold for the toric code can be re-
lated to the phase transition in the random bond Ising
model[5]. It is not known whether such a connection can
be established for general hypergraph-product codes.

We have also established the existence of a related
threshold when the erroneous qubits are known, see The-
orem 1, which resulted in an upper bound for the rate of
quantum LDPC codes [see Eq. (4)].
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