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Abstract

A minimum at ∼39 eV is observed in the high harmonic generation (HHG) spectra of N2 for

several laser intensities and frequencies. This minimum appears to be invariant for different molec-

ular orientations. We reproduce this minimum for a set of laser parameters and orientations in

time dependent density functional theory calculations, which also render orientation dependent

maxima at 23–26 eV. Photon energies of these maxima overlap with ionization potentials of ex-

cited states observed in photoelectron spectra. Time profile analysis shows that these maxima

are caused by resonance enhanced multiphoton excitation. We propose a four step mechanism, in

which an additional excitation step is added to the well accepted three step model. Excitation to

the linear combination of Rydberg states c′4
1Σ+

u and c3
1Πu, gives rise to an orientation invariant

minimum analogous to the “Cooper minimum” in argon. When the molecular axis is parallel to

the polarization direction of the field, a radial node goes through the atomic centers, and hence the

Cooper-like minimum coincides with the minimum predicted by a modified two-center interference

model that considers the de-excitation of the ion and symmetry of the Rydberg orbital.

PACS numbers: 33.80.Rv,42.50.Hz,33.80.Eh,33.90.+h
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I. INTRODUCTION

Exciting results have been obtained in recent years by using HHG [1, 2] to probe molecular

dynamics with subfemtosecond temporal resolution [3–8]. The sensitivity of HHG emission

to molecular geometry and motion is the foundation for this application. In particular, min-

ima in HHG spectra [7, 9] and the involvement of multiple ionization channels [10–12] may

correlate with molecular structure and cause oscillation of the HHG intensity in response to

geometry changes in molecules. Among different types of minima, those due to two-center

interference [13] and Cooper minima initially observed in photoionization [14] and caused by

radial nodes of the ground state wave function have attracted much attention. The HHG of

CO2 is well studied and believed to exhibit the two-center interference [13] type of minimum

[15], whose position depends on the molecular orientation and parameters of the incident

laser. Wörner et al. [16] concluded that two molecular orbitals (MOs) contribute to the

HHG of CO2, which leads to controllable phase differences. In contrast they also reported a

minimum for N2, which remains at ∼39 eV for different alignment angles and incident laser

parameters. As such, it is considered to be Cooper-like. The HHG spectra of Ar [17, 18], Kr,

and Xe [19] have been shown to exhibit Cooper minima, and it has been pointed out that the

single active electron (SAE) model is not sufficiently accurate to determine the positions of

the minima [20]. To confirm a Cooper minimum in a molecule is even less straightforward.

An expansion of both the ground and continuum wave function into angular momentum

space is needed. In the most recent work by Bertrand et al. [9], HHG measurements using a

longer wavelength, 1200 nm, were compared to a SAE calculation involving only the high-

est occupied molecular orbital (HOMO). They concluded that the destructive interference

between the recombination contributions from the p and f free electron partial waves gave

rise to the minimum. The difference between theory and measurements, however, is as large

as 13 eV.

It is generally accepted that HHG of N2 is due to activity of the electron initially occu-

pying the HOMO. The HOMO-1, on the other hand, has also been shown to influence the

molecular orientation dependent intensity [21] and phase[11, 22] of HHG. Current strong

field theory for HHG largely relies on the semiclassical Lewenstein model [23]. Semiclassical

methods usually ignore all excited states, the depletion of the ground state, and the inter-

action between the active electron and the parent ion in the continuum. Furthermore, the
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SAE approximation is usually applied. As such, all the electronic structure information is

embedded in the highest occupied molecular orbital (HOMO) and the Ip. Even when other

orbitals, such as HOMO-1, are considered, disentanglement of the orbitals is usually assumed

and the active electron is approximated by plane waves [11, 22]. Such calculations can re-

solve the alignment angle dependent HHG signals and thus reveal the relation between the

tomography of the HOMO and the HHG signal [11, 24, 25]. The limitation of these methods

is that the role of correlated multielectron dynamics and ionic excited states are not fully

considered. A quantum mechanical approach with all electrons included provides a more

complete description of the process, although such a method requires extremely large scale

computation.

A time dependent density functional theory (TDDFT) study of the HHG of N2 was pub-

lished in 2001 [26], in which the TDLBα potential was adopted. This method treats the

ground and excited states together with the continuum with sufficient accuracy. It also

describes other strong field processes that accompany HHG, including ionization and exci-

tation. The advantage of TDDFT is that it is in general less costly in terms of computation,

while electron correlation is accounted for to some extent. In Figs. 12 and 13 of Ref. [26],

a minimum is visible at 39 eV for both the 1064 nm and 800 nm fundamental wavelengths.

The intensity applied there was 1014 W/cm2. Here we will present more HHG data for a

variety of laser intensities, frequencies, and molecular orientations to show that this relative

stationary minimum is reproducible by our method.

A Cooper minimum is the mostly likely cause of a minimum that does not vary strongly

with the molecular orientation angle. An important question, however, is: what makes the

HOMO (3σg) atomic like? An earlier study of ours showed that the projection of outer

region of the 3σg orbital is 82.7% s and 17.1% dz2 [27]. This ratio varies with the radius r.

Dipole matrix elements involving the dz2 orbital depend on the orientation. We therefore

expect the dipole moment for recombination, which concerns the p and f scattering wave

functions and their relative phases, to depend on the orientation.

Two-center interference [13] has also been discussed by Zimmermann et al. [28] and Gühr

et al. [29]. Zimmermann et al. observed that the 3σg orbital of N2 is a linear combination

of p and s orbitals at the two atomic centers. For a destructive interference the free electron

wave function as a plane wave should have a 2π phase shift between the two atomic centers

for the p component, whereas π phase shift is needed for the s component. Gühr et al., on
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the other hand, only considered a phase shift of π between the atomic centers and found

agreement between the interference model and the calculated HHG minimum using a SAE

method for larger internuclear distances R and the parallel orientation θ = 0.

In this article we propose that resonance enhanced multiphoton excitation (REME) plays

an important role in HHG spectra. Maxima occur at 23–26 eV for all orientations. Their

positions overlap with the ionization potentials in photoelectron experiments [30], which

correspond to excited ion states. We use time profile analysis to show that HHG peaks in

this energy range have a large “multiphoton” component, which diminishes at the minimum.

We postulate that this process is an excitation that results in an atomic-like orbital for the

active electron. A significant contribution to HHG comes from recombination to Rydberg

orbitals, which creates an isotropic Cooper Minimum. When this channel is considered,

destructive two-center interference requires a π phase difference for the plane wave between

the two atomic centers and it overlaps with the Cooper Minimum for the parallel orientation.

We introduce the essential formalism of TDDFT in Sections II and III. In Section IV we

show the calculated HHG spectra for various laser parameters and molecular orientations.

We present time profile analysis and photoelectron experiment data that demonstrate the

importance of excitation in creating HHG minima and maxima in Section V. The role of

different molecular orbitals is analyzed in section VI. In Section VII we describe interference

models that involve atomic like Rydberg orbitals. The conclusions are given in Section VIII.

II. TIME DEPENDENT DENSITY FUNCTIONAL THEORY FOR MOLECULES

IN STRONG FIELDS

A TDDFT method was developed for treating diatomic molecules interacting with a

linearly polarized laser, whose polarization direction is parallel to the molecular axis [26, 31,

32]. Later this work was extended to treat arbitrary polarization directions for the study of

the anisotropy of ionization and HHG [27, 33, 34]. We use the approach of Ref. [35], which

includes multiple electronically excited states, the depletion of the ground state, and the

interaction between the active electron and the parent ion in the continuum. We employ the

TDLBα exchange-correlation functional, whose accuracy has been extensively benchmarked

[26, 31, 34, 35]. Details of the method are given in previous articles [26, 31, 35]. The central

theme of the TDDFT method that we implemented is a set of TD Kohn-Sham equations,
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which are structurally similar to the TD Hartree-Fock equations, but include many-body

effects through a local TD XC potential. We consider a quantum action integral [36–38]

A =

∫ t1

t0

dt〈Ψ(t)|i ∂
∂t

− Ĥ(t)|Ψ(t)〉, (1)

where Ψ(t) is the total N -electron wave function. When Ψ(t) is represented by a single

determinant,

Ψ(t) =
1√
N !

det [ψ1(t)ψ2(t) · · ·ψN(t)] , (2)

the total electron density at time t is determined by the set of occupied single-electron orbital

wave functions {ψiσ} as

ρ(r, t;R) =
∑

σ

Nσ
∑

i=1

ρiσ(r, t;R) =
∑

σ

Nσ
∑

i=1

ψ∗

iσ(r, t;R)ψiσ(r, t;R), (3)

where i is the orbital index, σ is the spin index, and R is the internuclear distance. The

spin orbital ψiσ satisfies the one-electron Schrödinger-like equation, in atomic units,

i
∂

∂t
ψiσ = Ĥ(r, t;R)ψiσ

=

[

−1

2
∇2 + vnucl(r;R) +E(t) · r +

∫∫∫

d3r′
ρ(r′, t;R)

|r − r′| + VLBα,σ(r, t;R)

]

ψiσ,

i = 1, 2, ..., Nσ, (4)

where Nσ is the number of electrons that have σ spin and E(t) = E(t)q̂ is the electric field

of the laser and |q̂|=1. The external potential due to the nuclear attraction is

vnucl = − Z

|R1 − r| −
Z

|R2 − r| , (5)

whereR1 andR2 are the coordinates of the two nuclei with charges Z. The TDLBα potential

is

VLBα,σ = αvLSDA
xσ (r, t;R) + vLSDA

cσ (r, t;R)

− βx2σ(r, t)ρ
1

3

σ (r, t;R)

1 + 3βxσ(r, t) ln{xσ(r, t;R) + [x2σ(r, t;R) + 1]
1

2}
, (6)

which contains two empirical parameters α and β. In Eq. (6), vLSDA
xσ and vLSDA

cσ are the

local spin density approximation (LSDA) exchange and correlation potentials, which do not

have the correct asymptotic behavior. The last term is the gradient correction with xσ(r) =

|∇ρσ(r)|/ρσ(r)4/3, which ensures the proper long-range asymptotic behavior VLBα,σ → −1/r

as r → ∞.
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III. HHG POWER SPECTRUM CALCULATIONS

The numerical solution of the time-dependent equations is detailed in a recent publication

[35]. Once the electron density ρ(r, t;R) is obtained, the induced dipole moment and dipole

acceleration can be determined, respectively, as

d(R, t) =

∫∫∫

ρ(r, t;R)qd3r, (7)

where q = r · q̂ and

a(R, t) =
∑

σ

∫∫∫

ρσ(r, t;R)

[

−∂vnucl(r;R)
∂q

+ E(t) sin(ωt)

]

d3r. (8)

The HHG power spectrum is related to the Fourier transform of the respective time-

dependent dipole moment or dipole acceleration:

d(R, ω) =
1

tf − ti

∫ tf

ti

d(R, t)e−iωtdt, (9)

a(R, ω) =
1

tf − ti

∫ tf

ti

a(R, t)e−iωtdt = −ω2d(R, ω). (10)

Finally, the spectral density (radiation energy per unit frequency range) is given by [33, 39]

S(R, ω) =
2

3πc3
|a(R, ω)|2 = 2ω4

3πc3
|d(R, ω)|2 , (11)

where c is the speed of light. We have checked that results obtained by calculating a and d

are indistinguishable, which is an indication of numerical accuracy. Throughout the paper

we plot |d(R, ω)|2 as the HHG power spectrum.

IV. THE 39 EV MINIMUM AT THE EQUILIBRIUM INTERNUCLEAR DIS-

TANCE

We consider a linearly polarized laser field with a sin2 pulse shape, 20 optical cycles in

pulse length, and a laser intensity of 2×1014 W/cm2. The wavelength is 800 nm or 1064

nm. We fix R at the equilibrium distance Re = 2.07 a0. The α parameters of the TDLBα

potential for different R values are listed in Ref. [27]. We show the HHG spectra in Fig. 1

for two laser frequencies. The electric field polarization is parallel to the molecular axis.

This parallel orientation significantly reduces the size of the computation because the axial
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symmetry is conserved. For both 800 nm and 1064 nm incident light, there is a minimum

at 39 eV. Specifically, it is at the 25th harmonic for 800 nm and at the 33rd harmonic for

1064 nm, in agreement with experiments [16]. In Fig. 1 we also plot the spectrum for an

800 nm laser with an intensity of 1.5×1014 W/cm2. The minimum is more obvious with the

lower laser intensity, which is consistent with experimental results [16]. The spectral density

decreases from 30 eV to 39 eV is more abrupt for lower incidental laser intensity.

Experimentally measured positions of the discussed minimum for N2 are not much influ-

enced by the orientation angle (θ) of the molecular axis relative to the polarization direction

of the laser field. This is a major difference between the minimum for N2 and those for CO2.

In Fig. 2 we plot the HHG spectrum for three values of θ. The laser intensity is 2 ×
1014 W/cm2 and the wavelength is 800 nm. The HHG intensity decreases from the parallel

orientation to θ = 45◦, and further to the perpendicular orientation for most harmonics,

which is consistent with experimental observations. For all three orientations there is a

minimum at 39 eV, also in agreement with experiment [40].

Earlier work on H2 showed that HHG spectra calculated at the equilibrium distance differ

considerably from HHG spectra calculated with molecular vibration taken into account [41].

The reason is that for H2 the vertical Ip(R) varies significantly over R, which causes the phase

φ(ω,R) of HHG to oscillate over R as well. In Fig. 3 we plot the ground state vibrational

wave function χ0(R) of N2 together with Ip(R). This Ip(R) is much flatter than that for H2

in the region where the nuclear wave function has significant amplitude.

If we express |D(ω, ν = 0)|2, in which ν is the vibrational quantum number, as

|D(ω, ν = 0)|2 = |〈χ0(R)|d(R, ω)eiφ(ω,R)|χ0(R)〉|2, (12)

we see that a large phase variation causes cancellation in Eq. (12) and makes |D(ω, 0)|2 very
different from |d(ω,Re)|2. Due to the importance of the R−dependent phase, Eq. (12) can

be approximated by

|D(ω, ν = 0)|2 ≈
∣

∣〈χ0|e−iIp(R)τ(ω)|χ0〉
∣

∣

2 |d(ω,Re)|2, (13)

where τ is the recombination time defined in the strong field approximation (SFA). It was

shown that this “SFA phase” formula reproduces the measured D2 to H2 HHG ratio [41].

It is much less costly to evaluate Eq. (13) than to evaluate Eq. (12), because Eq.̃(12)

involves repeatedly solving TDDFT equations for different R values. In recent work on H2,
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the error caused by using the SFA phase formula is estimated to be within 7 % for similar

laser parameters [41]. We expect the error in the case of N2 to be even smaller, because

|d(R, ω)| is more flat as a function of R for N2 than for H2 due to the flatter Ip(R) of N2.

As a measure of the effect of the zero point vibration in N2, we calculate the ratio

|D(ω, ν = 0)|2/|d(ω,Re)|2. When using Eq. (13) this ratio becomes
∣

∣〈χ0|e−iIp(R)τ(ω)|χ0〉
∣

∣

2

and it is always less than 1 because only the phase φ is considered as a function of R in

Eq. (13). In Fig. 4 we plot the ratio of the HHG intensity calculated with Eq. (13) as a

function of ω for R = Re. This ratio at the discussed minimum is 0.98 for the 1064 nm laser

and 0.97 for the 800 nm laser, and it remains close to 1 at other harmonics. This justifies

our approximation of |d(ω)|2 ≡ |d(ω,Re)|2 ≈ |D(ω, ν = 0)|2 for N2 throughout this paper.

V. REME AND ITS ROLE IN HHG MAXIMA AND MINIMA

A maximum appears around 23–26 eV for the 800 nm laser and at similar energies for the

1064 nm laser but with more structure. Compared to the HHG intensity at the ionization

threshold, the maximum is more enhanced than what we expect from constructive interfer-

ence. We further observe that photon energies of the maxima overlap with Ips measured in

photoelectron experiments. In Table I we list the lowest eight doublet N+
2 states observed in

the photoelectron experiment [30]. The vertical Ip of N2 at R = Re for each state is obtained

from experiment, from multireference configuration interaction (MRCI) [42], and from DFT

calculations. For each state we also tabulate the dominant excitation with respect to the

X 2Σ+
g ground state of the ion. In the DFT calculation, we use the LBα potential with

exactly the same α coefficient as in our TD calculations. The orbital energies (ǫ) of N2 are

listed in Table II. The vertical Ip from the ground state of N2 to the X 2Σ+
g state of the ion

is calculated as the negative of the orbital energy of the 3σg HOMO. For other ionic states,

the orbital energy differences for orbitals involved in the dominant excitation of the ion are

added. For example, the Ip from the ground state of N2 to the D 2Πg state of the ion is

calculated as Ip = −ǫ3σg
+ ǫ3σg

+ ǫ1πg
− 2ǫ1πu

= ǫ1πg
− 2ǫ1πu

.

With the laser polarization parallel to the molecular axis, allowed transitions from the

X 2Σ+
g ground state are limited to the B 2Σ+

u and C 2Σ+
u states in Table I with odd numbers

of photons, or to the F 2Σ+
g state with even number of photons. From intermediate output

and analysis of our TDDFT formalism, we identify contributions of these excited states to
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HHG. First we rewrite Ψ(t) [Eq. (2)] as

Ψ̃(t) =
∑

ll′

bll′(t)Θ
ion
l ϕelec

l′ , (14)

where Θion
l is an orbital product corresponding to a field-free ionic configuration and ϕelec

l′

is a one electron function. We do not use determinants since that is not necessary for

computing the dipole moment. The ion and electron are treated together in our calculation

and an absorbing boundary is placed at 40 a0 radius to simulate ionization. The summation

includes the ground state, excited states, and continuum states. The Fourier transform of

the dipole becomes

d(ω) =
1

tf − ti

∫ tf

ti

∑

l1l2l3l4

b∗l1l2(t)〈Θion
l1 ϕ

elec
l2 |d̂|Θion

l3 ϕ
elec
l4 〉bl3l4(t)e−iωtdt

=
∑

l1l3

〈Θion
l1
|d̂|Θion

l3
〉 1

tf − fi

∫ tf

ti

∑

l2

b∗l1l2(t)bl3l2(t)e
−iωtdt+ (15)

∑

l2l4

〈ϕelec
l2

|d̂|ϕelec
l4

〉 1

tf − fi

∫ tf

ti

∑

l1

b∗l1l2(t)bl1l4(t)e
−iωtdt

where d̂ is the dipole operator and we used the orthonormality of the orbitals. In situations

where the only contribution comes from recombination, at time τ(ω), from a free electron

state with energy ǫk = ~
2k2

2me
to the ground state with energy −Ip and the ion remains in the

ground state, this model reduces to the SFA formalism with d(ω) ∝ 〈ϕelec
3σg

|d̂|ϕelec
k

〉 and

~ω = ǫk − (−Ip) =
~
2k2

2me
+ Ip. (16)

In our calculations, however, resonances couple the ground state to excited states of the

ion and the active electron. We evaluate Eqs. (7) and (9) with ρ(t) obtained by solving

the TDDFT equations. For the purpose of analysis, we evaluate the Fourier components of

bll′(t),

bll′(ω) =

∫ tf

ti

〈Θion
l ϕelec

l′ |Ψ̃(t)〉e−iωtdt. (17)

The field free wave functions Θion
l and ϕelec

l′ are from DFT calculations on the same spatial

grid and Ψ̃(t) is obtained in our TDDFT calculations. Contributions to d(ω) [Eq. 15]

arise from products bl1l2(ω0)bl3l4(ω1) whenever ω = ω1 − ω0. Since depletion of the ground

state is small, the main contribution arises from ~ω0 = −Ip and, for an harmonic with

photon energy ~ω, we have ~ω1 = ~ω − Ip. Among ∼ 10,000 coefficients bll′(−Ip/~) and
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bll′(ω − Ip/~), we select the largest ones. For bll′(−Ip/~), apart from the ground state

contribution X 2Σ
+
g 3σg, we also found significant contribution from (C 2Σ

+
u ) 3σu because of

the resonance. For bll′(ω−Ip/~), the contribution from (X 2Σ+
g )ϕk′, with ~ω−Ip = ǫk′, where

ǫk′ is the energy of the electron in the continuum, is negligible. The largest contribution

is from (C 2Σ
+
u )(ϕk + b 3σg), where b is a constant, ~ω − Ip = ǫk + ∆Eion

exc, and ∆Eion
exc =

E(C 2Σ
+
u )−E(X 2Σ

+
g ) is the excitation energy of the ion. Therefore we have

~ω = Ip + ǫk +∆Eion
exc. (18)

The dipole according to Eq. (15) is

d(ω) ∝ A〈X 2Σ+
g |d̂|C 2Σ+

u 〉+B〈3σu|d̂|ϕk′〉, (19)

where constants A and B are significantly larger than those of other contributions.

Excitation of the ion from the X 2Σ+
g to the C 2Σ+

u state and excitation of the electron

from 3σg to 3σu are important. In neutral N2 orbital excitation from 3σg to 3σu produces

the c′4
1Σ+

u Rydberg state. We extract the following mechanism accordingly for H15 and up

to the 39 eV minimum.

N2 (X 1Σ+
g ) + 9hν

excitation−→ N2 (c′4
1Σ+

u ) (20)

N2 (c′4
1Σ+

u ) + 6hν
ionization−→ N+

2 (C 2Σ+
u ) + e−, (21)

e− + nhν
acceleration−→ e−∗, n = 1, ..., 10, (22)

N+
2 (C 2Σ+

u ) + e−∗ recombination−→ N2 (c′4
1Σ+

u ) + hν ′

[ν ′ = (6 + n)ν]. (23)

In this “four step” mechanism, excitation is added prior to the three steps of HHG and the

product of the ionization is an ion in an excited state, rather than in the ground state. The

excitation and ionization steps are enhanced by multiphoton resonance. The recombination

step consists of two single-electron processes of ion de-excitation C 2Σ
+
u → X 2Σ

+
g and the

high electron goes from the continuum with energy ǫk to the 3σu orbital. The combination

of the X 2Σ+
g ionic state and 3σu electronic orbital gives the c′4

1Σ+
u state of N2.

The time profile of |dω(t)| obtained by the wavelet expansion [31] distinguishes a three

step process from a multiphoton process for HHG with photon energy ~ω. An example

of the “three step” process is H25 (the minimum at 39 eV) at Re in Fig. 5. It exhibits

two “recombination” peaks per optical cycle and twice per cycle |d25ω0
(t)| drops to zero. An
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example of a pure multiphoton process is H9 (slightly below the Ip), because its energy is too

low for tunneling ionization. Its time profile in Fig. 5 shows no periodicity and it correlates

with the laser intensity. For H11 (17 eV, slightly above the vertical Ip), although the periodic

recombination peaks are visible, the dominant contribution is still the multiphoton process,

enhanced by the multiphoton resonance with highly excited states and virtual states near the

ionization threshold. As a result, |d11ω0
(t)| does not drop to zero between two peaks, as in

the case when the three step process is dominant. Harmonic H15, the 23 eV maximum, has

a similar profile. The contribution from the multiphoton resonance matches that of H9, and

is significantly larger than that of H11. The contribution of multiphoton resonance decreases

with increasing harmonic order and drops to near zero for H25, the weak minimum, and for

higher harmonics. We observe similar patterns in time profiles for θ = 45◦ and θ = 90◦.

Mechanisms outlined in Eqs. (20)-(23) are consistent with significant multiphoton con-

tributions for harmonics between the maximum and minimum, which cannot be explained

by interference models that only consider the three-step mechanism. In these “four step”

mechanisms we propose, multiphoton contributions arise from the excitation and ionization

steps, they are reflected in the first term of Eq. (19), and they are enhanced by the reso-

nances listed in Table I. Compared to the three step mechanism, the additional excitation

step makes the free electron recombine to a higher orbital than the HOMO, as in the second

term of Eq. (19), which bears a significance in interferences that create HHG minima.

The anisotropy of the calculated HHG intensities, defined as the ratio between |d(ω)|2

for θ = 0◦ and for θ = 90◦, supports our interpretation that excitation causes HHG maxima

at all orientations. The anisotropy increases with the harmonic order n, from n = 1 to

n = 7, which occurs at 11 eV. Then it reduces for n = 9 and n = 11, possibly due

to the X 2Σ+
g –A

2Πu resonance for the perpendicular orientation (see Table I). Then it

increases for n = 13 and n = 15, which is the 23 eV maximum for the parallel orientation.

The anisotropy maximizes here. This is consistent with the selection rule that prohibits

the X 2Σ+
g –C

2Σ+
u multiphoton transition for the perpendicular orientation. For n = 17

(at 26 eV), the anisotropy has a minimum, which is due to the X 2Σ+
g –2

2Πu resonance

prohibited for the parallel orientation but allowed for other orientations (Table I). From 26

to 36 eV, the anisotropy appears constant. For the perpendicular orientation, the peaks for

n = 25, 27, and 29 (at 39–45 eV) have the shape of a short plateau before the cutoff. For

the perpendicular orientation, we propose the following mechanism for H17 and up to the
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39 eV minimum.

N2 (X 1Σ+
g ) + 9hν

excitation−→ N2 (c3
1Πu), (24)

N2 (c3
1Πu) + 8hν

ionization−→ N+
2 (2 2Πu) + e−, (25)

e− + nhν
acceleration−→ e−∗, n = 1, ..., 8, (26)

N+
2 (2 2Πu) + e−∗ recombination−→ N2 (c3

1Πu) + hν ′

[ν ′ = (8 + n)ν]. (27)

The c3
1Πu state of N2 corresponds to an ion in the X 2Σ+

g state and the electron in the 2πu

orbital. The dipole matrix element analogous to Eq. (19) for the perpendicular orientation

is

d(ω) ∝ C〈X 2Σ+
g |d̂|2 2Πu〉+D〈2πu|d̂|ϕk〉, (28)

where C and D are constants.

The X 2Σ+
g –2

2Πu and X 2Σ+
g –C

2Σ+
u resonances, which create maxima for the perpen-

dicular and parallel orientations, respectively, are both allowed for the θ = 45◦ orientation.

The four step mechanisms that we propose [Eqs. (20)-(27)] for perpendicular and parallel

orientations therefore both apply here and at any other orientations in between the parallel

and the perpendicular. In addition the X 2Σ+
g → 2Πg transitions are forbidden for both

the parallel and the perpendicular orientation, but allowed for θ = 45◦. As such the HHG

intensity at θ = 45◦ orientation is much closer to that for the parallel orientation than that

for the perpendicular orientation. Figure 2 shows a near constant ratio between the HHG

intensity of the parallel and θ = 45◦ orientation for most of the harmonics.

In experiments aligned molecules contain a distribution of orientations. Calculated HHG

spectra for the above three typical angles show that a 23–26 eV maximum due to multiphoton

excitations of the ion exists for all orientations, despite the different selection rules that apply

to parallel and perpendicular orientations. From these maxima, the HHG intensity decreases

to the same 39 eV minimum for all orientations.

VI. CONTRIBUTION OF MOLECULAR ORBITALS

Molecular orbitals have been an important concept in strong field theories. Here we

discuss orbital assignments to the four steps. For the parallel orientation the excitation

step consists of orbital transition 3σg → 3σu(2pσu). Ion excitation 1πu → 1πg occurs in the
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ionization step. For the perpendicular orientation, 3σg → 2πu(3pπu) occurs in the excitation

step and 2σu → 1πg in the ionization step. For orientations in between, a combination of

these orbitals and transitions occurs. Orbital energies are listed in Table II. Our assignment

of the second step consists of the ionization of the highest electron from the 3σu or 2πu

orbital while exciting a second electron. Assignments of excitations are listed in Table I.

Finally the electron returns to the 3σu or 2πu orbital and the ion returns to the ground state

upon recollision.

We consider two-electron processes for the ionization steps important for creating the

23–26 eV maxima, which we interpret as a multiphoton resonance with the excited ionic

state. In order to support this model, we investigate contributions of individual initially

occupied orbitals, when coupling between orbitals is removed. In our TDDFT calculation,

all orbitals are coupled through the Coulomb and XC terms in Eq. (2). The coupling becomes

negligible when we artificially shift the orbital energies of all but one occupied orbital down

by 1.5 Eh (40.8 eV). The unoccupied orbitals are not shifted. The electron density for the

orbitals with shifted energies becomes frozen to the initial distribution obtained from field

free DFT calculations. As such only the unshifted orbital contributes to the dipole, i.e.,

|d(ω)|2 ≈ |dj(ω)|2, in which j is index for the unshifted orbital.

In Fig. 6, we plot calculated contributions from the 3σg (HOMO), 1πu (HOMO-1), and

2σu (HOMO-2) orbitals to the HHG of N2 for a 800 nm laser of 2 × 1014 W/cm2 with the

molecule parallel to the polarization direction of the field. These contributions are obtained

by three different calculations in which we freeze electrons in turn in all but one contributing

orbital using the method described above. The contribution of the HOMO is dominant. In

this orientation the contribution of the 2σu orbital is larger than that of the 1πu orbital for

most harmonics, in spite of its lower energy.

The 39 eV minimum appears in the contribution from 3σg. From 17 to 30 eV, there is

a high plateau for 3σg, and the 39 eV minimum is at the beginning of a second plateau.

We also find the ∼39 eV minimum in the 3σg-only calculation for other orientations. Time-

profile analysis for these 3σg-only calculations show that the excitation step [Eq. (20)] is still

there. In this case, instead of Eq. (19) the recombination dipole matrix element becomes

d(ω) ∝ A′〈3σg|d̂|2σu〉 + B′〈3σu|d̂|ϕk〉. With only the two 3σg electrons are considered, the

mechanism remains very similar to those in Eqs. (20)-(23). The excitation step involves

the 3σg to 3σu transition, the other 3σg electron ionizes in the next step and accelerates in
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the field before recombines to the 3σu orbital while the other electron goes back to the 3σg

orbital.

The largest difference between the 3σg-only contribution shown in Fig. 6 and the all-

electron results in Fig. 1 concerns the maximum at ∼23.3 eV (H15). According to the

all electron calculation, the ratio between this maximum and the minimum at 17 eV is 8,

whereas the same ratio from the 3σg-only calculation is only 2. It demonstrates significant

contribution from other orbitals to the maximum.

We propose that the most important contribution to the maximum comes from the tran-

sition between the 1πu and 1πg orbitals, which is consistent with intermediate output and

our model in which the ionization step is a two-electron process. To show effects of two-

electron processes in which the highest electron ionizes while a second electron is excited

from the 1πu to the 1πg orbital, we shift the energy of the unoccupied 1πg orbital up by

0.25 Eh (6.8 eV) in an all-electron calculation. The HHG spectrum calculated this way is

plotted in Fig. 7 as the red solid line and it is shifted slightly to the right to compare it with

the unshifted spectrum. The 23.3 eV maximum is reduced 8-fold. The intensity of emissions

at 33 and 36 eV increases. The HOMO is a σ orbital, which is not coupled to π orbitals

by the laser field when θ = 0◦. This shows that it has to be a two-electron process that

involves another electron initially in the 1πu orbital that creates the 23.3 eV maximum. A

TDDFT method may not treat two or many electron excitations very accurately. Resolving

harmonic orders, on the other hand, does not require high accuracy. For the 800 nm laser

field, for instance, the energy difference between two adjacent odd harmonics is as large as

3.10 eV.

VII. INTERFERENCE MODELS INVOLVING RYDBERG STATES FOR EX-

PLAINING THE MINIMUM

A HHG minimum occurs when the contribution shown in Eq. (19) or the analogous

dipole matrix element for other orientations becomes minimized. The excitation step shown

in Eqs. (20) and (24) creates Rydberg molecules when N2 is exposed to an intense 800 nm

linearly polarized laser. The Rydberg state is c′4
1Σ+

u for the parallel orientation, c3
2Πu

for the perpendicular orientation, and a linear combination of them for other orientations.

Both Rydberg states have principle quantum number n = 3, converge to the ground state
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of the ion, and their energies are very similar: c′4
1Σ+

u is 12.93 eV above the ground state

while c3
2Πu is at 12.91 eV [43, 44]. Highest orbitals for both the parallel and perpendicular

orientations, 3σu (2pσu) and 2πu (3pπu) orbitals, are highly atomic-like and have more than

99.8% p character. Their orbital energies are very similar (Table II) as well. As a result,

the dipole matrix elements involving these p Rydberg orbitals create minima analogous to

the Cooper minimum in Ar associated with the 3p orbital. At energies (k values) where

〈3σu|d̂|ϕk〉 in Eq. (19) becomes minimized, 〈X 2Σ+
g |d̂|C 2Σ+

u 〉 is also significantly reduced,

because the mixing between ϕk and 3σg, which leads to 〈X 2Σ+
g |d̂|C 2Σ+

u 〉 disappears as well
when 3σu and ϕk no longer couples.

Cooper minima of Rydberg molecules created in resonance enhanced multiphoton ioniza-

tion photoelectron spectra have been studied theoretically for NO [45]. It was shown that

the minima have much lower energy and the energy variation with respect to the orientation

angle is within 3 eV. We expect similarities for the HHG of N2 with 800 nm intense lasers:

recombination matrix element involving the Rydberg state have a lower energy than 39 eV

and the excitation energy makes up the difference. The orientation dependence is very small.

At any orientation other than the perpendicular, the Rydberg orbital involved in HHG

resembles a 4p atomic orbital, with one radial node at ∼ R/2 and another at ∼ 2 a0. The

Rydberg orbital at the perpendicular orientation has one radial node remaining at ∼ 2

a0, while the other node tends to the plane that goes through the origin. At the parallel

orientation in particular, one radial node goes through the two atomic centers, we therefore

expect the Cooper minimum, which is due to the nodal structure, to coincide with the two-

center interference minimum at the parallel orientation. At other orientations the Cooper

minimum remains at similar photon energies, because the change in radial nodes are very

subtle as the orientation is varied. The two-center interference, however, depends on the

distance between two planes, R cos θ, and its minimum becomes unnoticeable when θ is

large, because it is either at the low intensity plateau beyond the Cooper minimum or even

beyond the cutoff energy.

Here we use a modified two-center interference model at the parallel orientation to further

demonstrate the important influence of excitation on the minimum. With the REME and

Rydberg orbital considered, we propose a model that has two major differences compared

to earlier work by Lein et al. [13] and by Zimmermann et al. [28]. (i) Since we identify

the Rydberg orbital (2pσu) rather than the HOMO (2pσg) as the molecular orbital for
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recombination, the destructive interference requires the free-electron plane wave to have a

π phase difference between the atomic centers, rather than a difference of 2π, i.e.

|k|R cos θ = π, (29)

where k is the wave vector of the free electron and θ is the angle between the molecular

axis and the polarization direction of the electric field of the laser. (ii) When a multiphoton

resonance with an excited state makes a significant contribution, the photon energy of the

high harmonic is given by Eq. (18). As is often done in the SFA [13], we compute the wave

number k = |k| from
~
2k2

2me

= ǫk + Ip, (30)

because the free electron has a higher kinetic energy near the atomic centers. The photon

energy given by Eq. (18) becomes

~ω =
~
2k2

2me

+∆Eion
exc. (31)

In our TDDFT calculation for θ = 0◦, excitations that create the HHG maximum are

dominated by the 1πu ↔ 1πg orbital transition. We therefore approximate

∆Eion
exc = ǫ1πg

(R)− ǫ1πu
(R) ≡ ∆ǫ(R), (32)

where ǫi is the orbital energy of orbital i. At the equilibrium internuclear distance, ǫ1πg
(Re)−

ǫ1πu
(Re) is approximately 6 photons’ energy for 800 nm lasers, consistent with Eq. (23). In

order for the destructive interference between the two atomic centers to occur, |k| has to

satisfy Eq. (29). Thus for θ = 0◦ we predict the HHG minimum at

~ωmin =
~
2π2

2meR2
+∆ǫ(R). (33)

We calculate a series of HHG spectra for 1.9 ≤ R ≤ 2.7 a0 using the TDDFT method.

Results are shown in Fig. 8. For R = 2.7, 2.6, and 2.5 a0, the minimum is in between

two maxima. For R = 2.3, 2.2, 2.1, 2.0, and 1.9 a0, the shape above the minimum is

more like a plateau rather than a maximum. Note that R = 2.1 a0 is very close to the

N2 equilibrium distance (Re = 2.07 a0). In Fig. 8 we use vertical red lines to mark ~ωmin

predicted by Eq. (33). They agree with the minimum according to the TDDFT calculation

for R ≥ 1.9 a0. For R = 1.5 and 1.6 a0, the minimum according to the modified two-

center interference model is larger than the cutoff energy, therefore the model is no longer
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applicable. Considering that the HHG peaks calculated by TDDFT are odd harmonics of the

principle frequency, whereas ~ωmin calculated by Eq. (33) are not limited to be harmonics,

the agreement between the two methods is remarkable.

In Table III we list ~ωmin predicted without considering the excitation, i.e.,

~ωmin =
~
2π2

2meR2
(34)

and using Eq. (33) for the series of R values used in Fig. 8. The difference between the two

methods is ∆ǫ(R) estimated by Eq. (32). It varies from 4.5 eV for R = 2.7 a0 to 11.6 eV

for R = 1.9 a0, which offers a crucial modification of the two-center interference model. If

we do not include the excitation energy and do not consider the symmetry of the Rydberg

orbital, but use the symmetry of the HOMO instead, positions of the minimum would be

four times of the values predicted by using Eq. (34), different from the TDDFT results by

a large extent.

The agreement between this model, which considers both the Rydberg orbital and the

excitation energy, and the TDDFT results offers further support of our four step model. It

demonstrates the importance of the multiphoton excitation in the shape of the HHG spectra

calculated by the TDDFT calculation.

VIII. DISCUSSION AND CONCLUSIONS

We calculate HHG spectra of N2 using a TDDFT method that has been extensively

benchmarked. The influence of the laser intensity and wavelength is analyzed as well as the

effect of molecular vibration and orientation. A minimum appears at 39 eV in all of our

results for the equilibrium geometry regardless of laser parameters and molecular orientation,

in agreement with experiments. Molecular vibration does not play a significant role in the

HHG because the vertical Ip of N2 is relatively flat in the region sampled by the ground

state vibrational wave function.

Calculated spectra exhibit maxima at 23–26 eV depending on laser parameters and the

molecular orientation. We propose that REME causes the maxima. This interpretation is

supported by the following: (i) Photon energies of maxima are in resonance with excited

states of N2 and their orientation dependence is consistent with the selection rules. (ii)

The time profiles of maxima show significant contribution of multiphoton processes, they

do not drop to zero twice per optical cycle as in the case of a typical three-step HHG
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process. Considering that photon energies of maxima are much higher than the ionization

threshold, the only explanation for a multiphoton process is multiphoton excitation enhanced

by resonance. (iii) Shifting the energy of an unoccupied π-orbital causes significant changes

in the harmonic of the maximum when the molecular axis is parallel to the polarization of

the field. This confirms our assignment of excited states involved in the resonance.

We propose a four step model for the HHG between the maxima and the ∼39 eV minima,

which includes excitation, ionization, acceleration, and recombination steps. This mecha-

nism is based on analysis of our TDDFT formalism and supported by intermediate output,

time profile analysis, orbital contribution analysis, and our assignment for the HHG maxima.

The excitation step results in a Rydberg state, which is atomic like. The Rydberg orbital is a

combination of the 3σu and 2πu orbitals depending on the molecular orientation. Regardless

of the orientation, however, the orbital has more than 99.8% of p atomic orbital character,

which gives rise to a Cooper like minimum that is invariant to orientation. A radial node

is at ∼ R/2 radius, going through two atomic centers for the parallel orientation. For the

parallel orientation only, the Cooper minimum coincides with the minimum predicted by a

two-center interference model, in which we consider the symmetry of the Rydberg orbital

and the excitation energy. Minima predicted by this modified two-center interference model

agree with TDDFT calculations with a series of R values, which offers more support of the

four step model that involves Rydberg orbitals and excited ionic states.
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[22] B. K. McFarland, J. P. Farrell, P. H. Bucksbaum, and M. Gühr, Phys. Rev. A 80, 033412
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Table I: Vertical ionization potentials of N2, the experimental value [30], the ab initio value (MRCI)

[42], and the DFT value (see Sec. IV). Column five gives the dominant excitation with respect to

the ground state of the ion and the excitation energy ∆Eexc is estimated from DFT calculations.

Ip (eV) resonance excitation

Ionic state experiment MRCI DFT θ ~ω (eV) assignment ∆Eion
exc (eV)

X 2Σ+
g 15.580 15.406 15.580

A 2Πu 16.926 16.912 16.863 90◦ ∼17 1πu → 3σg 1.283

B 2Σ+
u 18.751 18.569 18.700 2σu → 3σg 3.120

2 2Πg 24.788 24.547 23.518 3σg → 1πg 7.938

C 2Σ+
u 25.514 25.321 24.802 0◦ 23–26 1πu → 1πg 9.222

D 2Πg (26) 26.064 26.085 1π2
u → 3σg 1πg 10.505

2 2Πu (30) 28.326 26.639 90◦ 26–30 2σu → 1πg 11.059

F 2Σ+
g 28.8 28.864 27.922 2σu 1πu → 3σg 1πg 12.342

Table II: Orbital energies (ǫ) of N2 calculated with the LBα potential, and the ground state occu-

pation.

Orbital ǫ (eV) occupation

2πu −2.910 0

3σu −2.966 0

4σg −3.730 0

1πg −7.642 0

3σg −15.580 2

1πu −16.863 4

2σu −18.700 2
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Table III: Two-center interference minimum predicted by Eq. (34), Eq. (33), and the TDDFT

calculation, together with the harmonic order (HO) from the TDDFT calculation.

~ωmin (eV) predicted by

R (a0) Eq. (34) Eq. (33) TDDFT HO

2.7 18.420 22.986 23.25 15

2.6 19.864 25.002 26.35 17

2.5 21.485 27.264 26.35 17

2.3 25.384 32.690 32.55 21

2.2 27.744 35.955 35.65 23

2.1 30.450 39.672 38.75 25

2.0 33.5707 43.920 44.95 29

1.9 37.198 48.799 48.05 31
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Figure 1: (Color on line) The HHG of N2 at the equilibrium geometry calculated with the TDDFT

method. The unit for laser intensity I is 1014 W/cm2 and the pulse length is 20 optical cycles.

The wavelengths are λ = 800 nm (black dashed line and green dot-dash line) and λ = 1064 nm

(red solid line).
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Figure 2: The HHG of N2 calculated with the TDDFT method. The laser intensity is

2×1014 W/cm2 and the pulse length is 20 optical cycles. The orientation angles are θ = 0◦

(black solid line), θ = 45◦ (red dashed line), and θ = 90◦ (green solid line).
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Figure 3: The ionization potential of N2 as a function of R calculated with the Rydberg-Klein-Rees

method [47] with spectroscopic data for N2 and N+
2 from Refs. [48] and [49], respectively (black

dashed line) and the ground state vibrational wave function χ0(R) computed with the sinc-function

discrete variable representation method [50, 51] (black solid line).
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Figure 4: (Color on line) Ratio of the HHG intensity calculated with Eq. (13) for the ground

vibrational state and by fixing the internuclear distance at Re. The laser intensity is 2×1014 W/cm2

and θ = 0◦.
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Figure 5: Time profiles of the 9th, 11th, 15th, and 25th harmonic for R = Re = 2.07 a0, and the

15th, 19th, and 11th harmonic for R = 2.7 a0. The laser intensity is 2×1014 W/cm2 and θ = 0◦.
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Figure 6: Contribution of individual initially occupied orbitals to HHG, obtained by freezing all

other occupied orbitals. The laser intensity is 2×1014 W/cm2 and θ = 0◦.
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Figure 7: (Color on line) Effect of shifting the energy of the unoccupied 1πg orbital up by 0.25 Eh

(6.8 eV). The laser intensity is 2×1014 W/cm2 and θ = 0◦.
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Figure 8: The HHG of N2 at a series of internuclear distances calculated with the TDDFT method.

The distances are labeled for each spectrum. The laser intensity is 2×1014 W/cm2 and the pulse

length is 20 optical cycles. The wavelengths are λ = 800 nm (black solid line). The molecular axis

is parallel to the polarization direction of the field. The positions of the minima predicted by the

modified two-center interference model are shown by vertical red solid lines.
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