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We consider the phase-transition-like behaviour in the Rabi model containing a single two-level
system, or qubit, and a single harmonic oscillator. The system experiences a sudden transition from
an uncorrelated state to an increasingly correlated one as the qubit-oscillator coupling strength is
varied and increased past a critical point. This singular behaviour occurs in the limit where the
oscillator’s frequency is much lower than the qubit’s frequency; away from this limit one obtains a
finite-width transition region. By analyzing the energy-level structure, the value of the oscillator
field and its squeezing and the qubit-oscillator correlation, we gain insight into the nature of the
transition and the associated critical behaviour.

I. INTRODUCTION

The interaction between light and matter, and more
generally between harmonic oscillators and few-level
quantum systems, is ubiquitous in nature. In spite of
the simplicity in its basic mathematical description, it
results in a wide variety of phenomena, some of which
have been analyzed in detail over the past few decades
[1].

One of the interesting phenomena involving light-
matter interaction is superradiance. The study of this
phenomenon started with the idea that an ensemble con-
taining a large number of atoms can exhibit quantum-
coherent collective behaviour in its absorption and emis-
sion of photons [2]. This observation gave rise to the
Dicke model, where a large number of atoms interact
with a single (harmonic-oscillator) mode of the electro-
magnetic field. It was later realized that the Dicke model
exhibits a phase transition, both thermal and quantum,
between a state with negligible light-matter correlations
and one with strong correlations [3–6]. In the case of
the quantum phase transition, the correlations appear
when the coupling strength between the two subsystems
exceeds a certain critical value.

The prediction of the superradiance phase transition
in the Dicke model has resulted in enormous interest, in-
cluding a debate that continues to this day [7] on whether
such a phase transition could occur for a system with the
usual electric coupling between light and matter.

Studies on the superradiance phase transition in the
Dicke model typically consider the thermodynamic limit,
where the number of atoms approaches infinity with the
effective coupling strength between the collective atomic
mode and the electromagnetic mode kept independent
of atom number. This approach to realizing the phase
transition is naturally motivated by the fact that the in-
teraction between natural atoms and optical-frequency
cavities is weak compared to the bare atomic and cavity
frequencies.

Recently, the realization of qubit-oscillator systems us-
ing superconducting qubit circuits has made it possible to
achieve the so-called ultrastrong-coupling regime, where
the coupling strength between a single qubit and a sin-

gle oscillator is comparable to the bare frequencies of the
two constituents [8–12]. This ability relaxes the require-
ment of using large atomic ensembles in order to study
strong-coupling effects; a single (artificial) atom suffices.
Since the artificial atom in these studies is effectively a
two-level system, we shall sometimes refer to it as the
qubit.
It has been noted in a number of recent studies that

the single-qubit-single-oscillator problem exhibits simi-
lar phase-transition-like behaviour in the limit where the
ratio of the resonator frequency to the qubit frequency
tends to zero [13–16]. Here we examine this limit closely
and analyze the associated transition. We do so by ana-
lyzing the behaviour of several physical quantities in the
transition region. These include the energy-level struc-
ture, the average value of the field in the cavity, the
squeezing in the oscillator and the qubit-oscillator en-
tanglement. It should be emphasized that the limit con-
sidered here is clearly distinct from the thermodynamic
limit with a large number of qubits. We shall therefore
not use the term “phase transition” in this paper. It
is quite interesting that several ground-state properties
exhibit essentially the same behaviour in the two dis-
tinct limits. The correspondence between the two limits
is not complete, however, as evidenced by the fact that
no thermal phase transition occurs in the simple system
considered here (see Sec. V).

II. MODEL HAMILTONIAN

The system that we consider here is composed of a
single qubit coupled to a single harmonic oscillator. The
coupling contains only one term, and this term is linear
in the oscillator variables. The Hamiltonian describing
this quantum system is given by:

Ĥ = Ĥq + Ĥho + Ĥint, (1)

where

Ĥq = −∆

2
σ̂x − ǫ

2
σ̂z

Ĥho = h̄ω0â
†â+

1

2
h̄ω0 (2)
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Ĥint = λ
(

â+ â†
)

σ̂z ,

σ̂x and σ̂z are the usual Pauli matrices (with σ̂z |↑〉 =
|↑〉 , σ̂z |↓〉 = − |↓〉), and â† and â are the creation and
annihilation operators of the harmonic oscillator. The
parameters ∆ and ǫ are the so-called gap and bias of the
qubit, ω0 is the oscillator’s characteristic frequency, and
λ is the qubit-oscillator coupling strength.
For purposes of the present study, we focus on the case

with the qubit biased at its symmetry point (ǫ = 0),
where the Hamiltonian can simply be expressed as:

Ĥ = −∆

2
σ̂x + h̄ω0â

†â+ λ
(

â+ â†
)

σ̂z. (3)

It should also be noted that in writing this Hamiltonian
[and also in Eq. (2)] we ignore the so-called A2-term that
is at the heart of the superradiance-phase-transition con-
troversy [7].
In the absence of coupling, i.e. when λ = 0, the ground

state of the system is given by

|GS〉λ=0 =
|↑〉+ |↓〉√

2
⊗ |vac〉 . (4)

For very strong coupling, the quantitative definition of
which will become clear below, the ground state is highly
correlated and (to a good approximation) given by

|GS〉(large λ) =
1√
2
(|↑〉 ⊗ |α〉+ |↓〉 ⊗ |−α〉) , (5)

where |±α〉 are coherent states with opposite values of
the oscillator variable that couples to the qubit, i.e. the
field operator (â+ â†)/2.

III. TRANSITION POINT AND CRITICAL

BEHAVIOUR

Using the results from the thermodynamic limit,
i.e. the limit where the number of atoms is large, the
critical coupling strength separating the uncorrelated and
correlated ground states is expected to occur at the point

λc =

√
h̄ω0∆

2
. (6)

We shall show through the behaviour of various quanti-
ties that similar behaviour is obtained in the single-atom
case in the limit h̄ω0/∆ → 0. It should be emphasized
that, even though one might worry about the possibility
that λc might vanish or diverge in this limit, this appar-
ent complication disappears if one treats λc as a reference
point for measuring the coupling strength. If one then
considers the behaviour of the system as the parameter
λ/λc is varied across the point λ/λc = 1, no complica-
tions related to the behaviour of λc arise.
The tendency towards singular behaviour (in the de-

pendence of various physical quantities on λ) in the limit

hω0/∆
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FIG. 1: (Color online) The von-Neumann entropy S as a func-
tion of the oscillator frequency h̄ω0 and the coupling strength
λ, both measured in comparison to the qubit frequency ∆.
One can see clearly that moving in the vertical direction the
rise in entropy is sharp in the regime h̄ω0/∆ ≪ 1, whereas it
is smooth when h̄ω0/∆ is comparable to or larger than 0.1.
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FIG. 2: (Color online) The von-Neumann entropy S as a func-
tion of coupling strength λ [measured in comparison to the
critical coupling strength given by Eq. (6)] for various values
of the ratio h̄ω0/∆. In particular, we use the values 10−1

(red solid line), 10−2 (green dashed line), 10−3 (blue short-
dashed line) and 10−4 (purple dotted line). The inset shows
a magnified plot in the region around the critical point: the
ranges of the x and y axes are [0.9,1.1] and [0,0.4], respec-
tively. As the ratio h̄ω0/∆ decreases, the onset of entropy
becomes increasingly sudden.

h̄ω0/∆ → 0 is illustrated in Figs. 1-5. In these fig-
ures, the entanglement, spin-field correlation function,
low-lying energy levels (measured from the ground state)
and the oscillator’s squeezing parameter are plotted as
functions of the coupling strength. It is clear from
Figs. 2 and 3 that when h̄ω0/∆ ≤ 10−3 both the entan-
glement (which is quantified through the von-Neumann
entropy S = Tr{ρq log2 ρq} with ρq being the qubit’s
reduced density matrix) and the correlation function
C = 〈σzsign(a+ a†)〉 rise sharply upon crossing the crit-
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FIG. 3: (Color online) The correlation function C =
〈σzsign(a + a†)〉 as a function of coupling strength λ [mea-
sured in comparison to the critical coupling strength given by
Eq. (6)] for various values of the ratio h̄ω0/∆: 10−1 (red solid
line), 10−2 (green dashed line), 10−3 (blue short-dashed line)
and 10−4 (purple dotted line). The inset shows a magnified
plot in the region around the critical point: the ranges of the
x and y axes are [0.9,1.1] and [0,0.4], respectively. The cor-
relation function C exhibits behaviour similar to that of the
entropy, which is shown in Fig. 2.

ical point [17]. The low-lying energy levels, shown in
Fig. 4, approach each other to form a large group of al-
most degenerate energy levels at the critical point before
they separate again into pairs of asymptotically degen-
erate energy levels. This approach is not complete, how-
ever, even when h̄ω0/∆ = 10−3; for this value the energy
level spacing in the closest-approach region is roughly
ten times smaller than the energy level spacing at λ = 0.
The squeezing parameter is defined by the width of the
momentum distribution relative to that in the case of
an isolated oscillator. For consistency with Ref. [13], we
define it as:

sp + 1 =
〈p̂2〉

〈p̂2〉|λ=0

, (7)

where p̂ is the oscillator’s momentum operator, which is
proportional to i(â† − â) in our definition of the oper-
ators. The squeezing parameter mirrors the behaviour
of the low-lying energy levels. In particular we can see
from Fig. 5 that only when h̄ω0/∆ reaches the value 10−5

does the squeezing become almost singular at the critical
point.
We now look more closely at the critical exponents

around the critical point. Analytical expressions describ-
ing the critical behaviour of some quantities can be ob-
tained using a semiclassical calculation [13]. In partic-
ular, this approximation gives the result that just be-
low the critical point, the energy-level separation has the
functional dependence:

En − En−1 =
√
2h̄ω0

(

1− λ

λc

)1/2

, (8)
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FIG. 4: (Color online) The energy levels of the first ten ex-
cited states relative to the ground state energy as functions
of the coupling strength λ [measured in comparison to the
critical coupling strength given by Eq. (6)]. In (a) we take
h̄ω0/∆ = 10−1, in (b) we take h̄ω0/∆ = 10−2, and in (c) we
take h̄ω0/∆ = 10−3. The energy levels become increasingly
dense as the coupling strength approaches the critical value,
and they separate again (forming pairs) after the coupling
strength exceeds the critical value. The inset in (c) shows
a magnified plot in the region around the critical point: the
ranges of the x and y axes are [0.9,1.1] and [0,4], respectively.

while just above the critical point it is given by

En − En−2 = 2h̄ω0

(

λ

λc
− 1

)1/2

. (9)

The squeezing parameter should exhibit the same be-
haviour. The numerical results shown in Figs. 4 and
5 approach this functional dependence on both sides
of the critical point as we decrease the ratio h̄ω0/∆.
Under the same semiclassical approximation, one can
also analytically calculate the average value of the field,
i.e. 〈(â + â†)/2〉 [In the superradiance region one calcu-
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FIG. 5: (Color online) The squeezing quantifier sp + 1 as a
function of the coupling strength λ [measured in comparison
to the critical coupling strength given by Eq. (6)]. The differ-
ent lines correspond to h̄ω0/∆ = 10−1 (solid red line), 10−3

(dashed green line) and 10−5 (short-dashed blue line). The
inset shows a magnified plot in the region around the critical
point: the ranges of the x and y axes are [0.9,1.1] and [0,0.5],
respectively. The behaviour of the squeezing parameter mir-
rors that of the low-lying excited states shown in Fig. 4.
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FIG. 6: (Color online) The logarithm of the von-Neumann
entropy S as a function of the logarithm of the quantity
(λ/λc) − 1, which measures the distance of the coupling
strength from the critical value. The red solid line corresponds
to the single-qubit case, whereas the other lines correspond
to the multi-qubit case: N = 2 (green dashed line), 3 (blue
short-dashed line), 5 (purple dotted line) and 10 (dash-dotted
cyan line). All the lines correspond to h̄ω0/∆ = 10−7. The
slope of all lines is approximately 0.92 when (λ/λc)−1 = 10−4.
The ratio of the entropy in the multi-qubit case to that in the
single-qubit case approaches N for all the lines as we approach
the critical point.

lates the value in one of the two branches of the wave
function, i.e. one calculates the value of α in Eq. (5)].
The average value of the field vanishes below the critical
point, and it has the form

α =
∆

4λ

[

(

λ

λc

)4

− 1

]1/2

(10)

above the critical point. Its dependence on the coupling
strength just above the critical point can alternatively be
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FIG. 7: (Color online) The slope of the logarithm of the von-
Neumann entropy S as a function of the logarithm of the
quantity (λ/λc)− 1, which measures the distance of the cou-
pling strength from the critical value. The different lines cor-
respond to h̄ω0/∆ = 10−3 (solid red line), 10−5 (dashed green
line) and 10−7 (short-dashed blue line). The slope seems to
be approaching the value 1 as we approach the critical point,
but at some point, determined by the ratio h̄ω0/∆, the slope
has a peak and drops to zero. The deviation from the sim-
ple asymptotic behaviour is related to the fact that S has a
non-zero value at λ/λc = 1, as can be seen in Fig. 2.

expressed as

α =
∆

2λc

(

λ

λc
− 1

)1/2

. (11)

In Fig. 6 we plot the von-Neumann entropy as a function
of coupling strength on a log-log scale (above the critical
point). The slope of the curve for the smallest values
of λ is approximately 0.92. This value suggests that the
true critical exponent might be unity. One difficulty in
calculating the asymptotic value of the slope is the fact
that for any finite value of h̄ω0/∆, the von-Neumann
entropy deviates from the behaviour shown in Fig. 6 if
one comes too close to the critical point. This deviation
can be seen in Fig. 2 and is illustrated more clearly in
Fig. 7.

IV. MULTI-QUBIT CASE

Let us now consider the case with a finite number N
of qubits [18]. In this model, the qubits are usually as-
sumed to have the same single-qubit energies ∆ and the
same coupling strength to the oscillator, which is usually
defined as λ/

√
N . The Hamiltonian in this case is given

by:

Ĥ = −
N
∑

j=1

∆

2
σ̂(j)
x + h̄ω0â

†â+
N
∑

j=1

λ√
N

(

â+ â†
)

σ̂(j)
z

= −∆Ĵx + h̄ω0â
†â+ 2

λ√
N

(

â+ â†
)

Ĵz , (12)
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where we have defined the total spin operators Ĵα =
∑

σ̂α/2. In the limit h̄ω0/∆ → 0, all the results con-
cerning the low-energy spectrum of the resonator remain
unchanged; one could say that the reduction of the cou-
pling strength by the factor

√
N is compensated by the

strengthening of the spin raising and lowering operators
by the same factor because of the collective behaviour
of the qubits. In particular, the transition occurs at the
critical coupling strength given by Eq. (6). Because the
qubits now have a larger total spin (when compared to
the single-qubit case), spin states that are separated by
small angles can be drastically different (i.e. have a small
overlap). In particular, the overlap for N qubits is given
by cos2N (θ/2). By expanding this function to second or-
der around θ = 0, one can see that for small values of
θ the relevant overlap is lower than unity by an amount
that is proportional to N . This dependence translates
into the dependence of the qubit-oscillator entanglement
on the coupling strength just above the critical point.
The entanglement therefore rises more sharply in the
multi-qubit case (with the increase being by a factor N),
as demonstrated in Fig. 6.

V. FINITE-TEMPERATURE BEHAVIOUR

Equation (5) gives the ground state deep in the su-
perradiance region. The first-excited state has the same
form, but with a minus sign instead of the plus sign. The
energy separation between these two states decreases ex-
ponentially with increasing λ. As a result, an infinites-
imally small temperature would be sufficient to destroy
the coherence between the two branches of the wave func-
tion in thermodynamic equilibrium. Nevertheless, the
correlation function C exhibits essentially the same be-
haviour for the two states. Furthermore, all low-lying
energy levels have a qualitatively similar correlation be-
tween the state of the qubit and the field in the oscillator
(even though the entanglement might be lost). One can
therefore ask whether a finite-temperature phase tran-
sition would still occur between a region of correlated
qubit-oscillator states and a region with no correlation.
The energy level structure in the single-qubit case is

simple in principle. In the limit h̄ω0/∆ → 0, one can
say that the energy levels form two sets, one correspond-
ing to each qubit state. Each one of these sets has a
structure that is similar to that of a harmonic oscilla-
tor with some modifications that are not central in the
present context. In particular the density of states has
a weak dependence on energy, a situation that cannot
support a thermal phase transition. If the temperature
is increased while all other system parameters are kept
fixed, qubit-oscillator correlations (which are finite only
above the critical point) gradually decrease and vanish
asymptotically in the high-temperature limit. No sin-
gular point is encountered along the way. This result
implies that the transition point is independent of tem-
perature. In other words, it remains at the value given

by Eq. (6) for all temperatures. If, for example, one is in-
vestigating the dependence of the correlation function C
on the coupling strength (as plotted in Fig. 3), the only
change that occurs as we increase the temperature is that
the qubit-oscillator correlations change more slowly when
the coupling strength is varied.

VI. RELATION TO PHASE TRANSITION IN

THE THERMODYNAMIC LIMIT

As we have mentioned above, the phase transition in
the limit h̄ω0/∆ → 0 is distinct from that encountered in
the thermodynamic limit N → ∞. Given the similarities
between the two phase transitions, one can ask whether
it is possible to identify a single, unified condition for the
realization of singular behaviour. For example, one can-
didate for this unified condition could be h̄ω0/(N∆) → 0.
If such a unified condition existed, we would expect

that for any large value of N there is a proportionately
large value of h̄ω0/∆ above which the sharp transition
is replaced by a smooth crossover. However, the pres-
ence of a phase transition in the thermodynamic limit is
independent of the ratio h̄ω0/∆, including the zero and
infinite limits. In particular, if we consider the Dicke
model with an arbitrary value of N and first take the
limit h̄ω0/∆ → ∞ (meaning that this is the most dom-
inant infinite limit in the problem), the system effec-
tively reduces to the Lipkin-Meshkov-Glick model, which
exhibits singular behaviour in the limit N → ∞ (see
e.g. Refs. [16, 20]). We therefore conclude that the two
limits h̄ω0/∆ → 0 and N → ∞ cannot be unified in a
nontrivial manner.
In fact, the consideration of the thermodynamic limit

provides at least a partial explanaton for why singular be-
haviour is obtained only in the limit h̄ω0/∆ → 0 in the
single-qubit case. In the limit N → ∞, the phase transi-
tion occurs independently of the ratio h̄ω0/∆. However,
depending on the value of this ratio, the phase transition
region involves larger changes in the lower-frequency sub-
system, i.e. either the collective state of the qubits or the
state of the oscillator. In the limit h̄ω0/∆ → 0, the state
of the qubits only slightly deviates from the ground state
when the transition point is crossed, and it is plausible
that the singular behaviour would persist even when the
ensemble of qubits is replaced by a single qubit. In the
limit h̄ω0/∆ → ∞, the oscillator stays close to its ground
state while the state of the qubit ensemble undergoes
large changes upon crossing the transition point, a be-
haviour that clearly cannot translate straightforwardly
to the single-qubit case.

VII. CONCLUSION

We have analyzed the transition from an uncorre-
lated composite system to superradiance behaviour in
the single-qubit-single-oscillator Rabi model. We have
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shown that as the ratio of the oscillator’s frequency to
the qubit’s frequency approaches zero, various physical
quantities exhibit singular dependence that closely re-
sembles that encountered in the study of the superradi-
ance phase transition in the thermodynamic limit of the
Dicke model.
The qubit-oscillator entanglement and appropriate

qubit-oscillator correlation functions remain very small
below the transition point but increase rapidly as soon
as the coupling strength exceeds a certain critical value.
The low-lying energy levels (almost) collapse to a single
highly degenerate ground-state manifold at the transition
point. The amount of squeezing also peaks in a singular
manner at the critical point.
The energy level separations and the degree of squeez-

ing scale as |λ/λc − 1|1/2 on both sides of the critical
point, while the qubit-oscillator entanglement rises as
|λ/λc− 1|α above the critical point, with the exponent α
being slightly below unity.
In spite of the similarities in the behaviour of this sys-

tem with the behaviour of the Dicke model in the ther-
modynamic limit, the analogy is not complete, as evi-
denced by the absence of a thermal phase transition in

the single-qubit-single-oscillator system.

The Rabi model with arbitrary coupling strength re-
mains an active area of research. Recent studies have ad-
dressed questions related to the integrability of the model
[19], various approximations and exact solutions [15, 21],
dynamics and dissipation [22], proposals of potentially
robust designs for quantum bits [23] and novel strongly
correlated many-polariton states [24]. The present work
deals with this ubiquitous physical model, and we expect
that the results presented here will help improve our un-
derstanding of the basic properties of the model.
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