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Abstract

The pulsed radiation field propagating in a thick resonant absorber induces the polarization

(quantified by the induced atomic dipoles in optical domain or the induced nuclear transition

moments in gamma domain), which is distributed oscillatory along the absorber forming a sandwich

of polarization layers with opposite phases. As a result, the re-emitted, scattered fields in different

layers interfere with the incident input field destructively or constructively, giving rise to the well-

known dynamical beats of the output radiation. We propose a method how to force these layers in

the sandwich to re-emit in phase with the incident field, which results in a strong radiation burst

of short duration at the output of the absorber. We demonstrate this method experimentally for

the 14.4 keV nuclear transition in 57Fe.

PACS numbers: 42.50.Gy, 33.45.+x, 76.80.+y
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I. INTRODUCTION

Resonant interaction of a single photon with macroscopic absorbers containing atoms,

molecules, impurity ions, nuclei, etc. is a cornerstone of quantum mechanics [1]. This is a

basic element in coherent (elastic) as well as incoherent (inelastic) interaction of the elec-

tromagnetic radiation field with matter employed in modern technology, including telecom-

munication and optical imaging. Moreover, many proposals how to use single photons and

atomic ensembles in quantum communication, quantum memory and computing were dis-

cussed recently (for a review, see [2] and references therein). However, there are only a few

experiments with single photons and atomic ensembles, and they are usually implemented

using either high finesse cavities or auxiliary excitation of atoms by a strong laser fields (see,

for example, Ref. [3]). Meanwhile, quantum computations suppose to use large number

of qubits and require that each qubit processing must consume only an extremely small

amount of energy. Thus, it is preferable to minimize or even avoid any coherent preparation

of atomic ensembles by laser pulses.

In this paper we propose and report experimental implementation of a new method of

single photon processing (revival and shaping) without initial preparation of a macroscopic

absorber. Our method does not require neither cavities no auxiliary coherent fields. We

found that the polarization, created in a resonant two-level absorber by a single-photon ra-

diation field, is distributed oscillatory along the absorber forming a sandwich of polarization

layers with opposite phases. This leads to either destructive or constructive interference of

the re-emitted (scattered) fields from different layers with the incident field, resulting in the

well-known dynamical beats of the output radiation. We suggest to divide physically the

absorber into slices (two, three or even more) such that at a particular moment of time the

phase of the polarization is homogeneous in each slice, i.e., the absorber is divided according

to the distribution of the polarization layers at a particular moment of time. If at that time

one makes a fast displacement of the odd slices (polarization layers) by a half wavelength

of the radiation field (λ/2) then the phase of the polarization of each slice becomes the

same and the radiation fields, scattered by each slice, become in phase with the incident

field. Such a polarization phasing produces a short and strong radiation burst at the output

of the sliced absorber, which we name the sandwich absorber. This method is especially

attractive in gamma domain where high finesse cavities and sources of sufficiently strong co-
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herent fields are not available. We make a proof of principal demonstration of the suggested

technique in gamma domain with the help of the sandwich absorber whose slices (layers)

can be moved rapidly.

We use a weak natural source of gamma-quanta whose energy, 14.4 keV, is resonant to 57Fe

nuclei, incorporated randomly into a solid absorber. Each event of 14.4 keV photon emission

is heralded by the first photon (122 keV) in a cascade decay of the radioactive 57Co, located

in the source. By the time-delayed coincident measurements (TDCM) of two photons (122

keV and 14.4 keV) it is easy to reconstruct the envelope of the single-photon wave-packet

(14.4 keV) and to find the change of this envelope after passing through a thick resonant

absorber (see, for example, Refs. [4–8] for details). Gamma domain is very convenient for

the test experiments with single photons since (i) the detectors have high efficiency in this

domain with extremely low level of dark counts, (ii) it is easy to avoid the detection of 14.4

keV photon in the heralded (122 keV) channel by shielding the first detector, for example,

with a thin copper foil, and (iii) the 14.4 keV excited state of 57Fe nuclei in the absorber

has long lifetime (141 ns) and 14.4 keV photons, emitted by the source, have long coherence

time (282 ns) because the emission line of 57Co is predominantly naturally broadened. The

last point allows to use simple electronics in a data-acquisition system.

The paper is organized as follows. In Sec. II we present the general formalism of the

description of a photon propagation in a thick absorber with a single resonance. In Sec. III

we consider the influence of the instantaneous displacement of the absorber on the output

radiation field. In Secs. IV, V, and VI we consider the propagation of a single photon through

the sandwiches of two and three samples and analyze the effect of a sudden displacement

of a separate sample or samples in the sandwich absorbers on the output radiation field. In

Sections VII and VIII, the experimental results and their discussion are presented.

II. PHOTON PROPAGATION IN ABSORBING MEDIUM

In this section we outline the method, which we use for the description of a single photon

interaction with a dense absorptive medium. As it is shown in Refs. [7, 9], the propagation

of a single photon through a macroscopic absorber can be described in the semiclassical

approach. Namely, a photon, emitted by the source, is described as a classical pulsed field,
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a0(z, t)E, where a0(z, t) is the photon probability amplitude

a0(z, t) = Θ (t− t0) e
−(iω+γ)(t−t0)+ikz. (1)

Here ω and k are the frequency and wave number of the photon, z is a distance from the

source, 2γ = Γ is the decay rate of the excited state, Θ(t) is the Heaviside step function,

and t0 is the moment of time when the excited state of the source is formed.

Since the amplitude of the single-photon field is very small, its interaction with resonant

particles in the absorber is described in the linear response approximation. Namely, the

nondiagonal element of the density matrix of each particle, ρeg = σeg exp(−iωt + ikz), is

evolving in accord with the master equation for its slowly varying amplitude σeg,

σ̇eg = −γσeg + iΩ(z, t), (2)

where Ω(z, t) = degE0(z, t)/2~, deg is a matrix element of the dipole transition between

ground, g, and excited, e, states of a particle, and E0(z, t) = a(z, t)E exp(iωt − ikz) is a

slowly varying field amplitude whose input value at the front face of the absorber is specified

by a0(z, t). Here, for simplicity, the decay rate, γ, of the matter coherence, σeg, is taken

to be the same as the decay rate of the photon probability amplitude and we limit our

consideration to the case of exact resonance. Below we adopt the notations conventional in

quantum optics and electrodynamics of continuous media (see Ref. [10] for the translation

to the notations conventional in gamma-optics).

Slowly varying amplitude of the macroscopic polarization, excited in the medium by the

radiation field, is defined by the relation p(z, t) = Ndegσeg(z, t), where N is the density

number of the resonant particles.

In the slowly varying amplitude approximation the 1D wave equation for the radiation

field is reduced to

L̂Ω(z, t) = iαγσeg(z, t)/2, (3)

where L̂ = ∂z + c−1dt and α is the resonant absorption coefficient. By means of the Fourier

transform,

F (ν) =

∫ +∞

−∞

f(t)eiν(t−t0)dt. (4)

Eqs. (2) and (3) are reduced to

σeg(z, ν) = −Ω(z, ν)

ν + iγ
, (5)
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[
∂

∂z
− iν

c
+ A(ν)

]
= 0, (6)

where

A(ν) =
iαγ/2

ν + iγ
. (7)

The solution of Eq. (6) is

Ω(z, ν) = Ω(0, ν) exp [(iνz/c)− A(ν)z] , (8)

where Ω(0, ν) is the Fourier transform of the input field envelope at the front face of the

absorber with the coordinate z = 0. The inverse Fourier transform gives the familiar ex-

pression for the development of the radiation field in the resonant absorber with distance,

that is

Ω(z, t) =
1

2π

∫ +∞

−∞

Ω(0, ν) exp [−iν(t − z/c)−A(ν)z] . (9)

Below for simplicity of notations we disregard z/c in Eq. (9) since it is small for samples,

used in gamma-optics. Actually, it is quite easy to incorporate this retardation parameter

into final expressions [for example, in Eq. (10)] by simple substitution t → t− z/c.

For the input field, given by Eq. (1) with t0 = 0, the output field for the absorber of

thickness z is (see Ref. [4, 9])

Ω(z, t) = e−γtΩ0Θ(t)J0

(
2
√
bt
)
, (10)

where , Ω0 is the maximum amplitude of the radiation field at the input (z = 0) if t = 0,

J0(x) is the zero-order Bessel function, and b = αzγ/2 = αzΓ/4. According to Eq. (5) and

solution (10), the spatiotemporal evolution of the matter coherence is given by the following

explicit formula

σeg(z, t) = ie−γtΩ0Θ(t)

∫ t

0

J0

(
2
√
bτ
)
dτ, (11)

which is derived with the help of the convolution theorem. The integration yields (see Ref.

[11])

σeg(z, t) = ie−γtΘ(t)Ω0t
J1

(
2
√
bt
)

√
bt

, (12)

where J1(x) is the first-order Bessel function.

The coherence σeg(z, t) is pure imaginary since the radiation field is in exact resonance.

Depending on the sign of the function J1

(
2
√
bt
)

the phase of the coherence is +π/2 or

−π/2 with respect to the phase of the incident field Ω0 exp(−γt). Since the argument of
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this function, 2
√
bt =

√
αzΓt, depends on time t and distance z, the sign of the phase shift

of the matter coherence alternates with time and distance.

Spatial dependencies of the radiation field Ω(z, t) (dotted line) and imaginary part of the

coherence σeg(z, t) (solid line) along the sample at Γt = 1 are shown in Fig. 1. It is clearly

seen that in the domains I and III the imaginary part of the coherence is positive, while in the

domain II it is negative. Thus, the absorber is divided into domains with alternating sign of

the matter coherence or polarization. Therefore the scattered fields, re-emitted by different

layers of the absorber, interfere with the incident field either destructively or constructively.

This results in a fast damping of the leading edge of the output radiation pulse, followed

by the dynamical beats, which may be viewed as a superposition of the incident field and

scattered fields in different domains.

With time the sizes of the domains with the same phase of the polarization, i.e, the sizes

of the homogeneous polarization layers, shorten inversely proportional to αΓt. These sizes

can be expressed via cooperative length Lc = c/ωc as the distances proportional to L2
c/(ct),

where ωc = (8πdegNω/~)1/2 is the well-known cooperative frequency of the two-level medium

and N is the density of resonant particles in it. For example, the absorber is completely

covered by the domain I if the length of the absorber is 14.68L2
c/(ct) or 14.68/(αΓt). Since

Γt is not to be large (otherwise the radiation field and polarization become exponentially

small) the coherent effects, discussed in this paper, appear only in thick samples, i.e., if

the condition αLa > 14.68/Γt is satisfied, where La is the absorber length. In terms of the

cooperative frequency ωc this condition demands that ωc is to be larger or of the order of

4
√
cγ/La. The latter condition is similar to the well-known condition for the existence of

the oscillatory regime in superradiance [12] and implies relatively small incoherent decay

rate γ, large cooperative frequency ωc, and large sample length La.

III. ONE-SAMPLE ABSORBER

In this section we consider the absorber consisting of only one sample, see Fig. 2(a).

If the sample is displaced instantaneously by the half-wavelength of the gamma-radiation,

∆z = λ/2, along the direction of the field propagation, the phase of the coherence of each

particle at the new locations, z + ∆z, acquires an additional phase shift, k∆z = π, with

respect to the phase of the incident plane wave ∝ exp(−iωt + ikz), described by Eq. (1).
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Therefore, the phase of the re-emitted, i.e, coherently scattered radiation (dipoles ringing)

changes by π after the displacement. The displacement can be considered as an instantaneous

if it takes place very fast with respect to all slow frequencies in the system, including γ and

b.

We choose the moment of time td > t0 of the instantaneous sample displacement, ∆z =

λ/2, when the coherence of the particles, located at the output of the sample, reaches its

first zero. By that time only the domain I (see Fig. 1) of the matter coherence (polarization)

is formed in the sample.

To find the transients, induced by the instantaneous displacement of the sample, we

consider the incident radiation field Ω(0, t) as consisting of two pulses, i.e.,

Ω(0, t) = Ω1(0, t) + Ω2(0, t), (13)

where Ω1(0, t) = Ω0e
−γt[Θ(t) − Θ(t − td)] is the first pulse with a finite duration td and

Ω2(0, t) = Ω0Θ(t− td)e
−γt is the second pulse, which is applied at time td.

The calculation of the integral in Eq. (9) for these pulses is essentially simplified with

the help of the response function technique (i.e., with the help of the method of Green’s

function), see Refs. [5, 6, 8], where according to the convolution theorem this integral is

reduced to

Ωn(z, t) =

∫ +∞

−∞

Ωn(0, t− τ)R(z, τ)dτ. (14)

Here R(z, t) is the Green’s function, which describes the output radiation from a sample of

thickness z, if the input radiation is a very short pulse whose shape is given by the Dirac

delta function, δ(t). For a resonant sample with a natural absorption linewidth, Γ, the same

as the linewidth of the emission line of the source nucleus, the Green’s function is

R(z, t) = δ(t)−Θ(t)e−γt

√
b

t
J1

(
2
√
bt
)
. (15)

Calculating the integral in Eq. (14) for the two pulses, Ω1(0, t) and Ω2(0, t), we find that

Ω1(z, t) = Ω0e
−γt

[
Θ(t)J0

(
2
√
bt
)
−Θ(t− td)J0

(
2
√
b(t− td)

)]
, (16)

Ω2(z, t) = Ω0e
−γtΘ(t− td)J0

(
2
√
b(t− td)

)
. (17)

Below we calculate the fields Ω1(z, t) and Ω2(z, t) at the place of the photo-detector with

coordinate Z. For simplicity, one can consider Z as a distance from the source to the detector.
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This distance does not change after the absorber displacement. Actually, the distance Z is

present only in the exponential factor in the field amplitude, i.e., in Ω(Z, t) exp(−iωt+ ikZ),

while the slowly varying amplitude of the field, Ω(Z, t), does not depend on Z, but depends

only on the physical thickness of the absorber, La, specifying the thickness parameter b =

αLaΓ/4 in Eqs. (16), (17).

Before the absorber displacement at time td the amplitude of the radiation field at the

output of the absosber coincides with that given in Eq. (10). Just after the displacement

the input field Ω1(0, t) is switched off but the dipoles in the sample continue to ring pro-

ducing the coherently scattering field, which is known as free induction decay (FID), see

discussion of this point in Ref. [13], appendix B. However, since the position of the dipoles

is changed by λ/2 at td, the phase of the scattered field at the place of the photo-detector

changes by π with respect to the phase of the field Ω1(Z, t) exp(−iωt+ ikZ) just before the

displacement. Therefore, the scattered field or FID after td is ΩFID(Z, t) exp(−iωt+ ikZ) =

−Ω1(Z, t) exp(−iωt + ikZ).

The second pulse, Ω2(0, t), traveling through the absorber, transforms at the place of the

photo-detector to Ω2(Z, t) exp(−iωt + ikZ) because this pulse interacts with the absorber

being at rest just after its displacement. Therefore, after td the total output field at the

place of the photo-detector is Ω(Z, t) = −Ω1(Z, t)+Ω2(Z, t), where the common exponential

factor exp(−iωt + ikZ) is omitted for simplicity of notations. Combining these results in

one expression we obtain

Ω(Z, t) = Ω0e
−γtΘ(t)

{
[1− 2Θ(t− td)] J0

(
2
√
bt
)
+ 2Θ(t− td)J0

(
2
√
b(t− td)

)}
. (18)

To some extent, this expression is similar to the expression for the so called ”gamma-echo”,

produced by the instantaneous displacement of the radiation source with respect to the

absorber being at rest, see Refs. [5, 6]. However, the phase of the field Ω(Z, t) exp(−iωt +

ikZ) in Eq. (18), which is produced by the sample displacement, is opposite to the phase

of the gamma-echo at t > td and coincides with the phase of the radiation field that would

exist without the absorber displacement.

It is remarkable that the expression in curly brackets in Eq. (18) has absolute maximum

value at t = td, which is −J0

(
2
√
btd

)
+ 2 = 2.403, if at this time the matter coherence

(polarization) at the output of the sample, La, is zero, σeg(La, td) = 0. This is because the

first zero of the Bessel function of the first order, J1

(
2
√
btd

)
= 0, takes place when the
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zero-order Bessel function has its first negative extremum, J0

(
2
√
btd

)
= −0.403, (see Fig.

1). This condition is satisfied if btd = 3.67.

For the first time the possibility to reach the absolute maximum in the transient signal of

the gamma-echo for a particular value of the product btd was found by Helisto et al. in Ref.

[5], however without mentioning of this phenomenon connection to the specific distribution

of the matter coherence in the absorber. In Ref. [5] it was shown that the maximum

probability (which is the amplitude squared) of the echo signal is 5.77 times larger than the

probability of the resonant fraction of the input radiation just before td if btd = 3.67.

The radiation burst, induced by the sample displacement, is explained as follows. Before

the moment of the displacement td the phase of the polarization in the domain I (see Fig.

1) is such that it is absorptive, since it generates the coherently scattered field, which is

in antiphase with the incident radiation field. Therefore, the incident and scattered fields

interfere destructively producing radiation damping. This is the basic mechanism of the

attenuation of the field propagating through the absorber.

The shift of the polarization phase by π makes the resonant particles emissive since due

to the phase shift the coherently scattered field becomes in phase with the incident radiation

field and both fields interfere constructively. This is seen as the radiation burst at the output

of the sample.

The instantaneous phase shift is actually an idealization. If the sample displacement is

not instantaneous, then one has to take into account a continual character of the sample

motion, which takes place during some finite time interval. This can be done by choosing

the reference frame moving with sample. In this frame the sample, being at rest, experiences

the input radiation field with the variable phase ϕ(t) = kδz(t), where δz(t) is the distance

change between the source and the absorber. Calculating the output radiation from the

absorber and performing the inverse transformation to the laboratory frame, we obtain

Ωϕ(z, t) = Ω0Θ(t)e−γt


1− eiϕ(t)b

∫ t

0

e−iϕ(t−τ)
J1

(
2
√
bτ
)

√
bτ

dτ


 . (19)

This expression can be transformed to (see Ref. [14])

Ωϕ(z, t) = Ω0Θ(t)e−γt+iϕ(t)
[
e−iϕ(0)J0

(
2
√
bt
)
+ fϕ(t)

]
, (20)

where

fϕ(t) = −i

∫ t

0

ϕ′

t(t− τ)e−iϕ(t−τ)J0

(
2
√
bτ
)
dτ. (21)
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Here ϕ′

t(t− τ) is a time derivative of the function ϕ(t− τ).

The influence of the phase-change rate, r, on the intensity of gamma-echo is analyzed in

Ref. [8], where it is shown that the echo signal becomes recognizable if r is larger than the

parameter b. Maximum intensity of the echo signal approaches to its ideal limit inherent for

the instantaneous phase change if r is at least 10 times larger than b, see Ref. [14].

IV. TWO-SAMPLES ABSORBER: RADIATION BURST

In this section we consider two separate samples with thickness parameters b1 = αL1Γ/4

and b2 = αL2Γ/4, where L1 and L2 are their physical thicknesses. These samples are placed

in a row along the propagation direction of the radiation field such that the first sample

with the parameter b1 interacts first with the source field, see Fig. 2(b).

The slowly varying amplitude, Ω(L1, t), of the field at the output of the the first sample,

Ω(L1, t) exp(−iωt + ikz1), is described by Eq. (10), where b is to be substituted by b1. In

the exponential factor of the field, z1 is a coordinate of the sample output. The input field

for the second sample is Ω(L1, t) exp(−iωt + ikz1 + ikd12), where d12 is a distance between

the first and the second samples. With the help of Eq. (14) one can calculate the radiation

field, Ω(z2, t) exp(−iωt + ikz2), at the second-sample output (whose coordinate is z2) and

obtain the expression for the field amplitude, which is reduced to

Ω(z2, t) = Θ(t)Ω0e
−γt

[
J0

(
2
√

b1t
)
−

∫ t

0

J0

(
2
√

b1(t− τ)
)√

b2
τ
J1

(
2
√

b2τ)
)
dτ

]
. (22)

The integral in Eq. (22) is calculated in the appendix A. The result, obtained there, allows

to simplify the expression for Ω(z2, t) to

Ω(z2, t) = Θ(t)Ω0e
−γtJ0

(
2
√

(b1 + b2)t
)
. (23)

This result is obvious since in the case of motionless samples their total effective thickness

is just the sum of the effective thicknesses, b1 and b2, of the components constituting one

effective sample with the length L1 + L2.

If the first sample experiences the instantaneous displacement by ∆z = λ/2 and the

second sample does not [see Fig. 2 (b)], then the amplitude, Ω(L1, t), of the input field

for the second sample, Ω(L1, t) exp(−iωt + ikz2in), is described by Eq. (18), where b is

substituted by b1. Here, by z2in we denote the coordinate of the input face of the second
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sample. The amplitude of the field at the output of the second sample with coordinate z2

can be calculated with the help of Eq. (14). The result is

Ω(z2, t) = Ω0e
−γt

{
Θ(t)J0

(
2
√

(b1 + b2)t
)
+ 2Θ(t− td)

[
F (t, td)− J0

(
2
√
b1t

)]}
, (24)

where

F (t, td) = J0

(
2
√
(b1 + b2)(t− td)

)
+

∫ t−td

0

J0

(
2
√
b1(t− τ)

)√
b2
τ
J0

(
2
√
b2τ

)
dτ. (25)

It is obvious that just after the displacement of the first sample the output field from the

second sample demonstrates the spike whose maximum amplitude is

Ω(z2, td) = Ω0e
−γtd

[
2− 2J0

(
2
√
b1td

)
+ J0

(
2
√
(b1 + b2)td

)]
. (26)

If time td and the effective thickness of the samples are chosen such that b1td = 3.67 and

b2td = 8.63, then the coherence σeg(z, td) is distributed along the first sample such that

this sample is completely in the domain I (see Fig. 1). The distribution of the coherence

σeg(z, td) in the second sample corresponds to the case if the second sample is in the domain

II (see Fig. 1). Fast displacement of the first sample makes its coherence emissive for the

incident radiation field, Ω(0, t), since this field and the scattered field interfere constructively

after the displacement. The coherence of the second sample is also emissive for the incident

radiation field, Ω(0, t), since the field, scattered in this sample, interferes constructively with

the incident field. As a result, we have a temporal amplification of the field in both absorbers

instead of net absorption.

Thus, just before the displacement of the first sample (t = td−0) its coherence, −iσeg(z, t),

is positive, and the coherence of the second sample, −iσeg(z, t), is negative. Therefore,

the polarizations of the first sample and the second sample re-emit in opposite phases.

Fast displacement of the first sample makes both coherences negative at t = td + 0, i.e.,

they become both emissive and polarizations of the two samples emit the fields interfering

constructively with the incident radiation field. To realize this case the second sample is to

be 2.35 times thicker than the first sample.

With these parameters we have 2J0

(
2
√
b1td

)
= −0.806 and J0

(
2
√

(b1 + b2)td

)
= 0.3.

Then the maximum amplitude of the spike is 3.1 times larger that the amplitude of the

source radiation Ω0 exp(−γtd) just before the first-sample displacement, and the intensity

is 9.6 time larger than the intensity of the input radiation at td. Comparison of the echo
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signals from one and two samples is shown in Fig. 3, where the probability P (t) = |a(z, t)|2

is plotted versus time t. For the plot Fig. 3(a) we take Γtd = 1, b1 = 3.67Γ, and b2 = 8.63Γ,

and for Fig. 3(b) the parameters are Γtd = 3, b1 = 1.22Γ, and b2 = 2.87Γ. In the case

of one sample we take La = L1 and for two samples their total length is Ltot = L1 + L2.

The distance between two samples is neglected. It is clearly seen from the plots that the

signal from two samples is shorter and stronger than the signal from one sample. The

echo intensity is smaller in Fig. 3(b) than in Fig. 3(a) because of the exponential factor,

exp(−γtd), decreasing the amplitudes of the source radiation and coherently scattered fields

by time td when the sample displacement is applied.

If the position of the first sample changes not instantaneously, then the amplitude of

the input radiation field for the second sample is described by Eq. (19). Calculating the

amplitude of the output radiation from the second sample, with the help of Eq. (14) we

obtain

Ωϕ(z2, t) = Θ(t)Ω0e
−γt

[
J0

(
2
√
b2t

)
+ F1(b1, t) + F12(b1, b2, t)

]
, (27)

where

F1(b1, t) = −eiϕ(t)b1

∫ t

0

e−iϕ(t−τ)J1

(
2
√
b1τ

)
√
b1τ

dτ, (28)

F12(b1, b2, t) = b1b2

∫ t

0

dτ1

∫ t−τ1

0

dτ2e
iϕ(t−τ1)−iϕ(t−τ1−τ2)

J1

(
2
√
b2τ1

)
√
b2τ1

· J1

(
2
√
b1τ2

)
√
b1τ2

. (29)

To estimate the influence of the time interval and the rate of the displacement on the

amplitude and duration of the radiation spike we model the phase evolution by the function

ϕ(t) = tan−1[r(t− td)] + π/2. (30)

It changes from 0 to π with the rate r. A time derivative of ϕ(t), which is an instantaneous

frequency of the radiation field in the reference frame moving with the first sample, is

ϕ′

t(t) =
r

1 + r2(t− td)2
. (31)

Two examples of the transient-signal modification for different values of r are shown in

Fig. 4. If r = 10(b1 + b2) the echo signal almost reproduces the signal in ideal case of the

instantaneous phase shift, except the sharp peak at the top, which is smoothened. If the

rate r is only three times larger than b1+b2, then the maximum intensity of the signal drops

essentially. However, the echo signal is still recognizable.
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V. TWO-SAMPLES ABSORBER: RADIATION QUENCHING

In this section we consider the case if only the second sample experiences the instanta-

neous displacement. If before the moment of time td of the displacement the first sample

was in the domain I and the second sample was in the domain II, then, after td the sign

of the second-sample coherence, −iσeg(z, t), becomes positive, i.e., the same as the phase

of the first-sample coherence. Therefore, the scattered fields in both samples will interfere

destructively with the incident radiation field, Ω(0, t). Thus, due to the displacement the

second sample becomes also absorptive and we expect the radiation quenching.

We calculate the output radiation field from the second sample as follows. The amplitude

of the radiation field at the output of the first sample, Ω(z1, t), is described by Eq. (10),

where the parameter b is substituted by b1. According to the arguments, given in the

beginning of Sec. IV, the radiation field at the output of the second sample before td is

described by Eq. (23).

To find the output field from the second sample after td we use the same approach as in

Sec. III. We represent the input field for the second sample as consisting of two pulses, that

is

Ω(z1, t) = Ω1(z1, t) + Ω2(z1, t). (32)

where

Ω1(z1, t) = [1−Θ(t− td)]Ω(z1, t) (33)

is a pulse with a duration td,

Ω2(z1, t) = Θ(t− td)Ω(z1, t) (34)

is a pulse, which is applied at td, and Ω(z1, t) = Ω0Θ(t)J0

(
2
√
b1t

)
exp(−γt).

The second pulse, Ω2(z1, t), interacts with the second sample only after its displacement.

Therefore, according to Eq. (14), the output field for the second pulse is

Ω2(z2, t) = Θ(t− td)Ω0e
−γt

[
J0

(
2
√
b1t

)
−G(t, td)

]
, (35)

where

G(t, td) = b2

∫ t−td

0

J0

(
2
√

b1(t− τ)
) J1

(
2
√
b2τ

)
√
b2τ

dτ. (36)
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If the second sample would not move at td, then after td the first pulse would produce FID

(the dipoles ringing), seen at the output of the second sample as

Ω1(z2, t) = Ω0e
−γt

{
Θ(t)J0

(
2
√
(b1 + b2)t

)
−Θ(t− td)

[
J0

(
2
√
b1t

)
−G(t, td)

]}
. (37)

However, because the second sample instantly changes its position by ∆z = λ/2 at td the

phase of FID changes by π, that is ΩFID(z2, t) = −Ω1(z2, t). Thus, after td the output field

from the second sample is Ω(z2, t) = −Ω1(z2, t) + Ω2(z2, t), and before td it is described by

Eq. (23). Combining these results in one formula we obtain

Ω(z2, t) = Ω0e
−γt

{
[Θ(t)− 2Θ(t− td)] J0

(
2
√

(b1 + b2)t
)
+ 2Θ(t− td)A(t, td)

}
, (38)

where

A(t, td) = J0

(
2
√
b1t

)
−G(t, td). (39)

At t = td + 0 the amplitude of the signal is

Ω(z2, td) = Ω0e
−γtd

[
−J0

(
2
√

(b1 + b2)td

)
+ 2J0

(
2
√

b1td

)]
. (40)

If b1td = 3.67 and b2td = 8.63, then at t = td the first sample is in the domain I and

the second sample is in the domain II. In this case the functions in square brackets of Eq.

(40) take values −J0

(
2
√
(b1 + b2)td

)
= −0.3 and 2J0

(
2
√
b1td

)
= −0.806. As a result the

amplitude of the signal is −1.106Ω0 exp(−γtd), whose absolute value is appreciably larger

than the absolute value of the field amplitude just before td. Thus, instead of radiation

quenching we see the radiation enhancement. This is because the phase of the output field

from the first sample is π at td and the coherence −iσeg(z, t) of the sample is also negative.

Thus, just before td the second sample absorbs the field, which enters this sample. Fast

displacement of the second sample makes it emissive with respect to the field entering this

sample.

To make a displacement, which produces the absorption enhancement or the radiation

quenching, we consider two samples, which satisfy the relations−J0

(
2
√
(b1 + b2)td

)
= 0.403

and 2J0

(
2
√
b1td

)
= −0.403 at a particular time td. These relations are satisfied if b1td = 2

and b2td = 1.67. Figure 5 illustrates that case when the output intensity (probability) of

the radiation field experiences quenching after fast displacement of the second sample.

If the second-sample displacement is slow and described by the function δ(r), then the

output radiation field is given by the following expression

Ω(z2, t) = Ω0e
−γt

[
J0

(
2
√
b1t

)
−Gϕ(t, td)

]
, (41)
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where

Gϕ(t, td) = b2e
iϕ(t)

∫ t

0

e−iϕ(t−τ)J0

(
2
√

b1(t− τ)
) J1

(
2
√
b2τ

)
√
b2τ

dτ, (42)

and ϕ(t) = kδ(r). This result is obtained considering the input radiation field for the second

sample, Ω(z1, t), in the reference frame moving with this sample, where Ω(z1, t) acquires the

phase factor exp[−iϕ(t)]. Then, the inverse transformation of the output radiation from the

second sample to the laboratory frame yields another phase factor exp[iϕ(t)].

VI. THREE-SAMPLES ABSORBER: RADIATION BURST

In this section we consider the propagation of the radiation field through three samples,

two of which (the first and the third) experience fast displacements at the moment of time

td, see Fig. 2(c). If by this time the coherence −iσeg(z, t) is positive along the first sample,

negative along the second sample, and again positive along the third sample, then the first

sample is in the domain I, the second sample is in the domain II, and the third sample is in

the domain III, see Fig. 1(c). Simultaneous fast displacements of the first and third samples

by ∆z = λ make the coherences of all three samples negative. Then, these samples (the

sandwich) become emissive due to the constructive interference of the scattered and incident

radiation fields and we expect the radiation burst with the strongly increased intensity.

To describe this effect we follow the calculation schemes represented in Secs. IV and V.

According to Sec. IV the output radiation field from the second sample is described by Eq.

(24). Formally this field consist of two components:

Ω1(z2, t) = Ω0Θ(t)e−γtJ0

(
2
√
(b1 + b2)t

)
, (43)

which is switched on at t = 0, and

Ω2(z2, t) = 2Ω0Θ(t− td)e
−γt

[
F (t, td)− J0

(
2
√

b1t
)]

, (44)

which is switched on at t = td, i.e., after the displacement.

For the input field Ω2(z2, t) the output field from the third sample is calculated with the

help of Eq. (14).

For the input field Ω1(z2, t) the output field from the third sample before and after td is

calculated in the same way as the field Ω(z2, t) was calculated in Sec. V, see Eqs. (32),(38).
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The result of these calculations is

Ω(z3, t) = Ω0e
−γt

[
Θ(t)J0

(
2
√

(b1 + b2 + b3)t
)
+ 2Θ(t− td)B(t)

]
, (45)

where

B(t) = B1(t) +B2(t) +B3(t) +B4(t) +B5(t), (46)

B1(t) = J0

(
2
√
(b1 + b2 + b3)(t− td)

)
, (47)

B2(t) = −J0

(
2
√

b1t
)
+ J0

(
2
√
(b1 + b2)t

)
− J0

(
2
√

(b1 + b2 + b3)t
)
, (48)

B3(t) =

∫ t−td

0

J0

(
2
√
b1(t− τ)

)[√
b2
τ
J1

(
2
√
b2τ

)
+

√
b3
τ
J1

(
2
√

b3τ
)]

dτ, (49)

B4(t) = −
∫ t−td

0

J0

(
2
√
(b1 + b2)(t− τ)

)√
b3
τ
J1

(
2
√
b3τ

)
dτ, (50)

B5(t) = −
∫ t−td

0

dτ1

∫ t−td−τ1

0

dτ2J0

(
2
√
b1(t− τ1 − τ2)

)√
b2
τ2
J1

(
2
√
b2τ2

)√
b3
τ1
J1

(
2
√
b3τ1

)
.

(51)

Just after td (t = td + 0) the functions B3(t), B4(t), and B5(t) are zero. Therefore, the

expression in the square brackets of Eq. (45) at t = td takes value

2
[
1− J0

(
2
√
b1td

)
+ J0

(
2
√
(b1 + b2)td

)]
− J0

(
2
√
(b1 + b2 + b3)td

)
. (52)

If at t = td the samples are located in the domains I, II, and III, as it is specified above,

then b1td = 3.67, b2td = 8.63, and b3td = 13.57. In this case the amplitude of the radiation

field at the output of the third sample is Ω(z3, td) = 3.65Ω0 exp(−γtd) and its intensity is

|Ω(z3, td)|2 = 13.6Ω2
0 exp(−Γtd).

Thus, due to the simultaneous displacement of two samples in the three-samples absorber

the output intensity of the radiation field increases 13.6 times with respect to the intensity

of the incident radiation field just before the displacement. The radiation intensities at the

output of the three-samples absorber and at the output of the one-sample absorber with the

parameter b1td = 3.67 are compared in Fig. 6. It is clearly seen from the plots that in the

case of three samples the intensity of the spike at td appreciably increases and duration of

the spike substantially shortens with respect to the case of one sample.
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VII. EXPERIMENT

Our experimental setup is described in a very detail in Refs. [7, 8]. As a single sample

we take a piece of 25 µm thick, 3 × 5 mm stainless steel (SS) foil, which is glued on a

polyvinylidene fluoride (PVDF) piezo polymer transducer (thickness 28 µm, model LDT0-

28K, Measurement Specialties, Inc.). PVDF film is coupled to a plexiglas backing of ∼
2 mm thickness with epoxy glue. The PVDF film was driven with a square wave pulse

from Ortec Gate&Delay Generator (Model 416A ) or Mini-Circuits Model ZPUL-21 Pulse

Amplifier. They were triggered by the positive/negative output of the 122 keV channel

constant fraction discriminator. The rise time of the driving pulse was about 18 nsec and

10 nsec for Gate&Delay Generator and Pulse Amplifier, respectively.

Two-samples sandwich was constructed from the single sample consisting of SS foil (SS1),

coupled to the PVDF film and plexiglas backing, which was modified by coupling the second

stainless steel foil (SS2) to the opposite side of the plexiglas backing. We had only one

specimen of the stainless steel foil, which had natural abundance of 57Fe (2.1%). We were

unable to modify the physical thickness of the SS foil. Its estimated effective thickness

is T = αz = 5.2, where z = 25 µm. The corresponding parameters b for the samples,

constituting the two-samples absorber, are b1 = b2 = 1.3Γ.

Thus, our two-samples sandwich was not optimally designed to observe the maximum

enhancement of the radiation burst. First, to observe this maximum the ratio b2/b1 is to

be 2.35 (we had b2/b1 = 1). Second, the maximum of the radiation burst is observed if

the displacement is applied at time td, which satisfies the relation b1td = 3.67 at least for

the first sample. Since the parameter b1 for our SS1 sample is 1.3Γ, i.e., it is small, then

to satisfy this relation we have to take td = 400 ns. By this time, both the incident and

scattered fields experience appreciable exponential decay due to the factor exp(−Γtd).

There are also two experimental problems, reducing the effect, which are the finite time

resolution of our experimental setup and the difficulty in creating the instantaneous dis-

placement of the absorber. If the displacement of the samples would be instantaneous, then

the maximum probability of the spike at td [without exponential factor exp(−Γtd)] would

be 5.77 for one sample (SS1), while for our two samples (SS1 and SS2) with equal thickness

this probability is 7.7. Meanwhile, for two samples with optimal thickness (b1td = 3.7 and

b2td = 8.63) the latter would be 9.6.
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At first sight, two samples demonstrate more enhancement of the radiation burst with

respect to one sample even in the case of not optimal choice of the parameters of the samples.

This is because the contribution of the term J0

(
2
√
b1td

)
in Eq. (26) is doubled for the two

samples and it is not doubled for one sample, see Eq. (18), while the contribution of the

term J0

(
2
√

(b1 + b2)td

)
is not very large in Eq. (26) if b1 = b2 and b1td = 3.7.

However, two experimental limitations spoil the picture. First, the time resolution of our

setup is 9.1(5) ns. It was obtained by least-square-fitting the experimental lifetime spectra

with the convolution of the theoretical decay curve and a Gaussian distribution originating

from the time resolution function of our experimental setup. Since the spike, produced by

two samples, is narrower than the spike from one sample, then the finite time resolution of

our setup decreases the observable peak intensity of the signal from the sandwich (SS1+SS2)

more than the peak intensity of the signal from one sample (SS1).

The second reason of the signal decrease is a finite time of the sample displacement. SS

foil is quite heavy with respect to the light piezo-polymer film. Thus, even relatively sharp

step voltage, applied to the transducer, induces quite smoothened step of the displacement.

Figure 7 demonstrates time evolution of the experimentally measured voltage across con-

ducting plates on the PVDF film, loaded by SS foil. If the displacement of the sample

follows this voltage, then we can derive the function describing the phase change ϕ(t). We

approximated the voltage step by the function, shown by dots in Fig. 7, and derived ϕ(t),

which is

ϕ(t) = ϕ0
exp[r(t− td)]

1 + exp[r(t− td)]
. (53)

where r = 16.7Γ and ϕ0 is a maximum phase change at the end of the step-voltage. If

ϕ0 = π, the rate of the voltage step is relatively high since r is almost an order of magnitude

larger than b1 + b2 = 2.6Γ (see discussion at the end of Sec. IV).

Figure 8 demonstrates comparison of the theoretical transient signals, induced in our

sandwich (solid line) and single sample (dotted line) by the instantaneous displacement (a),

and by the displacement, described by Eq. (53), (b). In ideal case of the instantaneous

displacement the sandwich produces slightly larger signal than one sample. In case of the

slow phase change these signals have almost the same maxima and they slightly differ in

the duration of the spike, which is shorter for the sandwich. Meanwhile, the signal from the

sandwich is appreciably larger if it is compared with the single sample, which has the same

effective thickness, i.e., the parameter b of the single sample is b = 2b1 (see Fig. 8c).
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If we would increase the voltage step, applied to the first sample (SS1), for example, two

times, one can expect that ϕ0 in Eq. (53) would also increase two times. Then, the effective

rate of the phase change increases. If, for example, ϕ0 = 2π, then ϕ(t) reaches the value

π, when the maximum of the spike takes place, two times faster. Such an increase of the

voltage step should increase the intensity of the transient signal. Figure 9 shows a comparison

of the echo signal from the sandwich and the single absorber of the same thickness for the

instantaneous displacement (a) and for the slow displacement with ϕ0 = 2π (b). Appreciable

increase of the echo signal for the sandwich is clearly seen.

Unfortunately we cannot make experiments with the single sample consisting of two SS

foils with total thickness z = 50 µm because such a sample is too heavy for the PVDF film

and it is hard to expect the sample displacement as fast as it could be for a single SS foil.

Therefore, we decided to measure and compare in our experiments the signals from the

sandwich and single SS foil. We expected that the physics of the nuclear coherence manip-

ulation, proposed in our paper, is correct if both samples would demonstrate the signals of

nearly the same intensity but different in durations. We also decided to make experiment

with sandwich in inverse scheme, as it is discussed in Sec. V. The absence of the appreciable

echo signal should demonstrate that two samples (SS1 and SS2) are mechanically uncoupled,

i.e., the displacement of SS2 is not transferred to SS1.

Our experimental results are shown in Fig. 10. The echo signal is appreciably sharper for

the sandwich compared with the single SS foil. The absence of the echo signal if the radiation

source is placed before the SS2 sample, which does not move, confirms that SS1 and SS2

are mechanically uncoupled. In this case (the inverse scheme) the mechanical displacement

of the SS1 sample does not produce the radiation revival.

We plan in future to make samples, enriched with 57Fe. These samples, being physically

thin, could have an appreciable effective thickness T and large parameters b1 and b2, which

could be adjustable in a process of sample fabrication.

Another choice for the proof-of-principle experiment is 93-keV Mössbauer resonance of

67Zn. This resonance has two advantages. First, the wavelength of 93-keV radiation is

much shorter than the wavelength of 14.4 keV radiation, resonant for 57Fe, and hence a

faster phase change is achieved at the same velocity of the mechanical displacement of the

absorber. Second, the natural linewidth of 93-keV transition in 67Zn is 12 kHz. Therefore,

the time scale of all transients is nearly 100 times longer with respect to 57Fe and hence fine
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details of the transients in 67Zn are detectable in principle with conventional detectors and

electronics.

VIII. DISCUSSION

Radiative coupling and decoupling of nuclei in two samples by a piston-like modulation of

the position of the first sample, Refs. [16, 17], or moving it with a trapezoidal displacement

profile, Ref. [18], were studied in forward scattering of synchrotron radiation and the nuclear

exciton echo was discovered. However, as indicated in Ref. [16], this echo has an essentially

different nature compared with the gamma echo, Refs. [5, 6].

To compare our results with those, which were observed with synchrotron radiation,

we considered the influence of the stepwise displacement of the first sample on the output

radiation from the second sample.

We calculated the probability amplitude, a(t), of the output radiation from the second

sample if the first sample, irradiated by a synchrotron pulse at t = 0, experiences the

instantaneous displacement by λ/2 at td > 0 (see appendix B). The result is

a(t) = δ(t)− e−γt

[
Θ(t)

√
b1 + b2

t
J1

(
2
√
(b1 + b2)t

)
− 2Θ(t− td)C(t)

]
, (54)

where

C(t) =

√
b1
t
J1

(
2
√
b1t

)
−
∫ t−td

0

√
b1

t− τ
J1

(
2
√

b1(t− τ)
)√

b2
τ
J1

(
2
√
b2τ

)
dτ. (55)

At t = td the amplitude of the spike is

a(td) = −e−γtd

[√
b1 + b2

td
J1

(
2
√

(b1 + b2)td

)
− 2

√
b1
td
J1

(
2
√

b1td

)]
. (56)

This amplitude cannot exceed the radiation amplitude, proportional to b1 + b2, which

is observed just after the synchrotron pulse (at t = +0), when the function

J1

(
2
√

(b1 + b2)t
)
/
√
(b1 + b2)t is close to 1. This is because the synchrotron pulse creates

a phased collective state of nuclei in both absorbers with the same value of the coherence

σeg(t) for all nuclei in the samples at t = +0. Then, this phased collective state decays. Fast

displacement of one of the samples is capable to reconstruct the coherent collective state

only partially.
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A single photon is incapable to create such a coherent state instantly. Nuclear coherence,

as it is shown in Fig.1, needs time to be created by a single photon and this coherence

is inhomogeneous along the samples, demonstrating oscillations with distance. We found

conditions when the first sample displacement makes phasing of the coherence along both

samples. This phasing is capable to reconstruct completely the radiation field for a short

time.

IX. CONCLUSION

First, let us formulate the main results of the paper. We showed that a single gamma-

photon propagating in an optically thick resonant absorber induces the polarization (quanti-

fied by the induced nuclear transition moments). The phase and amplitude of the polariza-

tion depends on time and propagation distance such that the absorber may be viewed as a

sandwich of layers possessing polarizations with opposite phases. We propose to make a fast

displacement of odd layers by a half wavelength of the radiation field. This displacement

brings in phase the polarization of all layers, which results in-phasing of the scattered field

in the layers with the incident radiation field. As a result the scattered fields and the inci-

dent field interfere constructively producing radiation burst at the output of the absorber.

We found the condition when the displacement of the even layers of the sandwich produces

radiation quenching at the output of the absorber due to the destructive interference of the

incident and scattered fields. Experimental verification of the effects of the constructive and

destructive interference of the incident and scattering radiation fields due to the polarization

phasing is performed.

We believe that the control of a single photon radiation field by means of fast displace-

ments of the elements of thick composite absorbers could find applications in quantum

information processing and quantum computing.

In gamma domain this method can be used to detect extremely small displacements of the

absorber with an accuracy of about 0.5 Å . For example, this technique could be employed

for the calibration of displacements of the tip of scanning tunneling microscopes.
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XI. APPENDIX A

To calculate the integral

I(t) =

∫ t

0

J0

(
2
√
b1(t− τ)

)√
b2
τ
J1

(
2
√

b2τ)
)
dτ, (57)

we apply the Laplace transform

F (p) =

∫ +∞

0

e−ptf(t)dt, (58)

to the function I(t). It can be done in a following way. First, the Laplace transform of the

zero-order Bessel function, J0

(
2
√
b1t

)
, is (see Ref. [19])

1

p
e−b1/p. (59)

Second, for the function,
√
b2/tJ1

(
2
√
b2t

)
= −J0

(
2
√
b2t

)
′

t
, one can apply the differentiation

theorem and obtain the following Laplace transform

1− e−b2/p. (60)

Since the integral I(t) is the convolution of these two functions, the Laplace transform of

the integral is a product of the two Laplace transforms, Eq. (59) and Eq. (60) , that is

1

p
e−b1/p − 1

p
e−(b1+b2)/p. (61)

The inverse Laplace transform of this function is easily calculated (see Ref. [19]), which

gives

I(t) = J0

(
2
√
b1t

)
− J0

(
2
√

(b1 + b2)t
)
. (62)
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XII. APPENDIX B

The probability amplitude of the radiation field at the output of the first sample, irradi-

ated by the synchrotron pulse at t = 0, is (see, for example, Ref. [17])

as1(t) = δ(t)−Θ(t)e−γt

√
b1
t
J1

(
2
√
b1t

)
. (63)

According to Eq. (14), at the output of the second sample this radiation is transformed as

follows

as2(t) = δ(t) + a1(t) + a2(t) + a12(t), (64)

where

a1(t) = −Θ(t)e−γt

√
b1
t
J1

(
2
√
b1t

)
, (65)

a2(t) = −Θ(t)e−γt

√
b2
t
J1

(
2
√
b2t

)
, (66)

a12(t) = Θ(t)e−γt

∫ t

0

√
b1

t− τ
J1

(
2
√
b1(t− τ)

)√
b2
τ
J1

(
2
√
b2τ

)
dτ. (67)

With the help of the method, described in the appendix A, the Laplace transform, I(p), of

the integral, I(t), in Eq. (67) can be easily calculated. The result is

I(p) =
(
1− e−b1/p

) (
1− e−b2/p

)
. (68)

This expression can be transformed to

I(p) =
(
1− e−b1/p

)
+
(
1− e−b2/p

)
−

[
1− e−(b1+b2)/p

]
, (69)

whose inverse Laplace transform is

I(t) =

√
b1
t
J1

(
2
√

b1t
)
+

√
b2
t
J1

(
2
√
b2t

)
−
√

b1 + b2
t

J1

(
2
√

(b1 + b2)t
)
. (70)

With this result Eq. (64) is reduced to

as2(t) = δ(t)−Θ(t)e−γt

√
b1 + b2

t
J1

(
2
√
(b1 + b2)t

)
. (71)

If the first sample experiences the instantaneous displacement by λ/2 at td > 0, the

probability amplitude of the radiation field at the output of this sample is

as1(t) = δ(t)− [Θ(t)− 2Θ(t− td)] e
−γt

√
b1
t
J1

(
2
√
b1t

)
. (72)
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With the help of Eq. (14) one can calculate the amplitude of the output radiation from the

second sample if the input field is as1(t). The result is given in Eq. (54).

If the first sample experiences a slow displacement, then the output radiation from this

sample is

as1ϕ(t) = δ(t)−Θ(t)e−γt−iϕ(t)

√
b1
t
J1

(
2
√
b1t

)
, (73)

where ϕ(t) = kδr(t), see Sec. III. In this case the amplitude of the output radiation from

the second sample is modified as follows

as2ϕ(t) = δ(t) + a1ϕ(t) + a2(t) + a12ϕ(t), (74)

where

a1ϕ(t) = −Θ(t)e−γt−iϕ(t)

√
b1
t
J1

(
2
√

b1t
)
, (75)

a12ϕ(t) = Θ(t)e−γt

∫ t

0

e−iϕ(t−τ)

√
b1

t− τ
J1

(
2
√
b1(t− τ)

)√
b2
τ
J1

(
2
√

b2τ
)
dτ. (76)

This expression is consistent with Eq. (3) in Ref. [18]. We compared numerically the

intensities of the radiation fields a(t) for the instantaneous displacement, Eq. (54), and

as2ϕ(t) for the slow displacement, Eq. (74), where ϕ(t), Eq. (30), with r ≫ b1 + b2 were

used. Both functions coincide quite well if r = 100(b1 + b2).
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FIG. 1: (color on line) Spatial dependence of the propagating field (dotted black line) and the

imaginary part of the matter coherence (polarization), multiplied by decay rate Γ, (solid line in

red) in the absorbing medium at the moment of time satisfying the condition Γt = 1. Parameter

b is proportional to the distance z, counted along the propagation direction of the field from the

front face of the absorber (z = 0). Both graphs are plotted without exponential factor exp(−γt)

and they are normalized to the input field amplitude Ω0. Vertical bold blue lines divide the plot

into domains (I, II, and III), where the imaginary part of the matter coherence (polarization) has

the same sign (plus or minus). Thin horizontal lines show the values of the two first extrema of

the radiation field amplitude.

26



 

(a) b 

Ω(0,t) Ω(z,t) 
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(c) 

Ω(0,t) Ω(z1,t) Ω(z2,t) Ω(z3,t) 

b1 b2 b3 

FIG. 2: (color on line) The excitation scheme for the sandwich absorber made of one (a), two (b),

and three samples (c). The input and output radiation fields for each sample are shown by the

straight arrows. The mechanical displacements, applied to a particular sample, are shown by the

bent arrows. Ω(0, t) is the amplitude of the radiation field from the source. Ω(zi, t) is the output

radiation field from the i-th sample. Other notations are defined in the text.
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FIG. 3: (color on line) Comparison of time dependencies of the photon probabilities P (t) (amplitude

squared) at the output of one sample experiencing the instantaneous displacement (dotted line

in blue) and at the output of two samples if only the first of the two samples experiences the

instantaneous displacement (solid line in red). The parameters are Γtd = 1, b1 = 3.67Γ, and

b2 = 8.63Γ for plots (a) and Γtd = 3, b1 = 1.22Γ, and b2 = 2.87Γ for plots (b). The probability of

the input radiation field is normalized to 1.
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FIG. 4: (color on line) Time evolution of the detection probability P (t) of the radiation at the

output of the two-samples absorber with the parameters b1 = 1.22Γ and b2 = 2.87Γ. Only zoom-in

of the domain, where the echo signal takes place, is shown. The signal, induced by the instantaneous

displacement of the first sample, is shown by dots (in blue). The red solid line shows the signal

induced by the slow change of the sample position if the change rate is r = 10(b1 + b2). The black

dash-dotted line shows the signal for even slower rate of the displacement r = 3(b1 + b2).
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FIG. 5: (color on line) Time evolution of the detection probability P (t) of the radiation at the

output of the two-samples absorber with the parameters b1 = 2Γ and b2 = 1.67Γ. The instantaneous

displacement of the second sample, applied at td = 1/Γ, results in the abrupt quenching of the

output radiation.

30



 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 
0 

2 

4 

6 P(t) (a) 

 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 
0 

0.5 

1 

Γt 

(b) 

FIG. 6: (color on line) Time evolution of the detection probability P (t) of the radiation at the

output of the three-samples absorber with the parameters b1td = 3.67Γ, b2td = 8.63Γ, and b3td =

13.57Γ (red solid line). The detection probability P (t) of the radiation at the output of the one-

sample absorber with the parameter b1td = 3.67Γ is shown by (blue) dots for comparison. Time

of the instantaneous displacement of the samples is td = 1/Γ in (a) and td = 3/Γ in (b).
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FIG. 7: Time evoltion of the experimentally measured voltage between conducting plates of PVDF

film with the SS foil, glued on the top by epoxy, (solid line). Theoretical fitting of the experimental

curve to Eq. (53) is shown by dots.
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FIG. 8: (color on line) Time evolution of the detection probability of the radiation field at the

output of the two-samples-sandwich absorber (red solid line) and one-sample absorber (blue dots)

for the instantaneous phase shift (a) and for the slow displacement of SS1 (b). (c) Comparison of

the detection probability for the two-samples-sandwich absorber (red solid line) and one-sample

absorber of doubled thickness, if both foils (SS1 and SS2) would experience slow displacement

together (blue dots).
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FIG. 9: (color on line) Time evolution of the detection probability of the radiation field at the

output of the two-samples-sandwich absorber (red solid line) and one-sample absorber of the same

thickness (blue dots) for the instantaneous phase shift (a) and for the slow displacement if ϕ0 = 2π

(b).
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FIG. 10: (color on line) Output radiation intensity versus time. Mechanical displacement of the

single sample (a), first sample (SS1) in the sandwich (b), and second sample (SS2) in the sandwich

(c) is produced at 400 nsec after the detection of 122 keV photon. Dots (in blue) are experimental

data. Solid line (in red) is a theoretical fit in (a) and a theoretical fit of the signal from the sandwich

if the samples do not move in (b) and (c). The procedure of our theoretical fit, taking into account

nonresonant fraction of the radiation field with recoil, is described in detail in Ref. [8].
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