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The performance of a coherent perfect absorber (time-reversed laser) is limited by quantum and
thermal noise. At zero temperature, the quantum shot noise dominates the signal for frequencies
close to the resonance frequency, and both vanish exactly at the resonance frequency. We compute
the sensitivity of the absorbing cavity as a background-free detector, limited by finite signal or
detector bandwidth.

In recent work, the authors and collaborators have pro-
posed [1] and demonstrated [2] the phenomenon of coher-
ent perfect absorption, or “time-reversed lasing”. Ap-
plying the time-reversal operation to the classical elec-
tromagnetic equations yields the following statement: if
a cavity containing a gain medium reaches the lasing
threshold at frequency ω0 for a certain amplifying refrac-
tive index n(~r) = n1(~r)−in2(~r), then a cavity containing
a dissipative refractive index n∗(~r) will perfectly absorb
an input mode at ω0 corresponding to the time-reverse
of the lasing mode. We refer to such a lossy cavity as
a coherent perfect absorber (CPA). Assuming the input
signal is perfectly monochromatic, the above “CPA the-
orem” is rigorously true within classical electromagnetic
theory, where the effects of quantum and thermal noise
are neglected. The CPA is a generalization to arbitrary
geometries and arbitrary numbers of input channels of
the well-known concept of a critically-coupled resonator
(CCR) [3], an optical device which can be used for switch-
ing, modulation, enhanced photodetection and sensing
[4, 5], and which may be regarded as the single chan-
nel limit of a CPA. Because a CPA is associated with a
vanishing output signal in the classical zero-temperature
limit, a CPA (or CCR) can function as a background-
free detector or interferometer, similar to a Mach-Zender
interferometer (MZ). The fundamental limits to its ef-
fectiveness in this role are determined by quantum and
thermal noise, which are the subject of the present paper.

Quantum fluctuations, such as spontaneous emission,
break the symmetry between emission and absorption.
Hence, noise processes in a CPA (or CCR) differ from
those in a laser or amplifier. Within semiclassical theory,
the laser has zero linewidth; by including quantum fluctu-
ations, one obtains the Schawlow-Townes (ST) linewidth
[6], which decreases inversely with the output power well
above threshold. As is well-known, the ST linewidth
arises from the dephasing of the above-threshold laser
field due to quantum noise (usually characterized as “one
noise photon per relaxation time per mode”). Because a
CPA does not contain an inverted medium like a laser,
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the spontaneous emission in the absence of the input field
vanishes at low temperature, and there is no direct analog
of the ST linewidth in a CPA. At zero temperature, the
frequency characteristics of the output are determined
entirely by the input, and the CPA absorption resonance
has approximately twice the passive cavity linewidth, as
expected for critical coupling. However, this linewidth is
further modified by an analog of the Petermann factor
[7, 8]; this effect has not, to our knowledge, been recog-
nized in absorbing systems.

In principle, even when the CPA is at zero tempera-
ture, there may be some output noise arising from spon-
taneous emission (fluorescence) from atoms in the ab-
sorbing medium which are excited by the coherent input
[9]. However, in the solid state systems which are used for
CCRs and CPAs, there are typically many non-radiative
degrees of freedom into which the absorbed energy can
decay. For instance, in a semiconductor material such as
silicon (used in Ref. [2] as an experimental demonstra-
tion of a CPA), most of the absorbed energy is eventu-
ally converted to heat and drawn out to a thermal bath.
Throughout this paper, we will assume that the energy
absorbed by the CPA flows into non-radiative degrees
of freedom, instead of producing spontaneous emission
at the input frequency. Hence, we are studying a lower
bound on the CPA output noise, but one that is relevant
to practical implementations.

Under these assumptions, the only remaining source
of quantum noise at zero temperature is the partition
or shot noise of the photons. At the perfect absorption
resonance, there is no partitioning of the input photons
and hence both the average output and its variance van-
ish for a truly monochromatic input on resonance. In
practice, however, the unavoidable linewidth of the in-
put field, ∆in, combines with quantum shot noise to
generate a finite noise floor even at the resonance fre-
quency. The noise dominates the signal within an in-
terval δωx ∝

√
∆in/Pin around the resonance frequency,

where Pin is the power of the input signal. This behavior
is similar to a MZ, with the absorption into an exter-
nal reservoir playing the role of an unobserved MZ out-
put port. However, in contrast to the MZ, the resonant
frequency response of the cavity can give rise to para-
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metrically better signal-to-noise ratio in the vicinity of
the background-free point [10]. For T 6= 0, the CPA also
emits thermal radiation; at the absorption resonance, the
thermal emissivity takes the black-body value for a one-
port system (CCR), but the emission can be significantly
reduced in a multi-port CPA.

We can analyze the noise properties of the CPA using
the standard input-output framework of quantum optics
[11, 12]. Input and output photon operators are con-
nected by the classical electromagnetic scattering ma-
trix Sij(ω), where j = 1, 2, . . . , N denote the scattering
channels. The S-matrix for a CPA is sub-unitary due
to the presence of an absorbing reservoir; it describes a
“gray-body” which elastically scatters some fraction of
incident photons and absorbs the rest. The scattering
channels denote different spatial states in the asymptotic
region which suffice to represent an arbitrary incoming or
outgoing field at ω, e.g. incoming and outgoing angular
momentum channels in a two-dimensional scattering ge-
ometry. The input photon operators are denoted by aj ,
and the output photon operators by bj . The special case
of a single scattering channel (N = 1) corresponds to a
standard CCR. We assume that the CPA is coupled to
an ideal external reservoir, so that the absorption of light
produces negligible heating and hence negligible change
in the output noise. The photon operators are related by
an input/output relation [11–13]

bi(ω) =
∑
j

Sij(ω) aj(ω) +
∑
ν

Uiν(ω) cν(ω), (1)

where the cν ’s are ladder operators for reservoir quanta.
Here we have assumed a coupling to the reservoir which
adds the minimum amount of quantum noise [14]. The
requirement that a, b, and c obey canonical commutation

relations, e.g. [ai(ω), a†j(ω
′)] = δij δ(ω − ω′), yields the

fluctuation-dissipation relation [12]

SS† + UU† = 1, (2)

where 1 is the N ×N identity matrix. Equation (2) gen-
eralizes the unitarity relation of the lossless system, and
implies that the eigenvalues of the S-matrix generically
have magnitude smaller than unity.

We are interested in the shot noise in the output field,
for a coherent input at some frequency ω. To work with
equal-frequency correlators, it is convenient to rescale
the continuum operators {ai, bi, cν} to discrete opera-

tors {âi, b̂i, ĉν}, which are normalized so that the equal-

frequency commutator is unity, e.g. [âi(ω), â†j(ω)] = δij .
Here and in the following, we omit the ω dependence from
the notation. Next, the input photon operator can be re-
written using a displacement transformation [14, 16]

âi = αi + â′i, (3)

where αi is a coherent state amplitude, and â′i is an op-
erator accounting for fluctuations around the coherent

state, which likewise obeys the canonical commutation

relation [â′i, â
′†
j ] = δij . Hence,

b̂i =
∑
j

Sij (α̂j + â′j) +
∑
ν

Uiν ĉν . (4)

The operator Ni ≡ b̂†i b̂i gives the output photon flux
per unit frequency (at frequency ω) in channel i. (Cor-
respondingly, Ii = ~ω0Ni describes the spectral density.)
Using (4), we can calculate the expectation value and
correlation function for Ni, using standard Gaussian n-
point operator correlators [16]. We take 〈â′i〉 = 〈ĉν〉 = 0,

and 〈â′†i â′j〉 = 0 (zero net fluctuation around the specified

coherent input amplitude), and 〈ĉ†µĉν〉 = δµν f(T ) where

f(T ) = [exp(~ω/kBT ) − 1]−1 and T is the temperature
of the reservoir. The result for 〈Ni〉 is

〈Ni〉 = |(Sα)i|2 +
[
1− (SS†)ii

]
f(T ). (5)

Thus the total output is

〈N〉 =
∑
i

〈Ni〉 = |Sα|2 + f(T ) Tr(1− SS†), (6)

and the noise is

〈δN 2〉 ≡
∑
ij

[〈NiNj〉 − 〈Ni〉 〈Nj〉]

= |Sα|2

+ f(T )
{

2|Sα|2 − 2|S†Sα|2 + Tr
(
1− SS†

)}
+ [f(T )]2 Tr

[(
1− SS†

)2]
.

(7)

For T → 0, f(T ) → 0, (6) and (7) reduce to the Poisso-
nian result

〈N〉 =
〈
δN 2

〉
= |Sα|2. (8)

The CPA condition is achieved when the index of refrac-
tion of the cavity, n(~r), is chosen such that there exists
an eigenvector of the S-matrix with eigenvalue zero at a
specific input frequency ω0. If α is chosen to be this eigen-
vector, then we see from Eq. (8) that the mean outgoing
photon flux vanishes (as it should be from the classical
CPA theorem), and so does its variance (the shot noise).
This confirms the statement that the CPA effect is unaf-
fected by quantum fluctuations at zero temperature for
a purely monochromatic input.

For T > 0, 〈N〉 and
〈
δN 2

〉
are unequal, and differ

by a term arising from the beating between the thermal
emission and the scattered flux:〈
δN 2

〉
− 〈N〉 = f(T )

[
2|Sα|2 − 2|S†Sα|2

]
+O(f2). (9)

This difference can be shown to be strictly positive for
any input field. The term linear in f(T ) vanishes when
the input field, α, corresponds to the zero eigenvector, so
thermal noise in the CPA is very small for T . ~ω0/kB .
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We will discuss the T > 0 case further at the end of the
paper.

To estimate the sensitivity of a CPA as a detector,
we study its behavior for frequencies near the perfect
absorption resonance, ω0. For now, we consider T = 0.
In the absence of loss, the S-matrix has a sequence of
resonances, associated with poles in the lower half of the
complex ω plane and symmetrically placed zeros in the
upper half plane [1], at discrete frequencies ω = ω0 ∓
iγc/2. Near ω0, one of the S-matrix eigenvalues takes
the following approximate form [18]:

s(ω) ≈ eiϕ(ω) ω − ω0 − iγc/2
ω − ω0 + iγc/2

, (10)

where ϕ is an irrelevant phase factor and γc is the cavity
lifetime. Eq. (10) is a “single resonance approximation”
which ignores the presence of other nearby poles and ze-
ros. It satisfies the requirements that |s| = 1 when ω ∈ R
(the lossless S-matrix has unimodular eigenvalues), and
that s goes to zero and infinity at ω = ω0±iγc/2. Adding
absorption pushes the zero and pole down in the complex
frequency plane, as shown in Fig. 1(a); to lowest order,
they move down by equal amounts. To achieve the CPA
condition, exactly enough absorption is added to push
the zero down to the real ω axis. Then the eigenvalue of
the absorbing cavity is

s(ω) ≈ eiϕ(ω) ω − ω0 + i δγ

ω − ω0 + iγc
, (11)

where the parameter δγ � γc represents a small detun-
ing of the material loss from the perfect absorption res-
onance. Note that the resonance of the absorbing cav-
ity has twice the width of the passive cavity resonance
(γc/2 → γc). This is due to the “critical coupling” con-
dition that the absorption loss rate is equal to the scat-
tering loss rate.

In this case, if the input mode, α, corresponds to the
zero eigenvector of the S-matrix, then (at T = 0):

〈N〉 =
〈
δN 2

〉
≈ (ω − ω0)2 + δγ2

(ω − ω0)2 + γ2c

Pin(ω)

~ω∆in
. (12)

Here we have expressed the input photon flux per unit
frequency, |α|2, in terms of the input power

Pin(ω) = |α(ω)|2~ω∆in. (13)

This power is averaged over some bandwidth ∆in(ω),
which is taken to be the frequency resolution of either
the input state or the output detector/spectrometer,
whichever is smaller; ω is the center frequency of the
bandwidth window,

According to Eq. (12), as δγ → 0 and ω → ω0, the
mean and variance of the photon flux behaves as

〈N〉 =
〈
δN 2

〉
≈ (ω − ω0)2

γ2c

Pin(ω)

~ω∆in
. (14)
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FIG. 1. (color online) Scattering properties of a one-port
coherent perfect absorber (critically-coupled resonator) con-
sisting of a one-dimensional uniform dielectric slab of length
L, with a perfect mirror on one side and vacuum on the other.
(a) Location of poles (squares) and zeros (circles) in the com-
plex frequency plane. Open symbols show the poles and ze-
ros for the passive cavity with refractive index n = 3, and
filled symbols for an absorbing cavity with refractive index
n = 3+0.005i. The dashed and dotted lines are guides to the
eye for the geometric interpretation of the Petermann factor
given in Eq. (15). Without absorption, |ω − ωz| = |ω − ωp|,
where ω ∈ R and ωz and ωp are the frequencies of a neigh-
boring pair of zeros and poles (green dots). With very nar-
row band absorption, near a CPA resonance (in this case
ω ≈ 70.1c/L), this remains approximately true. However,
for broadband absorption, |ω − ωz| < |ω − ωp| (blue dashes).
(b) Plot of |s(ω)|2, where s(ω) is the eigenvalue of the scat-
tering matrix (i.e. in this one-port case the reflection coeffi-
cient). The red circles show exact numeric results obtained by
the transfer matrix method, while the solid blue curve shows
Eq. (15), with the product taken over the 20 pairs of poles
and zeros nearest to ω = 70L/c. The dashed curve shows the
single-resonance approximation, Eq. (11), using the pole and
zero nearest to ω = 70L/c.

The CPA resonance has a quadratic zero at ω0 (Fig. 2),
and, in the single resonance approximation, its width is
γc, the critically-coupled cavity linewidth. (We assume
that γc is much less than the free spectral range of the
resonator).

However, adding a lossy medium to the resonator
affects the S-matrix eigenvalue beyond the single-
resonance approximation, and the corrections to this ap-
proximation generically increase the width. This is the
exact analog of the Petermann factor in lasers, which in-
creases the ST linewidth [7, 8]. This is most easily seen
in the one-port case, where we can express the S-matrix
eigenvalue with a zero on the real axis as

s(ω) = eiϕ(ω)
ω − ω0

ω − ω0 + iγc

∏
n

ω − ωzn
ω − ωpn

, (15)
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where n indexes the other pairs of zeros and poles, which
have frequencies ωzn and ωpn respectively. This ansatz
agrees very well with exact numerical calculations of
s(ω), as shown in Fig. 1(b). Due to time-reversal sym-
metry, in the absence of loss, each factor in the prod-
uct would be unimodular, since the zeros and poles are
symmetrically distributed around the real axis. The in-
troduction of loss breaks this symmetry for all the poles
and zeros, not just the zero at ω0; this causes the ze-
ros to move towards the real axis and the poles away,
so that |ω − ωzn| < |ω − ωpn| for any real ω, as shown in
Fig. 1(a). This effect is neglected in the single resonance
approximation of Eq. (14). Including it leads to

〈N〉 =
〈
δN 2

〉
≈ (ω − ω0)2

Kγ2c

Pin(ω)

~ω∆in
, (16)

where K =
∏
n |(ω − ωpn)/(ω − ωzn)| > 1 for the one-

channel case. Calculating the Petermann factor for the
time-reversed counterpart of this cavity, which contains
gain instead of loss and sits at the first lasing threshold,
would yield exactly the same value of K [19]. This equiv-
alence follows from the properties of the S-matrix under
time-reversal, as does the CPA effect itself. For a more
complex, multichannel cavity, the explicit calculation of
the S-matrix eigenvalues is more complicated, but the
symmetry that leads to the factor 1/K in the eigenvalue
still holds. In other words, adding loss to the cavity so
as to reach the CPA condition increases the critically-
coupled cavity resonance linewidth from γc →

√
Kγc.

In calculating this broadening effect, one could assume
that the loss of the cavity is broadband, affecting all rel-
evant poles and zeros equally; a similar assumption of
broadband gain is made in standard calculations of the
Petermann factor. When this is not the case, both for
CPAs and lasers the Petermann correction is reduced,
and needs to be calculated using the frequency-dependent
refractive index of the cavity [19]. For the subsequent
analysis, we will assume that the K occurring in Eq. (16)
is a given parameter.

Exactly at ω0, both signal and noise vanish; since the
the shot noise [

〈
δN 2

〉
]1/2 is the square root of the signal

〈N〉, the noise will dominate the signal when 〈N〉 = 1,
which will occur at a crossover frequency near ω0. The
crossover frequency scale is

δωx ∼
√
Kγc

|α(ω0)|
=

[
~ω0∆in

Pin

]1/2 √
K γc. (17)

The measured values of the signal and noise must, how-
ever, be obtained by averaging (16) over the bandwidth
∆in at each frequency, as indicated by the dashed curves
in Fig. 2. These averaged values do not vanish at ω = ω0.
Up to a factor of order unity depending on the averaging
procedure, their residual values are

〈N〉ω0
= 〈δN 2〉ω0

≈ Pin(ω0) ∆in

12~ω0Kγ2c
∼
[

∆in

δωx

]2
. (18)
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FIG. 2. (color online) Plot mean output power (N ) and shot

noise power (
√
δN 2), as a function of frequency near a CPA

zero, for T = 0. The cavity is a two-sided uniform dielec-
tric slab with refractive index 3 + 0.005i and length L (see
schematic). For this case the CPA eigenmodes are simply in-
coming coherent plane waves of equal amplitude from each
direction, with either even or odd parity. Results for an even
CPA mode at frequency ω ≈ 138.23 c/L are shown. We have
chosen the input intensity |α|2 = 25. The solid curves are ob-
tained from Eq. (8), using the transfer matrix method to find
S(ω). The dashed curves are obtained by averaging these val-
ues over a bandwidth ∆in = 0.1 c/L, corresponding to a finite
spectrometer resolution. Inset: schematic of the system.

In particular, we can regard [〈δN 2〉ω0
]1/2 as the effective

shot noise level at the absorption resonance. It dominates
over the bandwidth-averaged signal if ∆in � δωx.

The crossover frequency scale δωx is related to the sen-
sitivity of the output to the loss detuning parameter δγ.
From Eq. (12), the change in the output signal at ω = ω0

resulting from δγ 6= 0 is

〈∆N〉 =

[
δγ

δωx

]2
. (19)

(To lowest order, this quantity is unaffected by
bandwidth-averaging.) The sensitivity of the CPA as a
low-background detector is given by the minimum δγ for
which 〈∆N〉 is distinguishable from the effective noise
level. Comparing (19) to (18), we obtain the result

|δγ| &
√
δωx∆in. (20)

Since a CPA can serve as an absorbing interferome-
ter/detector, it is useful to compare it to a lossless inter-
ferometer such as a Mach-Zender interferometer (MZ).
As shown in Fig. 3, an analogy can be made between a
CCR (single-channel CPA) and a MZ. The input pho-
ton operator a and the reservoir operator c, from the
one-channel version of Eq. (1), map onto two input pho-
ton operators for the MZ; meanwhile the output pho-
ton operator b maps onto one of the MZ outputs. The
fluctuation-dissipation relation, Eq. (2), is equivalent to
the relation for transmission into the observed port of the
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(a) (b)

FIG. 3. (color online) (a) Schematic of a one-channel absorb-
ing cavity, where the output amplitude b is a superposition
of the input amplitude a and the reservoir operator c. (b)
The corresponding Mach-Zender interferometer, with a and c
entering in the two input ports and b being one of the outputs.

MZ, Sb, (which follows from the unitary scattering ma-
trix for both ports):

Sb =
1

2

(
eiθ − 1

)
, |U2| = 1− |Sb|2, (21)

where θ is the phase difference between the two arms
of the interferometer. Perfect absorption in the cavity
corresponds to θ = 0, so that the a input is directed en-
tirely into the second, unmonitored output port, leaving
the b port empty. Quantum fluctuations in the empty
c input contribute to the shot noise. Note that in the
CCR, the single input beam interferes with itself and it
does not function as an optical interferometer, i.e. it does
not measure the relative phase of two input beams. The
multi-channel CPA does, however, act as an interferome-
ter. In the simplest case of two input channels and a cav-
ity with parity symmetry, the two S-matrix eigenmodes
have even and odd symmetry respectively, and only one
of these are perfectly absorbed at a given absorption reso-
nance. The interferometry is performed by making small
phase changes between the two input beams, moving the
system slightly away from the eigenchannel. For N > 2
and/or absent parity symmetry, both the magnitude and
phase of each input amplitude must be tuned in order
to reach perfect absorption; this is analogous to a multi-
input MZ-like interferometer whose input amplitudes and
phases may be tuned to send all the output into a single
port, playing the role of the absorbing channel.

The main difference between the CPA and the MZ lies
in the frequency dependence. For the latter, Sb varies
sinusoidally in frequency with free spectral range ∼ c/L,
where L is the dimension of the system. Absorbing cav-
ities, however, are described by Eq. (11), and for high-
Q cavities the absorption resonances are much narrower
than c/L. Since the signal-to-noise ratio depends in-
versely on γc, 1/L in the two cases, for a given value of
ω−ω0, the CPA would have a better signal to noise ratio.
This resonant enhancement of the sensitivity of a CCR
has been pointed out in a different context in Ref. [10].
A similar effect could be achieved in a MZ by adding res-

onant cavities along each arm to effectively increase the
optical path length.

Finally, we make some comments about the T > 0 case.
In Eq. (6), we see that 〈N〉 is written as the sum of the
classical scattered flux and the gray-body thermal emis-
sion, f(T )N [1− σ̄], σ̄ being the mean scattering strength
per channel [12]. For a CCR (one-channel CPA), σ̄ = 0
at the operating frequency of the absorption resonance,
so the thermal emission has the black-body value. In the
MZ analogy, Fig. 3(b), this is equivalent to connecting
the c input port to a black-body source. Since the MZ is
tuned so that the a input is completely directed into the
unmonitored output port, the black-body emission into
c is directed into the monitored output port b.

For a multi-channel CPA, the thermal emissivity is
less than the black-body value, even at the operating
frequency of the absorption resonance. This is because
only one of the N scattering strengths vanishes; the other
N − 1 scattering strengths are nonzero, so that σ̄ > 0.
From Eq. (9), the same is true of the thermal contribu-
tion to the output noise

〈
N 2
〉
. Furthermore, for N � 1

a “hidden black” scenario is possible, in which the CPA
perfectly absorbs the input field, α, but emits a negligible
amount of thermal radiation [17]. More specifically, for
a weakly absorbing system it is possible that the mean
albedo (reflectivity) can be large, σ̄ → 1, indicating an
almost white body, and implying that the thermal con-
tributions to 〈N〉 and

〈
N 2
〉

vanish, while nonetheless the
system is perfectly absorbing (down to the quantum noise
floor) if the correct input field is supplied. Elsewhere, two
of the authors have shown that this effect can be general-
ized beyond the case of a perfect CPA at resonance, to a
disordered scattering medium with weak absorption over
a large range of frequency and absorptivity [17].

The presence of thermal noise also affects the sensitiv-
ity of the CPA as a detector. From Eq. (7), the noise
level at ω = ω0 in the thermal noise dominated limit is〈

δN 2
〉thermal

ω0
≡ g(T ) ≈ f(T ) Tr

(
1− SS†

)
. (22)

Comparing this to the signal (19), we obtain the sensi-
tivity limit

|δγ| & g(T )1/4 δωx. (23)

The crossover between the bandwidth-dominated and
thermal-dominated noise regimes occurs at

g(T ) ∼
[

∆in

δωx

]2
. (24)

This research was supported by NSF ECCS grant
1068642, and by the Singapore National Research Foun-
dation under grant No. NRFF2012-02. We would like to
thank M. Devoret for helpful discussions.



6

[1] Y. D. Chong, Li Ge, Hui Cao, and A. D. Stone,
Phys. Rev. Lett. 105, 053901 (2010).

[2] W. Wan, Y. D. Chong, Li Ge, Heeso Noh, A. D. Stone,
and Hui Cao, Science 331, 889 (2011).

[3] A. Yariv, IEEE Phot. Tech. Lett. 14, 483, (2002).
[4] R. H. Yan, R. J. Simes and L. A. Coldren, IEEE

Phot. Tech. Lett., 1, 273 (1989).
[5] K. Kishino, S. Unlu, J.-I. Chyi, J. Reed, L. Arse-

nault, and H. Morkoc, IEEE J. Quant. Elect. 27, 2025
(1991). S. Unlu, K. Kishino, H.J. Liaw and H. Morkoc,
J. App. Phys. 71, 4049 (1992).

[6] A. L. Schawlow and C. H. Townes, Phys. Rev. 112 1940
(1958).

[7] K. Petermann, IEEE J. Quant. Elect. 15, 566 (1979).
[8] H. Haus and S. Kawakami, IEEE J. Quant. Elect. 21, 63

(1985).
[9] S. Longhi, Phys. Rev. A 83, 055804 (2011).

[10] J. H. Chow et al., Op. Ex. 16, 7726 (2008).
[11] C. M. Caves, Phys. Rev. D 26, 1817 (1982).
[12] C. W. J. Beenakker, Phys. Rev. Lett. 81, 1829 (1998).
[13] J. R. Jeffers, N. Imoto, and R. Loudon, Phys. Rev. A 47,

3346 (1993).
[14] A. A. Clerk et. al., Rev. Mod. Phys. 82, 1155 (2010).
[15] The critically-coupled resonator and other CPA precur-

sors correspond to the special case in which there is only
a single input/output channel and the S-matrix degen-
erates to a number.

[16] P. Lodahl and A. Lagendijk, Phys. Rev. Lett. 94, 153905
(2005).

[17] Y. D. Chong and A. D. Stone, Phys. Rev. Lett. 107,
163901 (2011).

[18] D. F. Walls and G. J. Milburn, 1994, Quantum Optics
(Springer, Berling).

[19] Y. D. Chong and A. D. Stone, Phys. Rev. Lett. 109,
063902 (2012).


