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Abstract

We derive exact expressions for the zeroth and the first three spectral moment sum rules for

the retarded Green’s function and for the zeroth and the first spectral moment sum rules for the

retarded self-energy of the inhomogeneous Bose-Hubbard model in nonequilibrium, when the local

on-site repulsion and the chemical potential are time-dependent, and in the presence of an external

time-dependent electromagnetic field. We also evaluate these expressions for the homogeneous

case in equilibrium, where all time dependence and external fields vanish. Unlike similar sum

rules for the Fermi-Hubbard model, in the Bose-Hubbard model case, the sum rules often depend

on expectation values that cannot be determined simply from parameters in the Hamiltonian

like the interaction strength and chemical potential, but require knowledge of equal time many-

body expectation values from some other source. We show how one can approximately evaluate

these expectation values for the Mott-insulating phase in a systematic strong-coupling expansion

in powers of the hopping divided by the interaction. We compare the exact moment relations

to the calculated moments of spectral functions determined from a variety of different numerical

approximations and use them to benchmark their accuracy.
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I. INTRODUCTION

The Bose-Hubbard model was originally introduced to describe the behavior of super-

fluids in disordered environments, where superfluidity could be lost by phase fluctuations

induced via disorder (Bose glass) and where potential-energy effects could localize the sys-

tem into a Mott insulator [1]. While much work ensued on examining the properties of

this model within the context of disordered superconductors, it was later proposed that this

model could describe the behavior of bosonic atoms placed on optical lattices [2], which

was experimentally realized soon thereafter [3]. Since the atoms in an optical lattice are

also held to a small region of space via a trapping potential, the experimental systems are

further complicated by being in an inhomogeneous environment. This is sometimes viewed

as an advantage, as one can approximately map out the homogeneous phase diagram from

the inhomogeneous system if the local-density approximation holds, but it also complicates

much of the theoretical analysis, because the systems are no longer translationally invariant,

so momentum is no longer a good quantum number.

The model was extensively studied numerically even before the application to ultracold

atoms was known. In this early work, the system was always assumed to be homogeneous.

Monte Carlo simulations in one dimension [4] and two dimensions [5], density matrix renor-

malization group work [6, 7], as well as analytic approximations, like the strong-coupling

approach [8], were carried out. After the experimental measurements of the Mott insulator

were completed [3], much further work ensued, culminating in the current state-of-the-art in

quantum Monte Carlo simulations [9–11], in density-matrix renormalization group calcula-

tions [12] and in experimental determinations of the phase diagram, including corrections to

the local density approximation [13–16]. While much is known about the phase diagrams,

less is known about the many-body spectral functions and self-energies of the Bose-Hubbard

model. The many-body density of states (DOS) has been calculated via maximum entropy

analytic continuation of quantum Monte Carlo (QMC) data [17], via the variational cluster

approach (VCA) [18], via the time-dependent density matrix renormalization group (DMRG)

approach [19] and approximately with a bosonic version of dynamical mean-field theory in

the strong-coupling limit [20].

Here, we describe how to derive exact sum rules for the spectral functions of the retarded

Green’s function (zeroth and first three moments) and of the retarded self-energy (zeroth
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and first moment). We work with the most general case, which involves both spatially

inhomogeneous and nonequilibrium (time-dependent) Hamiltonians, and also summarize the

results for equilibrium and spatially homogeneous cases. This work complements previous

work we have done on the nonequilibrium spectral moment sum rules for the Fermi-Hubbard

model [21–23], which analyzed that model for the same general conditions. But unlike

the Fermi-Hubbard model case, where all of the sum rules for retarded functions could be

evaluated simply from parameters in the Hamiltonian, in the case for the Bose-Hubbard

model, the spectral moment sum rules relate to many-body averages that are nontrivial,

and need to be determined from some independent calculation in order to fully evaluate

the different sum rules. This situation becomes more complicated for higher moments.

But, these expectation values involve equal time expectation values for the nonequilibrium

situation, and static expectation values for the equilibrium case, so they are simpler and more

accurate to calculate than the spectral functions themselves. For example, we illustrate how

to calculate them numerically with a quantum Monte Carlo approach and approximately

(for the Mott-insulating phase) with a strong-coupling perturbation-theory expansion.

The physical relevance of these approximations should be clear. The zeroth moment sum

rule, that the integral of the retarded spectral function is equal to one, is a well known

result, which is often used to check the quality of an approximation. If an approximation

does not preserve the sum rule and hence has too little or too much spectral weight, it is

often discarded as being a poor approximation. Similarly, one can extend this approach

now to consider using the higher-order moments for both the Green’s functions and the

self-energies in this benchmarking procedure. Since we have more information available,

these checks provide a much more stringent test on the quality of any given approximation.

Such tests become quite important for inhomogeneous and nonequilibrium problems, where

very little is known about what the solutions should look like. Using these results allows for

quantitative predictions to be made about the quality of the calculations in a completely

unbiased fashion.

One might ask what is the physical meaning of these sum rule relations? This is a question

that we find difficult to answer, similar to the question of what is the physical meaning for

why the integral of the spectral function is equal to one. This follows simply from the equal-

time commutation relations for the Bose creation and annihilation operators, but does not

have any simple physical interpretation. Instead, it is described as being due to the system
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preserving its spectral weight because the excitations may change their energy but cannot

change their total weight, but this explanation does not provide a physical mechanism for

why the sum rule holds, it simply restates the fact that there is a sum rule. The same

is true about higher moment sum rules. For example, the first moment sum rule yields

a mean-field-like dispersion relation (as derived below), but this does not mean that the

system is described by a mean-field theory. Hence, this sum rule also does not seem to have

any simple physical intepretation. Nevertheless, because it is an exact relation, it is quite

useful for analysis as we illustrate in the remainder of this paper.

In Sec. II, we introduce the model and describe the techniques used to solve for the

spectral moment sum rules and we develop the sum rules for the moments of the Green’s

functions and self-energies. We also discuss the equilibrium homogeneous case, and present

the moments as functions of momentum. Numerical results comparing to different approx-

imations for the spectral functions are performed in Sec. III along with a strong-coupling

expansion which can be employed to approximately calculate the expectation values needed

to determine the values of the higher moments. Conclusions follow in Sec. IV.

II. FORMALISM FOR THE BOSE-HUBBARD MODEL

The inhomogeneous nonequilibrium Bose-Hubbard model Hamiltonian can be written in

the following general form in the Schrödinger representation:

H(t) = −
∑
ij

tij(t)b
†
ibj −

∑
i

µi(t)b
†
ibi +

1

2

∑
i

Ui(t)b
†
ibi(b

†
ibi − 1), (1)

where µi(t) and Ui(t) can have arbitrary time dependence and can vary from site to site on

the lattice. Similarly, the intersite hopping matrix −tij(t) can be time-dependent, such as

in the case where there is an external electromagnetic field with arbitrary time-dependence

described by a vector potential A(r, t), and the bosons are charged, or in the case of cold

atoms where the atoms move in a synthetic (Abelian) gauge field given by such a vector

potential [24, 25]. In this case, we would have a specific form for the time dependence of

the hopping given by

−tij(t) = −tij exp

(
−i
∫ Ri

Rj

qA(r, t)dr/~c

)
, (2)

with q the “effective” charge of the bosons and Ri the position vector for lattice site i.
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The general form for the Hamiltonian given in Eq. (1) can be used to describe many

different nonequilibrium and inhomogeneous situations. For example, it can describe bosons

on an optical lattice that have the optical lattice potential modulated at some frequency, and

thereby modifying the hopping, chemical potential and interaction as functions of time (as is

done, for example, in modulation spectroscopy [26]); in this case, the local chemical potential

would be described by the total chemical potential minus the local trapping potential at each

lattice site. It can describe bosons on an optical lattice that have the trap either oscillated

or impulsed to create dipole oscillations. It can also be used to describe a disordered Bose

glass system (for a fixed distribution of local chemical potentials which represent the global

chemical potential minus the diagonal on-site disorder).

Similar to the fermionic case, one can define a generalized nonlocal spectral function for

the boson retarded Green’s function in the Heisenberg representation

GR
ij(t1, t2) = GR

ij(T, t) = −iθ(t)
〈[
bi(T + t/2), b†j(T − t/2)

]〉
(3)

in the following way:

ARij(T, ω) = − 1

π
Im

∫ ∞
−∞

dteiωtGR
ij(T, t), (4)

where we have introduced Wigner’s time variables: the average time T = (t1 + t2)/2 and the

relative time t = t1− t2 (with t1 = T + t/2 the time at which the boson destruction operator

is evaluated and t2 = T−t/2 the time where the boson creation operator is evaluated). Note

that we will often need to refer to the Green’s function in both ways indicated in Eq. (3),

in terms of the times the operators are evaluated t1 and t2, or in terms of the average

and relative times. While we do not introduce a new notation for the reexpressed Green’s

function, the context for whether the time variables are the variables where the operators

are evaluated or are the average and relative times is always obvious by the context of the

equations and whether the time variables have a subscript or not. The square brackets are

used to denote a commutator. The angular brackets denote a statistical average with respect

to the initial equilibrium distribution of the system in the distant past, with a density matrix

given by ρ = exp[−βH(t→ −∞)]/Z and Z = Tr exp[−βH(t→ −∞)]. Note that T denotes

the average time, not the temperature, which is denoted by 1/β. The time dependence of

the operators is with respect to the full Hamiltonian and is expressed in the Heisenberg

representation via an evolution operator.
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We further define the nth spectral moment of the corresponding spectral function in

Eq. (4) to be

µRnij(T ) =

∫ ∞
−∞

dωωnARij(T, ω). (5)

This spectral moment is connected to the bosonic Green’s function in the following way:

µRnij(T ) = − 1

π
Im

∫ ∞
−∞

dω

∫ ∞
0

dteiωtin
∂n

∂tn
GR
ij(T, t). (6)

From this equation, one can obtain the following formula:

µRnij(T ) = −Im

[
in
∂n

∂tn
GR
ij(T, t)

]
t=0+

. (7)

It is possible to show that the terms proportional to the time derivatives of the theta function

do not contribute to the moments. Then, by using the Heisenberg equation of motion for

the operators, one can obtain the following expressions for the zeroth and the first three

spectral moments of the Green’s function:

µR0ij(T ) = 〈[bi(T ), b†j(T )]〉, (8)

µR1ij(T ) =
1

2

[
〈[L1bi(T ), b†j(T )]〉 − 〈[bi(T ), L1b†j(T )]〉

]
, (9)

µR2ij(T ) =
1

4

[
〈[L2bi(T ), b†j(T )]〉 − 2〈[L1bi(T ), L1b†j(T )]〉+ 〈[bi(T ), L2b†j(T )]〉

]
+
i

4

[
〈[[bi(T ), H ′(T )], b†j(T )]〉+ 〈[bi(T ), [b†j(T ), H ′(T )]]〉

]
, (10)

µR3ij(T ) =
1

8

[
〈[L3bi(T ), b†j(T )]〉 − 3〈[L2bi(T ), L1b†j(T )]〉+ 3〈[L1bi(T ), L2b†j(T )]〉

−〈[bi(T ), L3b†j(T )]〉
]

+
i

8

[
4〈[[[bi(T ), H ′(T )], H(T )], b†j(T )]〉 − 〈[[[bi(T ), H(T )], H ′(T )], b†j(T )]〉

−3〈[[[bi(T ), H ′(T )], b†j(T )], H(T )]〉+ 3〈[[[bi(T ), H(T )], b†j(T )], H ′(T )]〉

−〈[bi(T ), [[b†j(T ), H ′(T )], H(T )]〉 − 2〈[bi(T ), [[b†j(T ), H(T )], H ′(T )]〉
]

−1

8

[
〈[[bi(T ), H ′′(T )], b†j(T )]〉 − 〈[bi(T ), [b†j(T ), H ′′(T )]]〉

]
, (11)

where LnO = [...[[O,H], H]...H] is the operation of commutation performed n times, and

H ′(T ) = dH(T )/dT and H ′′(T ) = d2H(T )/dT 2 are the first and the second derivative of

the Hamiltonian in the Schrödinger picture with respect to time which is then evaluated in

the Heisenberg picture at the average time T (i. e., the derivative is taken before going to

the Heisenberg picture). In equilibrium these derivatives are zero, but in the nonequilibrium
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case they can be finite due to the explicit time-dependence of the Hamiltonian parameters.

Evaluating the commutators is a straightforward, but tedious exercise. Doing so results in

the following expressions:

µR0ij(T ) = δij, (12)

µR1ij(T ) = −t̄ij(T ) + 2Ui(T )ni(T )δij, (13)

µR2ij(T ) =
∑
l

t̄il(T )t̄lj(T )− 2Ui(T )ni(T )t̄ij(T )− 2t̄ij(T )Uj(T )nj(T )

−U2
i (T )ni(T )δij + 3U2

i (T )〈n2
i (T )〉δij, (14)

µR3ij(T ) = −
∑
l,m

t̄ilt̄lmt̄mj(T )

+2Uini
∑
l

t̄ilt̄lj(T ) + 2
∑
l

t̄ilUlnlt̄lj(T ) + 2
∑
l

t̄ilt̄ljUjnj(T )

+2Uiδij
∑
l,n

(
t̄ilt̄ln〈b†ibn〉+ t̄lit̄nl〈b†nbi〉 − 2t̄ilt̄ni〈b†nbl〉

)
(T )

+U2
i nit̄ij(T ) + t̄ijU

2
j nj(T )− 3U2

i 〈n2
i 〉t̄ij(T )− 3t̄ijU

2
j 〈n2

j〉(T )

−4Uit̄ijUj〈ninj〉(T )− Uj t̄jiUi〈b†jbib
†
jbi〉(T ) + t̄iiU

2
i ni(T )δij

+2Uiδij
∑
l

Ul

(
t̄il〈b†ibl〉+ t̄li〈b†l bi〉

)
(T )− 4U2

i δij
∑
l

t̄li〈b†l bi〉(T )

−2Uiδij
∑
l

Ul

(
t̄il〈b†iblnl〉+ t̄li〈nlb†l bi〉

)
(T ) + 6U2

i δij
∑
l

t̄li〈b†l bini〉(T )

−3δijU
3
i 〈n2

i 〉(T ) + δijU
3
i ni(T ) + 4δijU

3
i 〈n3

i 〉(T )

+
i

4

∑
l

(
t̄′ilt̄lj − t̄ilt̄′lj

)
(T )− i

2
[(t̄′ijUj − t̄ijU ′j)nj + (U ′i t̄ij − Uit̄′ij)ni](T )

+
1

4

d2t̄ij(T )

dT 2
− 1

2

d2Ui(T )

dT 2
ni(T )δij, (15)

where ni(T ) = 〈b†i (T )bi(T )〉, −t̄ij(T ) = −tij(T ) − δijµi(T ), and the symbol (T ) reminds

us that both the parameters in the Hamiltonian and the operator expectation values are to

be evaluated at the average time T in the expressions for the moments. Note that we have

expressed the operator expectation values in the most compact form rather than subtracting

off the average values to show the effects of correlations about the average values. It is a

simple, but tedious, exercise to convert to other forms if desired.

The expressions for the retarded self-energy moments can be obtained by using the Dyson
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equation, which connects the retarded Green’s function and self-energy

GR
ij(t1, t2) = G

R(0)
ij (t1, t2) +

∑
l,m

∫
dt3

∫
dt4G

R(0)
il (t1, t3)ΣR

lm(t3, t4)GR
mj(t4, t2), (16)

where G
R(0)
ij (t1, t2) is the noninteracting Green’s function (in the case U = 0), and ΣR

ij(t1, t2)

is the retarded self-energy. The first step is to rewrite Eq. (16) in a combined frequency-

average time representation:

GR
ij(T, ω) = GR0

ij (T, ω) +
∑
lm

∫
dT̄

∫
dt̄

∫
dΩ

∫
dνe−iΩt̄eiνT̄

× GR0
il

(
T +

T̄

2
+
t̄

4
, ω + Ω +

ν

2

)
ΣR
lm

(
T + T̄ , ω + 2Ω

)
GR
mj

(
T +

T̄

2
− t̄

4
, ω + Ω− ν

2

)
.

(17)

where the internal time variables with the overbars should not be confused with the effective

hopping matrix used to describe the Green’s function moments.

One can represent the Green’s function and the self-energy at large frequency in terms

of an asymptotic 1/ω expansion:

GR
ij(T, ω) =

∞∑
n=0

µRnij(T )

ωn+1
, (18)

G
R(0)
ij (T, ω) =

∞∑
n=0

µ̃Rnij(T )

ωn+1
, (19)

ΣR
ij(T, ω) =

∞∑
n=0

CR
nij(T )

ωn+1
+ Σij(T, ω =∞). (20)

where µ̃Rijn(T ) denotes the corresponding Green’s function moments for the noninteracting

Green’s function (which has U = 0) and CR
nij(T ) are the moments of the retarded self-energy,

defined via

CR
nij(T ) = − 1

π
Im

∫ ∞
−∞

dωωnΣR
ij(T, ω). (21)

The large-ω expansions in Eqs. (18)-(20) can be obtained by using the following spectral

identities (valid for all retarded functions that decay rapidly enough for large relative time):

GR
ij(T, ω) = − 1

π

∫ ∞
−∞

dω′
ImGR

ij(T, ω
′)

ω − ω′ + i0+
, (22)
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ΣR
ij(T, ω) = − 1

π

∫ ∞
−∞

dω′
ImΣR

ij(T, ω
′)

ω − ω′ + i0+
+ ΣR

ij(T, ω =∞). (23)

At large ω the Green’s function and self-energy must be real, or the spectral moments would

diverge. The self-energy expansion in the last equation contains a frequency-independent

term ΣR
ij(T, ω = ∞), which corresponds to the constant (Hartree-Fock) term in the self-

energy.

Then, one inserts these expansions into Eq. (17) and considers separately all terms which

have the same order in (1/ω). Hence, it is necessary to expand all the functions under the

integrals in powers of (1/ω). This leads the following equations which connect the Green’s

functions and self-energy spectral moments:

µR0ij = µ̃R0ij = δij, (24)

µR1ij = µ̃R1ij +
∑
l,m

µ̃R0ilΣ
R
lm(T, ω =∞)µR0mj, (25)

µR2ij = µ̃R2ij +
∑
l,m

µ̃R0ilΣ
R
lm(T, ω =∞)µR1mj +

∑
l,m

µ̃R0ilC
R
0lmµ

R
0mj

+
∑
l,m

µ̃R1ilΣ
R
lm(T, ω =∞)µR0mj, (26)

µR3ij = µ̃R3ij +
∑
l,m

µ̃R0ilΣ
R
lm(T, ω =∞)µR2mj +

∑
l,m

µ̃R0ilC
R
0lmµ

R
1mj +

∑
l,m

µ̃R0ilC
R
1lmµ

R
0mj

+
∑
l,m

µ̃R1ilΣ
R
lm(T, ω =∞)µR1mj +

∑
l,m

µ̃R1ilC
R
0lmµ

R
0mj +

∑
l,m

µ̃R2ilΣ
R
lm(T, ω =∞)µR0mj.(27)

We have suppressed the average time dependence of all of the spectral moments to save

space.

From these equations, one can obtain the results for the retarded self-energy moments

by using the results for the retarded Green’s function moments derived above for both finite

and vanishing U :

ΣR
ij(T, ω =∞) = 2Uiniδij(T ), (28)

CR
0ij(T ) = −U2

i niδij(T )− 4U2
i n

2
i δij(T ) + 3U2

i δij〈n2
i 〉(T ), (29)
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CR
1ij = 2Uiδij

∑
l,n

(
t̄ilt̄ln〈b†ibn〉+ t̄lit̄nl〈b†nbi〉 − 2t̄ilt̄ni〈b†nbl〉

)
(T )

+4Uit̄ijUj(ninj − 〈ninj〉)(T )

+δijU
3
i (4n2

i + 8n3
i − 12ni〈n2

i 〉 − 3〈n2
i 〉+ ni + 4〈n3

i 〉)(T )

−Uj t̄jiUi〈b†jbib
†
jbi〉(T ) + t̄iiU

2
i niδij(T )

+2Uiδij
∑
l

Ul

(
t̄il〈b†ibl〉+ t̄li〈b†l bi〉

)
(T )− 4U2

i δij
∑
l

t̄li〈b†l bi〉(T )

−2Uiδij
∑
l

Ul

(
t̄il〈b†iblnl〉+ t̄li〈nlb†l bi〉

)
(T ) + 6U2

i δij
∑
l

t̄li〈b†l bini〉(T )

− i
2

[(t̄′ijUj − t̄ijU ′j)nj + (U ′i t̄ij − Uit̄′ij)ni](T )− 1

2

d2Ui(T )

dT 2
ni(T )δij, (30)

where, once again, the (T ) symbol is to remind us of the average time dependence of both

the parameters of the Hamiltonian and of the operator expectation values.

The expressions for the spectral moment sum rules are complicated in general. We want

to summarize these results for the case of a homogeneous system in equilibrium, where

there is no time dependence to the Hamiltonian, and where the hopping is the same value

between all nearest neighbors, the chemical potential is uniform, as is the interaction energy

U . In this case, we can express the moments in momentum space, with respect to the

time-translation-invariant momentum dependent Green’s function

GR
k (t) = −iθ(t)〈[bk(t), b†k(0)]〉, (31)

and self-energy

ΣR
k (ω) = GR0

k (ω)−1 −GR
k (ω)−1, (32)

where the symbol ω is used for the Fourier transform from time to frequency space, which

is used because the Hamiltonian is time independent in equilibrium. The operator bk is the

momentum-space destruction operator, which satisfies bk =
∑

i bi exp[−ik ·Ri]/
√
N , with a
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corresponding formula for b†k. We find the Green’s function moments become

µR0k = 1, (33)

µR1k = εk − µ+ 2Un, (34)

µR2k = (εk − µ+ 2Un)2 + U2
(
3〈n2〉 − 4n2 − n

)
, (35)

µR3k = (εk − µ+ 2Un)3 + U2Ztii+δ〈nib†ibi+δ + b†i+δbini〉

+ U2εk

(
6〈n2〉 − 12n2 − 2n+ 4〈nini+δ〉+ 〈b†2i+δb

2
i 〉
)
− 3U2µ

(
3〈n2〉 − 4n2 − n

)
+ U3

(
4〈n3〉 − 8n3 − 3〈n2〉+ n

)
, (36)

where εk = −
∑

δ tjj+δ exp[ik · δ] (for any j) is the bandstructure. Here, the symbol δ de-

notes the nearest neighbor translation, 〈nini+δ〉 denotes the nearest-neighbor static density-

density expectation value and −tii+δ is the nearest-neighbor hopping matrix element. Since

the system is homogeneous, the expectation values and the hopping matrix element are in-

dependent of which nearest neighbor translation δ is chosen. The high-frequency constant

for the self-energy is Σ(ω →∞) = 2Un, and the self-energy moments become

CR
0k = U2

(
3〈n2〉 − 4n2 − n

)
, (37)

CR
1k = U2Ztii+δ〈nib†ibi+δ + b†i+δbini〉+ U2εk

(
4〈nini+δ〉+ 〈b†2i+δb

2
i 〉 − 4n2

)
+ U2µ

(
−3〈n2〉+ 4n2 + n

)
+ U3

(
4〈n3〉+ 8n3 − 3〈n2〉 − 12〈n2〉n+ 4n2 + n

)
. (38)

The zeroth and first Green’s function moments and the constant of the self-energy do

not require any expectation values besides the filling. The second Green’s function and

zeroth self-energy moments require just one correlation function 〈n2〉 − n2, while the higher

moments require increasingly more (and more complex) correlation functions.

These sum rule relations are exact, implying that they must be satisfied by the exact

Green’s functions. While it is interesting that these kinds of relations hold for the bosonic

many-body problem, there is one clear way that these sum rules can be used in applications.

Namely, we can use them to gauge the accuracy of different approximate solutions to the

many-body problem. The way that this is done is to use the approximate method (typically

a numerical method) to calculate the Green’s functions and self-energies and then evaluate

the moment sum rules directly via integration over frequency. Then one needs to evaluate

some static expectation values (for the higher moments) to be able to determine what those

moments should equal. One wants to do this as accurately as possible, but in some situations,

12



those expectation values will need to be evaluated approximately, indicating that there is

some level of uncertainty that will enter into these relations. Nevertheless, if that error can

be bounded (such as a statistical error from a quantum Monte Carlo calculation or a small

correction in a high power of t/U for a strong-coupling expansion) then one can evaluate

the exact sum-rule relations with error bars, and still use them to quantify how accurate the

approximate solution is. This is what we do next.

III. NUMERICAL RESULTS

There are not too many techniques which can accurately determine the Green’s function

and self-energy of the Bose Hubbard model for real frequencies. To date, the main non-

perturbative methods that have been tried include quantum Monte Carlo plus a maximum

entropy analytic continuation [17], the variational cluster approach [18], the time-dependent

density matrix renormalization group [19], and a strong-coupling version of bosonic dynam-

ical mean-field theory [20]. The dynamical mean-field theory calculation is most accurate in

large dimensions, and we will not consider it further here. Both the QMC and VCA can be

performed in any physical dimension, the density matrix renormalization group is limited to

one dimension, which is where we will focus our attention first. The quantum Monte Carlo

approach can also calculate different static expectation values, so using this data will allow

us to completely determine the different moments.

But, in general, it would be nice to have alternative methods to at least approximate

the value of the spectral moment sum rules. In the case of a Mott insulator with a small

hopping, one can use strong-coupling perturbation theory in the hopping to calculate the

different expectation values. The Mott phase for a homogeneous system in equilibrium with

vanishing hopping is given by

|n〉0 =
N∏
i=1

(
b†i

)n
√
n!
|0〉, (39)

where |0〉 is the vacuum state and the Mott phase has an average density of n. The energy

of this state is E0
n = [−µn + Un(n − 1)/2]N . Since this state is nondegenerate, standard

nondegenerate Rayleigh-Schrödinger perturbation theory can be used to find the wavefunc-

tion. Proceeding in the canonical fashion, where the perturbed state 〈n| satisfies 〈n|n〉0 = 1,

13



we find that the perturbed wavefunction satisfies

|n〉 = |n〉0 +
Q̂n

E0
n − Ĥ0

V̂ |n〉0 +
Q̂n

E0
n − Ĥ0

V̂
Q̂n

E0
n − Ĥ0

V̂ |n〉0, (40)

through second order in the perturbation V̂ , since the first-order shift in the energy

0〈n|V̂ |n〉0 = 0 vanishes (the perturbation V̂ is the hopping term in the Hamiltonian). Here

Qn = I − |n〉0 0〈n| is the projector onto the space perpendicular to the unperturbed wave-

function |n〉0. A straightforward calculation of the overlap of the perturbed wavefunction

is

〈n|n〉 = 1 +
Zt2

U2
n(n+ 1)N +O

(
t4

U4

)
. (41)

Here Z is the number of nearest neighbors and t is the magnitude of the nearest-neighbor

hopping matrix element (we assume we are on a bipartite lattice so all odd order terms in

the perturbation V̂ vanish).

It is now a straightforward exercise to approximately find the expectation values needed

for the different moments. We have

〈n|ni|n〉
〈n|n〉

= n, (42)

〈n|n2
i |n〉

〈n|n〉
= n2 +

2Zt2

U2
n(n+ 1) +O

(
t4

U4

)
, (43)

〈n|n3
i |n〉

〈n|n〉
= n3 +

6Zt2

U2
n2(n+ 1) +O

(
t4

U4

)
, (44)

〈n|nini+δ|n〉
〈n|n〉

= n2 − 2t2

U2
n(n+ 1) +O

(
t4

U4

)
, (45)

〈n|nib
†
ibi+δ|n〉
〈n|n〉

=
2t

U
n2(n+ 1) +O

(
t3

U3

)
, (46)

〈n|b†2i b2
i+δ|n〉

〈n|n〉
=

t2

U2
n(n+ 1)[n(n+ 1) +

1

2
(n− 1)(n+ 2)] +O

(
t4

U4

)
. (47)

Here δ denotes a nearest neighbor translation, so that i+ δ is a nearest neighbor site of site

i (the expectation values are independent of which neighbor because the problem we are

solving is homogeneous).

We compare the accuracy of the above expectation values with ones calculated directly

via a quantum Monte Carlo approach in Table I for a Mott insulator on a one-dimensional

lattice with t/U = 0.05, n = 1, and low temperature. One can see that the accuracy

is excellent for the strong coupling perturbation theory in this parameter regime. This
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TABLE I: Comparison of expectation values calculated in strong coupling perturbation theory

versus quantum Monte Carlo simulation. The case considered is a one-dimensional Mott insulator

with n = 1, t = 0.05U , and low temperature.

Expectation value strong coupling quantum Monte Carlo

〈n2
i 〉 1.02 1.02± 0.0004

〈n3
i 〉 1.06 1.06± 0.001

〈nini+δ〉 0.99 0.9902± 0.0002

〈nib
†
ibi+δ〉 0.20 0.2022± 0.0004

〈b†2i b2i+δ〉 0.01 not calculated

shows that if the interaction strength is large enough, then the approximate evaluation of

the expectation values via the strong-coupling perturbation theory has sufficient accuracy

that it can be employed in a benchmarking exercise to quantify the accuracy of different

Green’s functions found from different numerical methods. As the interaction strength is

made smaller, one has to use more exact methods to evaluate the expectation values, or one

will not be able to go through such a benchmarking exercise.

Using the strong-coupling perturbation theories, we find the momentum-dependent re-

tarded Green’s function moments approximately become

µR2k = (εk − µ+ 2Un)2 + U2n(n+ 1)

(
−1 +

6Zt2

U2

)
, (48)

µR3k = (εk − µ+ 2Un)3 + 4UZt2n2(n+ 1)− 2U2εkn(n+ 1)

×
[
1− 2Zt2

U2
− t2

U2
[n(n+ 1)− 1

2
(n− 1)(n+ 2)]

]
+ 3U2µn(n+ 1)

(
1− 6Zt2

U2

)
− U3n(n+ 1)(4n− 1)

(
1− 6Zt2

U2

)
, (49)

to order t4/U4. The self-energy moments approximately become

CR
0k = −U2n(n+ 1)

(
1− 6Zt2

U2

)
, (50)

and

CR
1k = 4UZt2n2(n+ 1)− t2εkn(n+ 1)[8− n(n+ 1)− 1

2
(n− 1)(n+ 2)]

+ U2µn(n+ 1)

(
1− 6Zt2

U2

)
+ U3n(n+ 1)

(
1− 6Zt2

U2

)
, (51)
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FIG. 1: (Color online.) Local density of states for the one-dimensional Bose Hubbard model

in the Mott-insulating phase with n = 1. The parameters are t/U = 0.05 and µ/U = 0.5. The

energies are measured in units of U . We compare the variational cluster approach with two different

broadenings (red and blue) to the quantum Monte Carlo plus maximum entropy approach (purple)

and to the density matrix renormalization group approach (orange). The inset zooms in on the

region just above 2U , where the variational cluster approach has some structure which is needed

to get high precision to the different moment sum rules. The data for the other two methods is

cutoff before this frequency.

also to order t4/U4.

Now we are ready to compare the accuracy of different numerical methods in approxi-

mately calculating the many-particle density of states for the Bose-Hubbard model. Our

first test case is the Mott insulating phase in the one-dimensional model with t/U = 0.05,

n = 1, and µ/U = 0.5 In Fig. 1, we plot the local density of states for the three different

methods that have been used for this problem: (i) the VCA at zero temperature with a

Lorentzian broadening of η = 0.03 and η = 0.002 [18]; (ii) QMC simulation plus maximum
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entropy analytic continuation [17], where the calculations are performed at a temperature

β = 192; and (iii) time-dependent density matrix renormalization group calculations [19] at

zero temperature with open boundary conditions and a Lorentzian broadening of η = 0.04.

One can see that there is a significant discrepancy between these different curves (in a point-

wise fashion) but as we will see the moments are all quite close to one another. This tells

us that the density of states is quite sensitive to the broadening chosen, and it is difficult

to tell which of these different techniques is most accurate (although, the quantum Monte

Carlo technique uses the most unbiased algorithm to determine the density of states). It is

also apparent that one properly sees the correct gap in the density of states only with the

methods that use the least broadening, as expected.

Now we move on to the task of comparing the different spectral moment sum rules. We

begin with the zeroth moment sum rule of the retarded Green’s function, which essentially

tests whether the system has conserved the correct number of states in the given calculation.

For the variational cluster approach, since it determines the Green’s function as a set of

delta functions and weights, we perform the integration of the moments via summing the

relevant weights of the delta functions rather than introducing any artificial broadening

into the calculation. Doing this, appears to greatly improve the accuracy of the spectral

moments themselves. In Fig. 2 (a) we plot the exact result against the three different

approximation techniques. On the graph, one cannot see any error between the VCA and

the exact result. The quantum Monte Carlo is about a half a percent error, while the density

matrix renormalization group results are about three and a half percent error.

The first retarded Green’s function moment is plotted in Fig. 2 (b). Here the VCA and

the QMC have small errors, with the former being less than 0.1% and the latter on the order

of a few percent. The density matrix renormalization group result has the right shape, but

appears to be systematically shifted off of the correct result causing about a 7% error.

The second retarded Green’s function moment is plotted in Fig. 2 (c). This is the first

moment that depends on a correlation function. Once again, the VCA has superior accuracy,

and the density matrix renormalization group results look like they are systematically shifted

from the correct answer (so much so that at small momentum they have the wrong sign for

the moment).

Finally, in Fig. 2 (d), we plot the third moment sum rules. Here the deviations of all

of the approximations are larger, but the VCA is clearly superior. One might ask why the
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FIG. 2: (Color online.) Spectral moments of the retarded Green’s function as a function of momen-

tum for the one-dimensional Bose Hubbard model in the Mott-insulating phase with n = 1. The

parameters are t/U = 0.05 and µ/U = 0.5. We compare the exact result (black) to the variational

cluster approach (red dashed line), to the quantum Monte Carlo plus maximum entropy approach

(purple), and to the density matrix renormalization group approach (orange). Panel (a) is the

zeroth, panel (b) the first, panel (c) the second and panel (d) the third moment. The accuracy of

the VCA is so good, one cannot see any deviation from the exact result in panels (a) and (b). The

quantum Monte Carlo and density matrix renormalization group results have higher errors.

VCA appears to be so much better than the other two techniques, at least when we compare

the moment sum rules? We believe the answer to this lies in the inset in Fig. 1. There one

can see that the VCA has some spectral weight at high energy, corresponding to higher

on-site occupation of bosons. The QMC and density matrix renormalization group results
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are cut off at lower frequencies, so they do not have this extra feature. This feature becomes

increasingly important for higher moments, since the integrands are weighted more and also

for even moments, since it can modify the cancellation that occurs between the positive and

negative branches of the density of states. In this sense, the moment sum rules can be a

very delicate test of the accuracy of the different numerical calculations. In addition, the

VCA, being based on a strong-coupling approach, is more accurate for large U . We would

expect other techniques to become more accurate as we move closer to the critical point and

beyond.

We also want to test the spectral moment sum rules of the self-energy. Here we have to

now further process the data, as one cannot compute the self-energy solely from the density

of states or the momentum-dependent spectral functions. Instead, we use a Kramers-Kronig

relation on the spectral functions to determine the momentum-dependent retarded Green’s

functions (the imaginary part is just −π times the spectral function). Then we use Dyson’s

equation to extract the self-energy. As a test, we compare the constant term of the real

part of the self-energy to its exact result. For the quantum Monte Carlo and for the density

matrix renormalization group data, the extent of our data is too small in frequency for us to

properly reach the limit where we can accurately extract the constant, but the error in the

constant is less than 15%. Once we have the imaginary part of the self-energy, we simply

integrate it times the appropriate power of frequency to see the sum rule. For the VCA, we

can no longer do this with the delta function representation, so we instead use the smaller

broadening η = 0.002U data, which then leads to some noisy fluctuations in the integrated

self-energy moments. But the total noise level is not too high.

We plot the zeroth spectral moment sum rule for the retarded self-energy as a function

of momentum in Fig. 3 (a). The sum rule itself is independent of momentum, even though

the self-energies do vary with momentum. The VCA has errors at the 0.5% level. The

density matrix renormalization group has errors about ten times larger, and once again,

there appears to be a systematic error in that data pushing it to slightly lower values.

Finally, we plot our last one-dimensional result, the first moment spectral sum rule of the

retarded self-energy versus momentum in Fig. 3 (b). Here we see similar results as with the

zeroth moment, perhaps with somewhat larger errors.

The conclusion of this work on the one-dimensional example is that the spectral moment

sum rules for the retarded Green’s functions and for their self-energies provides useful data
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FIG. 3: (Color online.) Zeroth (a) and first (b) spectral moments of the retarded self-energy as a

function of momentum for the one-dimensional Bose Hubbard model in the Mott-insulating phase

with n = 1. The parameters are t/U = 0.05 and µ/U = 0.5, with energies measured in units of

U . We compare the exact result (black) to the variational cluster approach (red dashed line), to

the quantum Monte Carlo plus maximum entropy approach (purple), and to the density matrix

renormalization group approach (orange). Deviations are visible for all approximations.

to help us predict the accuracy of different numerical calculations. While they cannot

provide us with sufficient data to determine what the appropriate widths of different spectral

features should be in the Green’s functions by examining pointwise values of the spectral

functions, they do tell us important information about the weight under the curves and

of their respective shapes. Indeed, the higher moments, are particularly sensitive to small

weight structures at high energy and could help identify whether approximations are cut off

at too small a frequency and missed some higher energy spectral weight.

For two dimensions, we only have data from the VCA and from the QMC. We have ana-

lyzed all of the moments in a similar fashion to what was done for the one-dimensional case,

and we summarize our results in a series of figures. We choose parameters corresponding to

the second Mott lobe with n = 2, and with a hopping that lies inside the lobe but close to

the edge (t/U = 0.03 and µ = 1.45). The t/U value is within about 15% of the critical value

at the tip (tc/U ≈ 0.035), but is still within the regime that the strong coupling approach

is accurate. In this case, we might expect to see larger deviations from the sum rules. The
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FIG. 4: (Color online.) Spectral moments of the retarded Green’s function as a function of mo-

mentum for the two-dimensional Bose Hubbard model on a square lattice in the Mott-insulating

phase with n = 2. The parameters are t/U = 0.03 and µ/U = 1.45. We compare the exact result

(black) to the variational cluster approach (red dashed line), and to the quantum Monte Carlo

plus maximum entropy approach (purple). Panel (a) is the zeroth, panel (b) the first, panel (c)

the second and panel (d) the third moment. The accuracy of the VCA is so good, one cannot see

any deviation from the exact result in panels (a) and (b). The quantum Monte Carlo results have

higher errors. The symmetry lines over which the data is plotted are shown with the schematic

triangle.
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quantum Monte Carlo results are run at a low temperature β = 80. In Figure 4, we plot

the exact results for the moment sum rules (as evaluated from the strong-coupling pertur-

bation theory described above) versus the VCA and quantum Monte Carlo results from a

maximum entropy analytic continuation. Since the momenta are now distributed through

the two-dimensional Brillouin zone, we show plots for momenta along the high-symmetry

lines of the triangle that runs from the origin at the Γ point (Γ = 0) to the M point along

the diagonal direction [M = (π, π)], to the X point along the axial direction [X = (π, 0)].

One can see for the low moments, the VCA approximation continues to work extremely well

(once again, the VCA is evaluated as sums over the delta functions, and uses no broaden-

ing, which is why the moments are so accurate). But even in this case, we do start to see

deviations for higher moments, and they are larger than they were for the one-dimensional

case; this is expected due to the proximity to the tip of the Mott lobe at tc/U = 0.035 [27].

The QMC results, on the other hand, do show the right trends, but have a much larger

quantitative error to the moments.

FIG. 5: (Color online.) Zeroth (a) and first (b) spectral moments of the retarded self-energy as

a function of momentum for the two-dimensional Bose Hubbard model on a square lattice in the

Mott-insulating phase with n = 2. The parameters are t/U = 0.03 and µ/U = 1.45, with energies

measured in units of U . We compare the exact result (black) to the variational cluster approach

(red line), and to the quantum Monte Carlo plus maximum entropy approach (purple). Deviations

are visible for all approximations indicating the self-energy is not determined as accurately here.
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We continue with plots of the zeroth and first moments of the self-energy in Fig. 5. Here,

we must go through the inversion procedure described above to extract the self-energy from

the data for the Green’s function. Hence, for the VCA, we must broaden the delta functions

to create a smooth functional form for the Green’s function. We do this with a narrow

broadening parameter to try to preserve the accuracy. This gives rise to the amplitude of

the oscillations in the moment data due to oscillations in the Green’s function and then in

the self-energy. Once again, we do see the right trends in the data, but here the accuracy

is fairly poor, especially for the QMC data. The VCA data tends to have the right average

behavior, but it’s quantitative average is incorrect. By looking at the traces of the self-energy

itself, there are likely two reasons for the discrepancy. The first, is that the frequency cutoff

might be too low, and the second is that the self-energy seems to have regions of frequency

where it has strong frequency dependence, and this might not be properly captured by the

approximations.

IV. CONCLUSIONS

In this work, we have derived exact formulas for the first few spectral moments of the

Bose-Hubbard model through third order for the retarded Green’s function and through

first order for the retarded self-energy. The results we derive are quite general, holding for

inhomogeneous systems and for systems that have time dependence to the parameters in the

Hamiltonian. Sum rules can be quite useful in benchmarking different approximations, be-

cause their results are exact. One challenge with the work here, is that for the bosonic case,

the moments depend on correlation functions that must be determined for the interacting

system, unlike in the fermionic version, where many of the correlation functions become triv-

ial to evaluate. But, in the limit of strong coupling, for the Mott phase, these moments can

be approximately found in a strong-coupling expansion, which appears to be quite accurate

when compared to QMC results. We concluded this work with numerical calculations for

translationally invariant systems in equilibrium, where we could benchmark the accuracy

of different numerical results. Because we did this in the strong-coupling region, it comes

as no surprise that the VCA turned out to be the most accurate approach, indicating that

it is faithfully producing the moments of the spectral functions. It is much more difficult

for us to determine the point-wise accuracy of the spectral functions, though. We did see
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that the numerical calculations appear to work best in one-dimension, where our numerical

evaluation of the expectation values that lead to the moment sum rules is also the most

accurate.

We hope that this work will be used by others for benchmarking purposes of numerics

and possibly for understanding qualitative changes in spectra as parameters change due to

the constraints given by the sum rules. As nonequilibrium techniques are developed for

interacting bosonic systems, it will also be interesting to use these results for benchmarking

of those calculations, since exact results for nonequilibrium systems are quite rare.
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