
This is the accepted manuscript made available via CHORUS, the article has been
published as:

Quantum dynamics in driven sawtooth lattice under
uniform magnetic field

Xiaoming Cai, Shu Chen, and Yupeng Wang
Phys. Rev. A 87, 013607 — Published  9 January 2013

DOI: 10.1103/PhysRevA.87.013607

http://dx.doi.org/10.1103/PhysRevA.87.013607


Quantum dynamics in driven sawtooth lattice under uniform magnetic field

Xiaoming Cai,1, 2 Shu Chen,1 and Yupeng Wang1

1Beijing National Laboratory for Condensed Matter Physics,

Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,

Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China

We study the Bloch-Zener oscillation, which is a superposition of Bloch oscillation and Landau-
Zener tunneling between Bloch bands, for a quantum particle in a frustrated sawtooth lattice with
(without) uniform magnetic field. Under the single band tight-binding approximation, sawtooth
lattice is a two-miniband system, and may have flat band structure. The presence of magnetic field
can make the gap between two minibands close, and around the touch point the dispersion is an
asymmetric Dirac cone. We analyze in detail the Landau-Zener tunneling and Bragg scattering in
Bloch-Zener oscillation, and the effect of magnetic field. Our results also give clear signature of
dynamical localization in real space induced by the flat band structure of the lattice.
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I. INTRODUCTION

Bloch oscillation and Landau-Zener tunneling are fun-
damental transport phenomena of an object in periodic
potentials [1–4]. Accelerated by a weak external con-
stant force, an object undergoes a coherent periodic mo-
tion (Bloch oscillation) in the periodic potential, which is
related to the formation of energy spectrum of Wannier-
Stark ladder [5] and localized single particle states. Tun-
neling to higher-order bands (Landau-Zener tunneling
[2, 3, 6, 7]) is responsible for Bloch oscillation damp-
ing and broadening of Wannier-Stark resonances for a
stronger driving force. Bloch oscillation and Landau-
Zener tunneling have been demonstrated in a number of
experiments, for example, electrons in semiconductor su-
perlattices [8], light pluses in photonic crystal [9, 10],and
cold atoms in optical lattice [4]. For a multiband sys-
tem, like the system with usual cosine-shaped potential,
whose band gaps usually decrease rapidly as the energy
increases, a cascade of Landau-Zener tunneling to higher-
order bands would lead to the damping of Bloch oscil-
lation [11–13]. In order to study the steady interplay
between Bloch oscillation and Landau-Zener tunneling,
which is known as Bloch-Zener oscillation [14–16], a two-
miniband system is needed. For such a system, the two
minibands should be well separated from upper ones and
the gap between these two minibands is small for large
Landau-Zener tunneling probability. Because of the two
Wannier-Stark ladder energy spectrum with an offset be-
tween them, Bloch-Zener oscillation is characterized by
two timescales, i.e., the Bloch period and period of Zener
oscillation [14]. If the two periods are commensurate, sys-
tem will reconstruct at integer multiples of Bloch-Zener
time.

As one of the most simplest frustrated models, the
quantum Heisenberg antiferromagnet model on the saw-
tooth lattice has been extensively studied in the past
decades [17–25] and has also an experimental realization
in chemistry [26]. Under high magnetic fields, the spin
sawtooth system has been found to exhibit various pecu-

liar properties, for example, the macroscopic magnetiza-
tion jump [27], residual entropy [28, 29], and enhanced
magnetocaloric effect [24, 30]. Due to recent progresses
in optical lattices for cold atoms [31–33] and in nan-
otechnology, which allows the fabrication of quantum dot
superlattices and quantum wire systems with any type
of lattice [34–36], flat band ferromagnetism of Hubbard
electrons in sawtooth lattice also attracted lots of atten-
tions [37–39]. These systems also exhibit some peculiar
properties, such as highly degenerated ground states con-
structed exactly by localized electrons and residual en-
tropy, which are closely related to their flat band struc-
tures.

As the unit cell of the sawtooth chain contains two
asymmetrical sites, its single-particle spectra consist of
two branches with one of the branch becoming a com-
pletely flat band [40] at a fine tuning point of the hop-
ping parameters along the the baseline and zigzag path
(see Fig.1a). A peculiar property related to the flat
band is that the corresponding states in the flat band
are localized. If the flat band is the lower band and par-
tially filled, the ground states are highly degenerate with
nonzero residual entropy. As most previous studies on
the sawtooth lattice focused on the ground state proper-
ties and thermodynamics for systems without magnetic
field, the quantum dynamics in the sawtooth lattice is
rarely studied. In this paper we shall study the dynam-
ics of a quantum particle in the driven sawtooth lattice
under a uniform magnetic field and explore the effect of
flat band on the single-particle dynamics. In the presence
of a uniform magnetic field, the band structure of the
sawtooth lattice is dramatically changed, for example,
asymmetric Dirac cone in dispersion may appear for a
particular magnetic field and the gap between two bands
is tunable by the change of the strength of magnetic
field. As a two-miniband system with possible partial
flat Bloch bands and tunable gap for Landau-Zener tun-
neling, one can expect that the dynamics of a particle in
the driven sawtooth lattice will be affected by the specific
band structure, for example, the dynamical localization
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of a particle, Landau-Zener tunneling and Bragg scatter-
ing happening at different time.
The paper is organized as follows. In Section II, we

introduce the model and study the spectrum proper-
ties for the case without driving force. We present the
Bloch bands under different parameter regions and dis-
cuss the influence of the magnetic field on the band struc-
ture. In Section III, we study the quantum dynamics of
a single particle in the sawtooth under a driving force.
The Landau-Zener tunneling and Bragg scattering in the
Bloch-Zener oscillation are analyzed. A summary is given
in the last section.

II. BLOCH BANDS FOR SYSTEM WITHOUT

DRIVING FORCE

Under Landau gauge Ax = −By,Ay = 0, the Hamil-
tonian of a driven sawtooth lattice reads

H = −t′
∑

j

(e−iφπc†jcj+1 +H.c.) (1)

−t
∑

j

(c†2j−1c2j+1 + H.c.)− F
∑

j

jnj .

Here we neglect the off-diagonal terms of position oper-

ator x̂ in the Wannier basis, c†j(cj) is the creation (anni-

hilation) operator of a quantum particle at site j, nj is
the particle number operator, and t > 0 (t′ > 0) is the
hopping amplitude along the baseline (zigzag path). For
the rest of paper we set t = 1 to be the unit of energy.
The parameter F is the strength of driving force. The
lattice spacing along the baseline is set to be 2, and φ
is the magnetic flux in each triangle, which is related to
the magnetic field by φ = BS/φ0. Here S is the area of
triangle, B is the strength of magnetic field and φ0 is the
magnetic flux quantum.
In this section, we study the spectral properties of the

system without driving force (F = 0). The Hamiltonian
with F = 0 can be formulated as a 2× 2 matrix in terms
of ”spinor” ~ck = [cA,k, cB,k]

T representing two different
types of sites in the unit cell,

H = −
∑

k

~c†k

[

0 t′(eiπφ + ei2k−iπφ)
t′(e−iπφ + eiπφ−i2k) 2tcos(2k)

]

~ck,

(2)
where the sum runs over the first Brillouin zone
(−π/2, π/2], B represents the lattice sites in baseline and
A the others. The dispersion is given by

E± = −tcos(2k)±
√

t2cos2(2k) + 2t′2(1 + cos(2k − 2φπ)).
(3)

The corresponding Bloch wavefunctions for both bands
are given by

|χ±〉 = 1√
M±

(uc†A,k + E±c
†
B,k)|0〉, (4)

with u = t′(eiπφ + ei2k−iπφ) and M± = |u|2 + E2
±.
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FIG. 1: (a): The schema of sawtooth lattice, driving force
F and magnetic flux φ. t is the hopping amplitude along
the baseline(black dot line), while t′ is the hopping ampli-
tude along the zigzag path(red solid line). The single parti-
cle dispersion for sawtooth lattice in the absence of driving
force and magnetic flux with t′/t = 0.15(b), t′/t = 1.1(c) and
t′/t = 1.5(d). k is in the unit of π/2.

First we discuss in detail the properties of the disper-
sion for the system without magnetic field. When φ = 0,
the dispersion (3) reduces to the well-known dispersion
of the sawtooth lattice [37–40]. We note that almost all
the previous works focus on the system with special ratio
t′/t =

√
2, for which the dispersion becomes

ε+ = 2t,

ε− = −2t(1 + cos(2k)). (5)

Obviously one of the Bloch bands is completely flat,
and under the flat dispersion localized eigenstates can
be formed, which are given by [40]

|Γj〉 = 1
2 (c

†
2j−1 + c†2j+1 −

√
2c†2j)|0〉. (6)

For general ratio t′/t, we classify the dispersion into
three different types. 1). For the system with 0 <
t′/t < 1(Fig.1b), both bands are ”V” type. Landau-
Zener tunneling doesn’t happen at the edge of Brillouin
zone and is separated from Bragg scattering against the
usual case where both take place at the edge of Bril-
louin zone ([14, 41]). The gap for Landau-Zener tun-
neling, which happens between two bands at the same
momenta, is defined as ∆ = min(E+(k) − E−(k)). And

for 0 < t′/t < 1, ∆ = 2t′
√

2− (t′/t)2 with the corre-
sponding momenta satisfying cos(2k) = −t′/t. Notice
that when t′/t << 1, both bands are partial flat and
Landau-Zener tunneling happens at k ≃ ±π/4. 2). For

the system with 1 ≤ t′/t ≤
√
2 (Fig.1c), both bands are

still ”V” type. But since cos(2k) = −t′/t has no solution,
∆ gets its value at the edge of Brillouin zone with ∆ = 2t.
3). For the system with t′/t >

√
2 (Fig.1d), as the ratio
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FIG. 2: The single particle dispersion for the no driving
force system in the presence of magnetic field with t′/t =
0.15(upper panel),t′/t = 1.5(lower panel) and φ = 0.15(a,d),
φ = 0.25(b,e), φ = 0.35(e,f). In (e) we also show the corre-
sponding asymmetric Dirac cone. k is in the unit of π/2.

becomes bigger than
√
2, the upper Bloch band changes

into ”Λ” type, and
√
2 is a critical ratio which causes

the flat Bloch band. ∆ still gets its value at the edges
of Brillouin zone with ∆ = 2t. Landau-Zener tunneling
and Bragg scattering happen at the same time.
In the presence of magnetic field, the time reversal

symmetry of the system is broken, and Bloch bands usu-
ally become asymmetrical. The dispersion for 1 − φ is
the mirror image of the case φ because of E(−k, φ) =
E(k, 1 − φ). And we only study the spectral proper-
ties of the system with magnetic flux φ ∈ [0, 1/2]. In
the upper panel of Fig.2, we show dispersions for three
different magnetic fluxes with t′/t ≪ 1. The basic
shape of dispersions are the same. But the magnetic
flux with φ ∈ [0, 1/2) makes the left gap for Landau-
Zener tunneling smaller or even closed, and makes the
right gap slightly bigger. For large t′/t, the magnetic
field changes the dispersion dramatically (lower panel
of Fig.2). There will be a new smaller gap in the dis-
persion around k ≃ −π/4 and this gap can be closed
for particular φ. For different t′/t, φ = 1/4 is a crit-
ical value with the gap between two minibands being
closed. After a straightforward calculation, one can get
E+(k = −π/4, φ = 1/4) = E−(k = −π/4, φ = 1/4) = 0,
and the gap closes at k = −π/4 for φ = 1/4. Around
the touch point the dispersion is almost linear(Fig.2e)
and there is an asymmetric Dirac cone in the dispersion
for φ = 1/4. After linearization, the form of asymmetric
Dirac equation reads

ǫcone/t = ν±(k − k0), (7)

where k0 = −π/4 is the Dirac point, and ν+(−) is the
velocity of right(left) moving particles with

ν± = 2(−1±
√

1 + (t′/t)2). (8)
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FIG. 3: The currents JB , JZ , JT vs magnetic flux φ for the no
driving force system filled by free fermions at half filling with
t′/t = 1.

For comparison, we also plot corresponding Dirac cone in
Fig.2e, and around the touch point two dispersions agree
with each other very well.

Suppose that the system is filled by free fermions with
half filling. When φ 6= 1/4, the dispersion has a gap
between two Bloch bands and the system is a band insu-
lator, while when φ = 1/4, the gap closes and the system
is a Luttinger liquid with gapless and linear low-energy
excitations. Else, there is magnetic flux in each triangle,
and driven by it particles should flow in lattice. Accord-
ing to the continuity equation, the local current operators
are given by [42]:

ĴB
2j−1 = −it[c†2i−1c2j+1 − c†2j+1c2j−1]

ĴZ
2j = −it′[e−iφπc†2jc2j+1 − eiφπc†2j+1c2j ], (9)

where ĴB
2j−1 is the current operator along the baseline

and ĴZ
2j along the zigzag path. In Fig.3, we show currents

of a system vs φ with JB = 〈ĴB
2j−1〉 and JT = JB + JZ .

The structure of picture is still the same for different t′/t.
The currents are periodic in φ with least common period
1. Without magnetic flux the system has no current be-
cause of no driving field. As φ increases, all currents grow
for small φ. In region φ ∈ (0, 1/4), the current JB and
JZ have opposite direction, and in each triangle there is a
local current loop with nonzero total current JT , while in
region φ ∈ (1/4, 1/2), the current JB and JZ have same
direction and all particles move along the same direction
with no local current loop. For φ = 1/4, the system is a
metal but the current flows only along the zigzag path.
It is worthwhile to notice that there is no zero JT with
finite JB, so the magnetic field can’t drive the particles
to form local current in each triangle without drifting
along the lattice. At φ = 1/2 all the currents are zero
which should be related to the pure imaginary hopping
amplitude along the zigzag path.
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III. BLOCH-ZENER OSCILLATION AND

RECONSTRUCTION

For a two Bloch band system under driving force, it has
been demonstrated that the dispersion of system gener-
ally has the structure of two Wannier-Stark ladders [14].
On the other hand, after introducing translation operator

Tm =
∑

j

c†j−mcj , (10)

for two successive eigenstates (belong to two different
Wannier-Stark ladders) of the Hamiltonian H

H |ϕ0〉 = E0|ϕ0〉, H |ϕ1〉 = E1|ϕ1〉, (11)

They satisfy the following relation:

H{T2l|ϕα〉} = {Eα + 2lF}{T2l|ϕα〉} (12)

with α = 0, 1. Then, the eigenenergies of Hamiltonian

E0,n = 2nF

E1,n = S + (2n+ 1)F, (13)

consist of two Wannier-Stark ladders with the corre-
sponding eigenstates satisfying ϕα,n = T2ϕα,n−1. The
dynamics of a single particle state under Hamiltonian H
is Bloch-Zener oscillation, and is characterized by two
periods(Appendix A)

T1 =
π

F
, T2 =

2π

F − |S| . (14)

In general if T1 and T2 are commensurate, the single
particle state reconstructs at integer multiples of Bloch-
Zener time (least common period of T1 and T2).
In order to study the dynamics of a quantum particle

in driven sawtooth lattice, we need to prepare an initial
state. At the beginning, by adding a harmonic trap into
the system with form

Vj = VH(j − j0)
2, (15)

and letting the particle being in the single particle ground
state of the trapped system, a Gauss-shaped single par-
ticle wave packet around site j0 can be formed. Where
VH is the strength of harmonic trap and j0 is the posi-
tion of trap center. After turning off the harmonic trap
and switching on the driving force, the wave packet will
move.
For the initial trapped single particle system, the den-

sity profile is in Gauss shape and there are lots of os-
cillations in it because of lattice frustration(Fig.4a). In
Fig.4 we also show the momentum distributions for sys-
tems with different strength of harmonic trap, ratio t′/t
and magnetic flux. For the system with zero magnetic
flux, there is another peak around k = ±π in momentum
distribution (Fig.4b), while there is only a Gauss-shaped
peak around k = 0 for the usual one dimensional sys-
tem. As VH/t increases, the amplitude of both peaks
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FIG. 4: (a): The density profile for a particle in trapped
sawtooth lattice with t′/t = 0.1647, VH/t = 0.01 and φ = 0.
(b): The momentum distribution of a particle in trapped saw-
tooth lattice for different strength of harmonic trap (VH) with
t′/t = 0.1647 and φ = 0. (c):The momentum distribution of
a particle in trapped sawtooth lattice for different ratio t′/t
with VH/t = 0.01 and φ = 0. (d):The momentum distribution
of a particle in trapped sawtooth lattice for different magnetic
flux (φ) with t′/t = 0.1647 and VH/t = 0.01. k is in the unit
of π.

at k = 0 and k = ±π decreases, and the extension of
both peaks becomes larger. Eventually the momentum
distribution becomes flat with the particle being local-
ized at a single site for large enough VH . On the other
hand, as t′/t increases (Fig.4c), the system trends to the
usual one dimensional system and the peak at k = ±π
becomes smaller while the peak at k = 0 becomes larger.
The momentum distribution is periodic in φ with period
2. The presence of magnetic flux destroys the time re-
versal symmetry of system and momentum distribution
is usually asymmetrical which is not obvious in the pic-
ture because of the small ratio t′/t (Fig.4d). Else, for
φ ∈ (0, 1) the peak around k = 0 becomes smaller while
the peak around k = ±π becomes larger, as φ increases.
For φ ∈ (1, 2), the magnetic flux has opposite effect.

Given an initial state, now we study the dynamics of a
quantum particle in driven sawtooth lattice without mag-
netic flux. Here we focus on the parameter region t′ ≪ t,
whereas the single particle dynamics for t′ > t is simi-
lar to that in usual one dimensional two band systems
with both Landau-Zener tunneling and Bragg scattering
happening at the edge of Brillouin zone (see Ref.[14]). In
order to observe the reconstruction of system, two peri-
ods T1 and T2 must be commensurate which is decided
by F and t′. In Fig.5a, we show numerical results of |S|
versus t′ for a particular F . For different F , the struc-
ture of picture is similar. In order to generate a particular
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FIG. 5: (Color online) (a): |S| vs t′ for driven sawtooth lattice
with F = 0.05t. The dynamics of density profile(b) and mo-
mentum distribution(c) for a particle in the driven sawtooth
lattice with t′/t = 0.1647,F = 0.05t,VH/t = 0.01 and φ = 0.
(d) The dynamics of density profile for producing the dynami-
cal localized system with t′/t = 0.1647,F = 0.05t,VH/t = 0.01
and φ = 0.

Bloch-Zener time, t′ must be one of the discrete numbers.
For example, if we want TBZ = TB for the system with
F = 0.05t, we have to let |S| = 0 and then t′ = 0.1647t,
.... TBZ is the Bloch-Zener time and TB is the Bloch time
for usual one dimensional system with TB = 2T1 [14]. On
the other hand, numerical results show that the Landau-

Zener tunneling probalility[43] PLZ ≈ exp(−π∆2

8tF ), where
∆ is the gap for Landau-Zener tunneling defined above,
and ∆ = 2t′

√

2− (t′/t)2 for 0 < t′/t < 1. Then in order
to see a clear signal of Landau-Zener tunneling, we must
choose small t′ for a given driving force.
In Fig.5, we also show the dynamics of density profile

and momentum distribution for system without magnetic
flux. We choose |S| = 0 and let the system reconstruct
at integer multiples of Bloch time (TB). From now on,
we take Bloch time as the reference timescale. First of
all, the density profile reconstructs at integer multiples of
Bloch time (Fig.5b). After releasing from harmonic trap,
the particle moves along the direction of driving force.
Around time TB/8 it reaches the point k ≃ π/4 and
Landau-Zener tunneling happens. Then part of particle
moves into upper excited Bloch band, while the other
part of particle remains in the lowest Bloch band and
moves into flat part. Because of Landau-Zener tunnel-
ing, the particle is divided into two parts and they are
separated in real space with particles in the curve tra-

jectory of the upper half of picture being in upper ex-
cited Bloch band. After Landau-Zener tunneling, parti-
cles which remain in the lowest Bloch band are localized
in real space because of the partial flat band. At time
TB/4, particle reaches the right edge of Brillouin zone,
changes the sign of momentum because of Bragg scat-
tering, and moves against the direction of driving force.
Around time 3TB/8, particle reaches the point k ≃ −π/4.
Landau-Zener tunneling happens again, and particles in
flat part of upper excited Bloch band are localized in real
space. The particle changes its direction again at time
TB/2 and k = 0. As time goes on, more Landau-Zener
tunneling and Bragg scattering happen. And at time TB

the density profile resumes to original state.

In Fig.5c, we show the dynamical evolution of momen-
tum distribution for the same system as Fig.5b. Particles
with momenta in interval (−π/2, π/2) are in lowest Bloch
band and outside the region particles are in upper excited
Bloch band. At time τ = 0, there are two peaks in the
momentum distribution with the peak at k = ±π being
much smaller than at k = 0. The momentum of parti-
cle is linear with time with slope being given by driving
force F . After releasing from harmonic trap, the parti-
cle speeds up under the driving force and it reaches the
point k ≃ π/4 around time TB/8. Landau-Zener tunnel-
ing happens between k ≃ π/4 in lowest Bloch band and
k ≃ −3π/4 in upper excited Bloch band, and because of
it the number of particles at k ≃ π/4 deceases and at
k ≃ −3π/4 increases which can be directly seen in the
picture. From above we know that after Landau-Zener
tunneling the particle in lowest Bloch band is localized
in real space because of the partial flat band, but the
momentum of this particle is changing and finite. At
time TB/4 the particle reaches the right edge of Bril-
lioun zone, and because that the number of particles in
lowest Bloch band at k = π/2 and upper excited Bloch
band at k = −π/2 are almost the same, after Bragg
scattering, the momentum distribution has no obvious
change. Around time 3TB/8 the particle reaches the
point k ≃ −π/4. This Landau-Zener tunneling happens
between k ≃ −π/4 in lowest Bloch band and k ≃ 3π/4 in
upper excited Bloch band. At time TB the momentum
distribution resumes to original state.

From above we know that in the dynamics the particle
in flat band is localized in real space. Then a dynami-
cal localized system can be created by keeping the sys-
tem in flat Bloch band all the time with changing the
direction of driving force every time interval. For the
system shown in Fig.5d, after releasing from trap, the
system evolves under the driving force, and around time
TB/8 part of particle moves into the partial flat part of
the lowest Bloch band, while the other part of particle
moves into upper excited Bloch band and moves along
the driving force. At time TB/4 we change the direction
of driving force, and after this we change the direction
for every time interval TB/16 to let part of particle al-
ways in the flat part of lowest Bloch band. The other
part of particle will move away from the localized one
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FIG. 6: (Color online)(a): |S|/|S(φ = 0)| vs φ for systems
with small and different ratio t′/t (|cos(φ2π)|-black straight
line, t′/t = 0.06-red dot line, t′/t = 0.12-blue dash dot line,
t′/t = 0.18-amaranth dash line, t′/t = 0.22-cyan dot) and
F = 0.05t. The dynamics of density profile(b) and momen-
tum distribution(c) for a particle in the driven sawtooth lat-
tice with t′/t = 0.12,F = 0.05t,VH/t = 0.01 and φ = 0.096.
(d):The single particle dispersion for the no driving force sys-
tem in the presence of magnetic flux with t′/t = 0.12 and
φ = 0.096.

and eventually leave the system. The remaining system
is a dynamical localized one. In Fig.5d, we remove the
driving force at time TB and the particle moves freely
in the lattice. Right before removing the driving force
the particle concentrates at the edges of Brillioun zone
k = ±π/2, and after removing the driving force the dy-
namical localized system is divided into two parts, they
move against each other linearly.

Now we study the effect of magnetic field on the dy-
namics. First of all, in the presence of magnetic flux,
the system still has a two Wannier-Stark ladder energy
spectrum because of the two Bloch band dispersion for
the corresponding no driving force system, and there is
possible Bloch-Zener oscillation. But the magnetic flux
changes the Bloch bands dramatically for no driving force
system, then it will change the value of |S| and Bloch-
Zener time. For two special points φ = 1/4, 3/4, the
gap between two Bloch bands closes. After adding the
driving force, there is only one Wannier-Stark ladder in
the dispersion, and the system always reconstructs at in-
teger multiples of Bloch time (Bloch oscillation). For
general φ, the system has a two Wannier-Stark ladder
spectrum, and there is Bloch-Zener oscillation. In or-

der to study how the magnetic flux changes |S|, we plot
|S(φ)/S(φ = 0)| vs φ for systems with small t′/t in
Fig.6a. For large t′/t, the curve is different and Landau-
Zener tunneling probability is very small which will cause
no Bloch-Zener oscillation in dynamics. In Fig.6a we also
show the curve |cos(φ2π)|, and these curves agree with
each other very well. So

|S(φ)| = |cos(φ2π)S(φ = 0)|. (16)

Then, for example, for system with t′ = 0.12t, F = 0.05t,
if we want Bloch-Zener time TBZ = 2TB, we can choose
φ = 0.096 in Eq.(16) to let |S(φ)| = F/2 after getting
|S(φ = 0)|/t = 0.03045. The dynamical evolution of
density profile and momentum distribution are shown in
Fig.6b, and Fig.6c respectively. Obviously the system
really reconstructs at τ = 2TB. One can in detail analyze
the Landau-Zener tunneling and Bragg scattering with
the reference of Fig.6d.

IV. CONCLUSION

In summary, the dynamics of a quantum particle in
the driven sawtooth lattice under uniform magnetic fields
has been studied in this paper. First we studied the spec-
tral properties of system in the absence of driving force.
Without magnetic field, the two-miniband system can
be classified into three different types with the shape of
Bloch bands being decided by ratio t′/t, where t′ (t) is
the hopping amplitude along the zigzag path (baseline).
Especially with t′/t ≪ 1, the system can host partial
flat Bloch bands which causes the dynamical localization
in the dynamics of a particle in driven system. In the
presence of magnetic field, the gap between two mini-
bands can be closed for some particular magnetic field,
and when the gap is closed the dispersion is asymmet-
ric Dirac cone around the touch point. We also stud-
ied the Bloch-Zener oscillation in the driven system with
t′/t ≪ 1. Landau-Zener tunneling and Bragg scatter-
ing happen at different time and place in the dynamics
and one can see the dynamical localization of a particle
caused by the partial flat bands. Foremost the system re-
constructs at integer multiplies of Bloch-Zener time. The
magnetic field changes the offset of two Wannier-Stark
ladders in the spectrum of driven system, then changes
the Bloch-Zener time. But the Bloch-Zener oscillation
still exists in dynamics and the system reconstructs at
sometime.
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Appendix A: dynamics of a particle in driven

two-miniband system

For an initial state expanded in Wannier-Stark basis:

|Φ〉 =
∑

n

c0,n|Ψ0,n〉+
∑

n

c1,n|Ψ1,n〉, (A1)

the dynamics of |Φ〉 under Hamiltonian H is given by

|Φ(τ)〉 =
∑

n

c0,ne
−iE0,nτ |Ψ0,n〉+

∑

n

c1,ne
−iE1,nτ |Ψ1,n〉.

(A2)

Expanding Wannier-Stark functions in Bloch basis:

|Ψβ,n〉 =
∫

π
2

−
π
2

aβn(k)|χ−(k)〉dk +

∫

π
2

−
π
2

bβn(k)|χ+(k)〉dk,

(A3)

and projecting |Φ(τ)〉 onto Bloch basis, one can get

〈χ−(k)|Φ(τ)〉 = e−iE0τ [a0,0(k)C0(k + Fτ) (A4)

+a1,0(k)e
−i(F+S)τC1(k + Fτ)],

〈χ+(k)|Φ(τ)〉 = e−iE0τ [b0,0(k)C0(k + Fτ)

+b1,0(k)e
−i(F+S)τC1(k + Fτ)],

where Cβ are the Fourier series of cβ,n:

Cβ(k + Fτ) =
∑

n

cβ,ne
−i2n(k+Fτ), (A5)

which are π-periodic. To get Eq.(A4) one has to
use T−2n|χ±(k)〉 = e−i2nk|χ±(k)〉 (translation of Bloch
waves). From Eq.(A4), one can see that the dynamics of
a particle is characterized by two periods: Cβ are func-
tions with period of

T1 =
π

F
, (A6)

whereas the exponential function e−i(F+S)τ has a period
of

T2 =
2π

F − |S| , (A7)

because of e−i(F+S)τ = e−i2Fτei(F−S)τ . In general if T1

and T2 are commensurate,

T1

T2
=

F − |S|
2F

=
m

n
with n,m ∈ N, (A8)

thus the wavefunction reconstructs at integer multiples
of Bloch-Zener time (TBZ = nT1).
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Zimmer, and K. Köhler , Phys. Rev. B 68, 125301(2003).

[13] H. Trompeter, T. Pertsch, F. Lederer, D. Michaelis, U.
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