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We evaluated the static and dynamic polarizabilities of the 5s2 1S0 and 5s5p 3P o
0 states of Sr using

the high-precision relativistic configuration interaction + all-order method. Our calculation explains
the discrepancy between the recent experimental 5s2 1S0 − 5s5p 3P o

0 dc Stark shift measurement
∆α = 247.379(7) [Middelmann et al., arXiv:1208.2848 (2012)] and the earlier theoretical result of
261(4) a.u. [Porsev and Derevianko, Phys. Rev. A 74, 020502R (2006)]. Our present value of
247.5 a.u. is in excellent agreement with the experimental result. We also evaluated the dynamic
correction to the BBR shift with 1% uncertainty; -0.1492(16) Hz. The dynamic correction to the
BBR shift is unusually large in the case of Sr (7%) and it enters significantly into the uncertainty
budget of the Sr optical lattice clock. We suggest future experiments that could further reduce the
present uncertainties.

PACS numbers: 06.30.Ft, 32.10.Dk, 31.15.ac

I. INTRODUCTION

Optical lattice clocks have shown tremendous progress
in recent years [1]. An optical frequency standard based
on the 5s2 1S0 − 5s5p 3P o

0 transition of ultracold 87Sr
atoms confined in a one-dimensional optical lattice is pur-
sued by a number of groups [2–8]. Its systematic uncer-
tainty has been demonstrated at the 10−16 fractional fre-
quency level and an order-of-magnitude improvement is
expected to be achieved soon [1, 4]. A three-dimensional
optical lattice clock with bosonic 88Sr was demonstrated
for the first time in [9].

The measured clock transition frequencies must be cor-
rected in practice for the effect of the ambient blackbody
radiation (BBR) shift, which is quite difficult to measure
directly. The BBR shift can only be suppressed by cool-
ing the clock. At room temperature, the differential BBR
shift of the two levels of a clock transition turns out to
make one of the largest irreducible contributions to the
uncertainty budget of optical atomic clocks. The Sr clock
transition has the largest BBR shift of all optical fre-
quency standards that are currently under development
(see Ref. [10] for a recent review). The fractional BBR
shift ∆νBBR/ν0 in Sr is more than a factor of 1000 larger
than the fractional BBR shift in the Al+ ion clock [11].
The BBR shift of an optical clock can generally be ap-
proximated by the dc Stark shift of the clock transition
to about 1-2% precision, because optical frequencies are
100 times greater than characteristic BBR frequencies.
However, Sr represents an exception, where the so-called
dynamic correction [12], that needs to be determined sep-
arately from the dc Stark shift, is 7%.

Recently, the dc Stark shift in Sr has been measured

with 0.003% precision [13], and the dynamic correction
was evaluated based on a set of E1 transition rates and
the Stark shift measurement. The measured value dif-
fered substantially (by almost 4σ) from the previous the-
oretical determination [12].

In this work, we evaluate the static and dynamic polar-
izabilities of the 5s2 1S0 and 5s5p 3P o

0 states of Sr using
the high-precision relativistic CI+all-order method. Our
calculation explains the above-mentioned discrepancy be-
tween the experimental 5s2 1S0 − 5s5p 3P o

0 dc Stark shift
measurement ∆α = 247.379(7) a.u. [13] and the earlier
theoretical result of 261(4) a.u. [12]. We found that the
E1 matrix elements for the transitions that give domi-
nant contributions to the 3P o

0 polarizability, in particu-
lar the 5s4d 3D1 − 5s5p 3P o

0 , are rather sensitive to the
higher-order corrections to the wave functions and other
corrections to the matrix elements beyond the random
phase approximation. A correction of only 2.4% to the
dominant 3D1 −

3P o
0 matrix element leads to 5% differ-

ence in the final value of the 3P o
0 − 1S0 Stark shift. In

this work, we included the higher-order corrections in
an ab initio way using the CI+all-order approach, and
also calculated several other corrections omitted in [12].
Our value for the dc Stark shift of the clock transition,
247.5 a.u., is in excellent agreement with the experimen-
tal result 247.379(7) a.u. [13].

We have combined our theoretical calculations with the
experimental measurements of the Stark shift [13] and
magic wavelength [3] of the 5s2 1S0− 5s5p 3P o

0 transition
to infer recommended values of the several electric-dipole
matrix elements that give the dominant contributions to
the 3P o

0 polarizability. We used these values to evaluate
the dynamic correction to the BBR shift of the 1S0−

3P o
0
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TABLE I: Comparison of experimental [14] and theoretical energy levels of Sr in cm−1. Two-electron binding energies are
given in the first row. The energies in other rows are given relative to the ground state. Results of the CI+MBPT and CI+all-
order calculations are given in columns labeled “CI+MBPT” and “CI+All (A)”. The CI+all-order values with the ground
state two-electron binding energy shifted by 200 cm−1 are given in column labeled “CI+All (B)”. Corresponding relative
differences of these three calculations with experiment are given in the three corresponding columns labeled “Diff.” in %. The
5s4d 3D1 − 5s5p 3P o

0 transition energy is given in the last row.

State Expt. CI+MBPT Diff.(%) CI+All (A) Diff.(%) CI+All (B) Diff.(%)
5s2 1S0 134897 136244 1.00 135444 0.41 135244 0.26
5s4d 3D1 18159 18225 0.36 18327 0.93 18127 −0.18
5s4d 3D2 18219 18298 0.44 18394 0.96 18194 −0.13
5s4d 3D3 18319 18422 0.56 18506 1.02 18306 −0.07
5s4d 1D2 20150 20428 1.38 20441 1.45 20241 0.45
5s6s 3S1 29039 29369 1.14 29223 0.63 29023 −0.06
5s6s 1S0 30592 30938 1.13 30777 0.61 30577 −0.05
5s5d 1D2 34727 35092 1.05 34958 0.66 34758 0.09
5s5d 3D1 35007 35371 1.04 35210 0.58 35010 0.01
5s5d 3D2 35022 35388 1.04 35226 0.58 35026 0.01
5s5d 3D3 35045 35412 1.05 35250 0.59 35050 0.01
5p2 3P0 35193 35854 1.88 35545 1.00 35345 0.43
5p2 3P1 35400 36070 1.89 35758 1.01 35558 0.45
5p2 3P2 35675 36344 1.88 36039 1.02 35839 0.46
5s7s 3S1 37425 37776 0.94 37606 0.48 37406 −0.05
5s6d 3D1 39686 40050 0.92 39876 0.48 39676 −0.02

5s5p 3P o
0 14318 14806 3.41 14550 1.62 14350 0.23

5s5p 3P o
1 14504 14995 3.38 14739 1.61 14539 0.24

5s5p 3P o
2 14899 15399 3.36 15142 1.63 14942 0.29

5s5p 1P o
1 21698 21955 1.18 21823 0.57 21623 −0.35

4d5p 3F o
2 33267 33719 1.36 33648 1.14 33448 0.54

4d5p 3F o
3 33590 34089 1.49 34003 1.23 33803 0.64

4d5p 3F o
4 33919 34444 1.55 34347 1.26 34147 0.67

4d5p 1Do
2 33827 34218 1.16 34208 1.13 34008 0.54

5s6p 3P o
0 33853 34241 1.15 34055 0.59 33855 0.00

5s6p 3P o
1 33868 34255 1.14 34071 0.60 33871 0.01

5s6p 3P o
2 33973 34365 1.15 34134 0.47 33934 −0.12

5s6p 1P o
1 34098 34476 1.11 34308 0.62 34108 0.03

3D1 −
3P o

0 3842 3419 −11.0 3777 −1.69 3777 −1.69

transition at 300 K to be -0.1492(16) Hz.
We determined that the 5s4d 3D1−5s5p 3P o

0 transition
contributed 98.2% to the dynamic correction for the 3P o

0

level. Therefore, the uncertainty in the BBR shift can
be further reduced by an accurate measurement of the
lifetime of the 5s4d 3D1 (or the term-averaged 5s4d 3D)
state [15].
There is a correlation in the uncertainty of the BBR

shift and the lifetime of the 5s4d 3D1 state, if branching
ratios are known to sufficient accuracy. At present, ex-
perimental measurements of the 5s4d 3D term-averaged
lifetime have an uncertainty of about 7% [16, 17]. We
note that the experiment [16], which was performed at
JILA some 20 years ago, has relevance in the determina-
tion of the uncertainty budget of one of the world’s most
accurate clocks now being developed at the same institu-
tion - a development probably not envisaged at the time.
A determination of 3D1 (or 3D) lifetime with 0.5% un-

certainty would provide a value of the dynamic correc-
tion to the BBR shift of the clock 1S0−

3P0 transition at

300 K that is accurate to about 0.5%. The uncertainty
in the dynamic correction dominates the uncertainty in
the BBR shift at 300 K at the present time. There-
fore, 0.5% improvement in the accuracy of the dynamic
correction value will further reduce uncertainty in the
BBR at 300 K by a factor of two. The extraction of the
5s4d 3D1 − 5s5p 3P o

0 matrix elements from the lifetime
measurement requires knowledge of the relevant branch-
ing ratios. We have determined these branching ratios
with an uncertainty of 0.2%. A further reduction in the
uncertainty of the Sr clock BBR shift could be effected
by an improved measurement of these branching ratios.
The lifetime of the corresponding 6s5d 3D1 state in Yb
has been recently measured in Ref. [15].

II. METHOD AND ENERGY LEVELS

Calculation of Sr properties requires an accurate all-
order treatment of electron correlations. This can be
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TABLE II: The CI+MBPT and CI+all-order results and further corrections to the E1 matrix elements for transitions that
give dominant contributions to the polarizabilities of the 5s2 1S0 and 5s5p 3P o

0 states. The CI+MBPT and CI+all-order
results including RPA corrections are given in columns labeled “MBPT+RPA” and “All+RPA”, respectively. The relative
differences between the CI+all-order+RPA and CI+MBPT+RPA results are given in column labeled “Higher orders”in %.
The other contributions include the core-Brueckner (σ), two-particle (2P), structural radiation (SR), and normalization (Norm)
corrections. Total relative size of corrections beyond CI+all-order+RPA is given in column “Corr.” in %. The recommended
values for the 5s2 1S0 − 5s5p 1P o

1 matrix element was obtained from the 1P o
1 lifetime measurement [18], and the recommended

values for all other transitions are from the present work (see Section V).

Transition MBPT+RPA All+RPA Higher orders 2P σ SR Norm Final Corr.(%) Recomm.
5s2 1S0 − 5s5p 1P o

1 5.253 5.272 0.36% −0.006 0.004 0.032 −0.094 5.208 −1.23 5.248(2)a

5s5p 3P o
0 − 5s4d 3D1 2.681 2.712 1.14% −0.016 0.003 0.015 −0.048 2.667 −1.69 2.675(13)

5s5p 3P o
0 − 5s6s 3S1 1.983 1.970 −0.66% 0.002 −0.001 −0.006 −0.025 1.940 −1.55 1.962(10)

5s5p 3P o
0 − 5s5d 3D1 2.474 2.460 −0.57% 0.007 −0.001 −0.003 −0.031 2.432 −1.15 2.450(24)

5s5p 3P o
0 − 5p2 3P1 2.587 2.619 1.22% 0.009 0.003 0.021 −0.033 2.620 0.04 2.605(26)

aRef. [18];

accomplished within the framework of the CI+all-order
method that combines configuration interaction and
coupled-cluster approaches [11, 19–22]. To evaluate un-
certainties of the final results, we also carry out CI [23]
and CI+many-body perturbation theory (MBPT) [24]
calculations. These methods have been described in a
number of papers [11, 19, 23, 24] and we provide only a
brief outline of these approaches.
We start with a solution of the Dirac-Fock (DF) equa-

tions

H0 ψc = εc ψc,

where H0 is the relativistic DF Hamiltonian [19, 24] and
ψc and εc are single-electron wave functions and energies.
The calculations are carried out in the V N−2 potential.
The wave functions and the low-lying energy levels are
determined by solving the multiparticle relativistic equa-
tion for two valence electrons [23],

Heff(En)Ψn = EnΨn.

The effective Hamiltonian is defined as

Heff(E) = HFC +Σ(E),

where HFC is the Hamiltonian in the frozen-core approx-
imation. The energy-dependent operator Σ(E) which
takes into account virtual core excitations is constructed
using second-order perturbation theory in the CI+MBPT
method [24] and using a linearized coupled-cluster single-
double method in the CI+all-order approach [19]. It is
zero in a pure CI calculation. We refer the reader to
Refs. [19, 24] for detailed description of the construction
of the effective Hamiltonian.
Unless stated otherwise, we use atomic units (a.u.) for

all matrix elements and polarizabilities throughout this
paper: the numerical values of the elementary charge,
|e|, the reduced Planck constant, h̄ = h/2π, and the
electron mass, me, are set equal to 1. The atomic
unit for polarizability can be converted to SI units via
α/h [Hz/(V/m)2]=2.48832×10−8α (a.u.), where the con-
version coefficient is 4πǫ0a

3
0/h and the Planck constant

h is factored out in order to provide direct conversion
into frequency units; a0 is the Bohr radius and ǫ0 is the
electric constant.

As a first test of the accuracy of our calculations, we
compare our theoretical energies with experiment for a
number of the even- and odd-parity states. Comparison
of the energy levels (in cm−1) obtained in the CI+MBPT,
and CI+all-order approximations with experimental val-
ues [14] is given in Table I. The ground state two-electron
binding energies are given in the first row of Table I, en-
ergies in other rows are measured from the ground state.
The relative differences of the CI+MBPT and CI+all-
order calculations with experiment (in %) are given in
columns labeled “Diff”. Since the CI+all-order values
are systematically higher than the experimental values,
a large fraction of the difference from experiment can be
attributed to the difference in the value of the ground
state two-electron binding energy. We find that shifting
the CI+all-order value of the ground state two-electron
binding energy by only 200 cm−1 (see results in column
CI+All (B)) brings the results into excellent agreement
with experiment for most of the states. We give the
5s4d 3D1 − 5s5p 3P o

0 transition energy in the last row of
Table I. This transition is particulary important to the
subject of this work, since it contributes 61% to the static
polarizability and 98% to the dynamic correction of the
BBR shift of the 5s5p 3P o

0 state. In fact, the accidentally
small value of this transition energy is the source of the
anomalously large (7%) dynamic correction to the BBR
shift of the 1S0 − 3P o

0 transition in Sr. We see consid-
erable improvement of the calculation accuracy in this
transition energy from the CI+MBPT to CI+all-order
approximation, by a factor of 6. The CI+MBPT and
CI+all-order values differ from the experiment by 11%
and 1.7%, respectively.
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TABLE III: Comparison of the electric dipole reduced matrix elements |〈Ψ||Deff ||Ψ
′〉| (in a.u.) obtained in this work with other

theoretical results (Porsev et al. [25] and Guo et al. [26]) and experimental measurements from [16–18, 27–31].

Transition This work Experiment Theory [25] Theory [26]
5s5p 3P o

1 − 5s2 1S0 0.158 0.151(2)a 0.13(1)
5s5p 1P o

1 − 5s2 1S0 5.272 5.248(2)b 5.28 5.15(15)
5s6p 1P o

1 − 5s2 1S0 0.281 0.26(2)c 0.236
4d5p 1P o

1 − 5s2 1S0 0.517 0.60c

5s5p 3P o
0 − 5s6s 3S1 1.962(10) 2.03(6)d 1.96 1.90(1)

5s5p 3P o
0 − 5s7s 3S1 0.516(8) 0.61(2)e 0.52

5s5p 3P o
0 − 5p2 3P1 2.605(26) 2.5(1)e 2.56

5s5p 3P o
0 − 5s4d 3D1 2.675(13) 2.5(1)f 2.74 2.53(14)

2.7(1)g

5s5p 3P o
0 − 5s5d 3D1 2.450(24) 2.3(1)e 2.50

5s5p 3P o
0 − 5s6d 3D1 1.161(17) 1.13

aRef. [30]; bRef. [18]; cRef. [27]; dRef. [28]; eRef. [29, 31]; fRef. [16]; gRef. [17].

III. AB INITIO CALCULATION OF

ELECTRIC-DIPOLE MATRIX ELEMENTS

The reduced electric dipole matrix elements are ob-
tained with the CI+all-order wave functions and effec-
tive electric-dipole operator Deff in the random-phase
approximation (RPA). The effective operator accounts
for the core-valence correlations in analogy with the ef-
fective Hamiltonian [32, 33]. We include additional cor-
rections beyond RPA in the calculation of the E1 matrix
elements in comparison with [12, 25]. These contribu-
tions include the core-Brueckner (σ), two-particle (2P)
corrections, structural radiation (SR), and normalization
(Norm) corrections [32, 33]. While we find some cance-
lation between the various corrections, they cannot be
omitted at the 1% level of accuracy. Partial cancela-
tion of the structural radiation and normalization cor-
rections was discussed in Ref. [34]. Detailed analysis of
the structure radiation correction was carried out in the
same work [34].
The results for several transitions that give dominant

contributions to the 1S0−
3P o

0 dc Stark shift are summa-
rized in Table II. The percentage differences between
the CI+all-order+RPA and CI+MBPT+RPA calcula-
tions are given in the column labeled “Higher orders”.
We note that it is positive for some transitions and neg-
ative for other transitions. Our final ab initio values are
given in column labeled “Final”. We find that total rela-
tive size of corrections beyond CI+all+RPA given in col-
umn labeled “Corr” is small, 0.04-1.7%, but significant.
We estimate the uncertainties in the ab initio values of
the matrix elements to be 1% based on the comparison
of the CI+MBPT+RPA and CI+all-order+RPA values
and combined size of other corrections.
In the present method, valence-valence correlations of

two valence electrons are included via configuration in-
teraction which is essentially complete for two electrons.
Therefore, the dominant uncertainty arises from the core-
valence correlations. The CI+all-order approach includes
dominant core-valence higher-order (i.e. above second

order) corrections of this type. This has been tested
in various other systems where precision data are avail-
able (see [15, 19, 35, 36] and references therein). There-
fore, the size of dominant higher-order corrections may
be estimated as the difference of the CI+all-order and
CI+MBPT results. We assume that the size of the all
other missing higher-order corrections does not exceed
the size of the already included corrections. Therefore,
the difference of the CI+all-order and CI+MBPT serves
as an estimate of the uncertainty.
We also provide the recommended values for these

transitions. The recommended value for the 5s2 1S0 −
5s5p 1P o

1 matrix element was obtained in [12, 25] from the
1P o

1 lifetime measurement from photoassociation spec-
tra [18]. The recommended values for all other tran-
sitions are obtained in the present work in Section V.
Comparison of the final values of the electric dipole ma-
trix elements with other theoretical results of Porsev et

al. [25] and Guo et al. [26] and experimental measure-
ments from [16–18, 27–31] is given in Table III. The
theoretical results were obtained using the CI+MBPT
method in Ref. [25] and CI method with semiempirical
core polarization potential in Ref. [26]. The experimental
values for the 5s5p 3P o

0 − 5s4d 3D1 matrix element were
obtained from the 3D term-averaged lifetimes measured
in [16, 17] using our theoretical values of the branching
ratios.

IV. POLARIZABILITIES

We evaluated the static and dynamic polarizabilities
of the 5s2 1S0 and 5s5p 3P o

0 states of Sr using the high-
precision relativistic CI+all-order method. The scalar
polarizability α0(ω) is separated into a valence polariz-
ability αv

0(ω), ionic core polarizability αc, and a small
term αvc that modifies ionic core polarizability due to
the presence of two valence electrons. The valence part
of the polarizability is determined by solving the inhomo-
geneous equation in valence space, which is approximated
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TABLE IV: Contributions to the 5s2 1S0 and 5s5p 3P o
0 static polarizabilities of Sr in a.u. The dominant contributions to the

valence polarizabilities are listed separately with the corresponding absolute values of electric dipole reduced matrix elements
given in columns labeled D. The theoretical and experimental [14] transition energies are given in columns ∆Eth and ∆Eexpt.
The remaining contributions to valence polarizability are given in rows Other. The contributions from the core and αvc terms
are listed together in rows Core + Vc. The dominant contributions to α0, listed in columns α0[A] and α0(B), are calculated
with CI + all-order +RPA (no other corrections) matrix elements and theoretical [A] and experimental [B] energies [14],
respectively. The dominant contributions to α0 listed in column α0[C] are calculated with experimental energies and our final
ab initio matrix elements. The dc Stark shift for the 5s5p 3P o

0 − 5s2 1S0 transition is listed in the last rows of the table.

State Contribution ∆Eth ∆Eexpt D(a) α0[A] α0[B] D(b) α0[C]

5s2 1S0 5s2 1S0 − 5s5p 1P o
1 21823 21698 5.272 186.4 187.4 5.208 182.9

5s2 1S0 − 5s5p 3P o
1 14739 14504 0.158 0.25 0.25 0.25

5s2 1S0 − 5s6p 1P o
1 34308 34098 0.281 0.34 0.34 0.34

5s2 1S0 − 4d5p 1P o
1 41242 41172 0.517 0.95 0.95 0.95

Other 4.60 4.60 4.60
Core + Vc 5.29 5.29 5.29
Total 197.8 198.9 194.4

Recommended(c) 197.14(20)

5s5p 3P o
0 5s5p 3P o

0 − 5s4d 3D1 3777 3842 2.712 285.0 280.2 2.667 270.9
5s5p 3P o

0 − 5s6s 3S1 14673 14721 1.970 38.7 38.6 1.940 37.4
5s5p 3P o

0 − 5s5d 3D1 20660 20689 2.460 42.9 42.8 2.432 41.8
5s5p 3P o

0 − 5p2 3P1 21208 21083 2.619 47.3 47.6 2.620 47.6
5s5p 3P o

0 − 5s7s 3S1 23056 23107 0.516 1.69 1.69 1.69
5s5p 3P o

0 − 5s6d 3D1 25326 25368 1.161 7.8 7.8 7.8
Other 29.1 29.1 29.1
Core +Vc 5.55 5.55 5.55
Total 458.1 453.4 441.9

Recommended(d) 444.51(20)
3P o

0 − 1S0 260.3 254.5 247.5
Theory [12] 261(4)
Expt. [13] 247.379(7)

(a)CI+all-order+RPA values (no other corrections). (b)CI+all-order+RPA + other corrections. (c)Obtained using

experimental 5s5p 1P o
1 lifetime from [18]. (d)Obtained using recommended value for the 1S0 polarizability and the

experimental value of the Stark shift [13].

as [37]

(Ev −Heff)|Ψ(v,M ′)〉 = Deff|Ψ0(v, J,M)〉 (1)

for the state v with total angular momentum J and pro-
jection M . The wave function Ψ(v,M ′) is composed of
parts that have angular momenta of J ′ = J, J±1 that al-
lows us to determine the scalar and tensor polarizabilities
of the state |v, J,M〉 [37].

The core and αvc terms are evaluated in the random-
phase approximation. Their uncertainty is determined
by comparing the DF and RPA values. The small αvc

term is calculated by adding αvc contributions from
the individual electrons, i.e. αvc(5s

2) = 2αvc(5s), and
αvc(5s5p) = αvc(5s) + αvc(5p). The frequency depen-
dence of the core and αvc terms is negligible, and we use
their static values in all calculations.

While we do not use the sum-over-states approach in
the calculation of the polarizabilities, it is important to
establish the dominant contributions to the final values.
We combine the electric-dipole matrix elements and en-
ergies according to the sum-over-states formula for the

valence polarizability [38]:

αv
0(ω) =

2

3(2J + 1)

∑

n

(En − Ev)|〈v‖D‖n〉|2

(En − Ev)2 − ω2
(2)

to calculate the contributions of specific transitions.
Here, J is the total angular momentum of the state v,
D is the electric-dipole operator, Ei is the energy of the
state i, and the frequency ω is zero in the static polariz-
ability calculations.
We have carried out several calculations of the dom-

inant contributions to the polarizabilities using differ-
ent sets of the energies and E1 matrix elements in or-
der to understand the difference of the theoretical pre-
dictions for the Stark shift 5s2 1S0 − 5s5p 3P o

0 ∆α =
261(4) a.u. and recent experimental measurement ∆α =
247.379(7) a.u. as well as to provide a recommended
value for the 5s5p 3P o

0 −5s4d 3D1 matrix element. The re-
sults are summarized in Table IV. Other theoretical cal-
culations of Sr polarizabilities were recently compiled in
review [38]. The ground-state polarizability of Sr was cal-
culated using relativistic coupled-cluster (RCC) method
in [39]. Their value 199.7(7.3) a.u. is in agreement with
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our calculations.
In Table IV the absolute values of the correspond-

ing reduced electric-dipole matrix elements are listed in
columns labeled “D” in a.u.. The theoretical and ex-
perimental [14] transition energies are given in columns
∆Eth and ∆Eexpt. The remaining valence contributions
are given in rows labeled “Other”. The contributions
from the core and αvc terms are listed together in row
labeled “Core +Vc”. The dominant contributions to α0

listed in columns α0[A] and α0[B] are calculated with
CI + all-order +RPA (no other corrections) matrix ele-
ments and theoretical [A] and experimental [B] energies
[14], respectively.
Our α0[A] result agrees with the earlier calculation of

[12] which was carried out using CI+MBPT approach
with energy fitting that approximated missing higher-
order corrections to the wave functions. We note that
this may be fortuitous since the calculation of [12] was
carried out in V N potential, while we are using V N−2

potential since the present version of the CI+all-order
method is formulated for V N−2 potential. The E1 ma-
trix elements in [12, 25] included RPA but omitted all
other corrections calculated in the present work. We find
that replacing the theoretical energies with experimental
values reduces the Stark shift by 2.3%. We note that in
the case of Sr all of the states contributing to the po-
larizabilities are included in our computational basis and
this procedure is not expected to cause problems with
basis set completeness, as in the case of Yb [40]. The
dominant contributions to α0 listed in column α0[C] are
calculated with experimental energies and final ab initio
matrix elements. Inclusion of the small corrections fur-
ther reduces the value of the Stark shift by 3.1%, and our
resulting value obtained with our final ab initio matrix
elements is in excellent agreement with experiment [13].

V. DETERMINATION OF RECOMMENDED

VALUES OF ELECTRIC DIPOLE MATRIX

ELEMENTS

We use three known experimental values: (i) the
5s5p 1P o

1 lifetime [18], (ii) the Stark shift [13], and (iii)
814 nm magic wavelength [3] of the clock 1S0−

3P o
0 transi-

tion to improve the central values of the matrix elements
and to reduce the uncertainties where possible.
Step 1. We use the 5s5p 1P o

1 lifetime [18] to deter-
mine experimental value of the 5s2 1S0−5s5p 1P1 matrix
element to be 5.248(2) a.u.
Step 2. The 5s2 1S0 − 5s5p 1P o

1 matrix element over-
whelmingly dominates both ground state static and dy-
namic polarizability at 814 nm magic wavelength [3].
Therefore, we determine ground state static polarizabil-
ity to be 197.14(20) a.u. and ac ground state polarizabil-
ity at the magic wavelength to be 286.0(3) a.u.
Step 3. Now we have established two (mostly experi-

mental) properties of the 5s5p 3P o
0 state:

TABLE V: Breakdown of the contributions to the 5s5p 3P o
0

static polarizability α0(ω = 0) and dynamic polarizability
α0(ω) at the 813.4 nm magic wavelength. The dominant con-
tributions to the valence polarizabilities are obtained with
experimental energies and recommended values of the ma-
trix elements. The electric-dipole reduced matrix elements
are given in column labeled “Drecom”. The experimental [14]
transition energies are given in column labeled “∆Eexpt”. The
remaining contributions to valence polarizability are given in
row labeled “Other”. The contributions from the core and
αvc terms are listed together in row labeled “Core + Vc”.

Contribution ∆Eexpt Drecom α0(ω) α0(ω = 0)
5s5p 3P o

0 − 5s4d 3D1 3842 2.675(13) -29.5 272.6(3.3)
5s5p 3P o

0 − 5s6s 3S1 14721 1.962(10) 126.4 38.3(4)
5s5p 3P o

0 − 5s5d 3D1 20689 2.450(24) 65.6 42.5(8)
5s5p 3P o

0 − 5p2 3P1 21083 2.605(26) 71.4 47.1(9)
5s5p 3P o

0 − 5s7s 3S1 23107 0.516(8) 2.4 1.69(5)
5s5p 3P o

0 − 5s6d 3D1 25368 1.161(17) 10.2 7.8(2)
Other 34.1 29.1(9)
Core + Vc 5.55 5.55(6)
Total 286.0 444.5
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FIG. 1: (Color online) The frequency-dependent polarizabili-
ties of the Sr 5s2 1S0 and 5s5p 3P o

0 states near 813.4 nm magic
wavelength. The frequency-dependent polarizabilities of the
5s5p 3P o

0 state shifted by ± 1% are shown to illustrate the
sensitivity of the magic wavelength to this polarizability. The
magic wavelength is marked with arrow.

(i) the static polarizability α(ω = 0) = 444.5(2) a.u.
is obtained by combining the experimental value of the
1S0 − 3P o

0 Stark shift [13] with the 1S0 polarizability
above;
(ii) the ac polarizability at the magic wavelength
α(ωmagic) = 286.0(3) a.u.. This is because the ac po-
larizabilities of both 1S0 and 3P o

0 states are equal at this
wavelength.
These two values are listed in the last row of Table V

and serve as a basis for the determination of the recom-
mended values and their uncertainties. Table V illus-
trates that different transitions give dominant contribu-
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tions to static and dynamic polarizabilities.
Step 4. Three matrix elements give significant contri-

butions to the 3P o
0 ac polarizability at the magic wave-

length (see column 4 of Table V): 5s5p 3P o
0 − 5s6s 3S1

(44%), 5s5p 3P o
0 −5s5d 3D1 (23%), and 5s5p 3P o

0 −5p2 3P1

(25%). We start with all ab initio results and adjust val-
ues of these three matrix elements to obtain the total
result of 286.0 a.u. The relative sizes of the adjustments
in these transitions are based on the relative size and
sign of the higher-order corrections and small contribu-
tions listed in Table II. We note that none of the changes
exceeds 1.1%.
We plot the dynamic polarizabilities of the 1S0 and

3P o
0

states in the vicinity of the magic wavelength on Fig. 1 to
illustrate that the crossing point is extremely sensitive to
the matrix elements values. The 0.5% change in the val-
ues of the matrix elements (corresponding to 1% change
in the value of the 3P o

0 polarizability) shifts the crossing
point by more than 4 nm. The magic wavelength is par-
ticularly sensitive to the value of the 5s5p 3P o

0 − 5s6s 3S1

matrix element, and we put its final uncertainty at 0.5%.
We keep the uncertainties of the other two matrix ele-
ments at 1%.
Step 5. We now use these values to calculate the

dc polarizability of the 3P o
0 state. Then, we slightly

(by 0.3%) adjust the ab initio value of the dominant
5s5p 3P o

0 − 5s4d 3D1 matrix element to get experimental
result of 444.5 a.u (see last column of Table V). Then,
very small adjustments are made to make sure that the
final set of recommended values yields both static and
dynamic polarizability values within their error bars.
We determine the uncertainty of the 5s5p 3P o

0 −
5s4d 3D1 matrix element from the uncertainty of all the
other contributions to the 3P o

0 polarizability value (listed
in the last column of Table V). Since our theoretical val-
ues may experience a systematic shift in one direction, we
add all of the uncertainties, totaling to 3.3 a.u, instead
of adding them in quadrature. Assigning this value to
be the uncertainty in the dominant 5s5p 3P o

0 − 5s4d 3D1

contribution of 272.7 a.u., we estimate the uncertainty in
the recommended value of the corresponding matrix ele-
ment to be 0.5%. Since the contributions to both static
and dynamic polarizabilities from 5s5p 3P o

0 − 5s7s 3S1

and 5s5p 3P o
0 − 5s6d 3D1 transitions are small, we use

ab initio CI+all+RPA values and assign them 1.5% un-
certainty based on the size of the contributions listed in
Table II.

VI. BLACKBODY RADIATION SHIFT

The leading contribution to the multipolar black body
radiation (BBR) shift of the energy level g can be ex-
pressed in terms of the electric dipole transition matrix
elements [41]

∆Eg = −
(αkBT )

3

2Jg + 1

∑

n

|〈g||D||n〉|2F1(yn). (3)

Here kB is the Boltzmann constant, yn ≡ (En −
Eg)/(kBT ), and F1(y) is the function introduced by Far-
ley and Wing in [41]. Its asymptotic expansion is given
by

F1 (y) ≈
4π3

45y
+

32π5

189y3
+

32π7

45y5
+

512π9

99y7
. (4)

The Eq. (3) can be expressed in terms of the dc polar-
izability αg(ω = 0) of the state g as [12]

∆Eg = −
2

15
(απ)3(kBT )

4αg(0) + ∆Edyn
g . (5)

Here ∆Edyn
g is determined as

∆Edyn
g ≡ −

2

15
(απ)3(kBT )

4αg(0) η (6)

and η represents a “dynamic” fractional correction to the
total shift that reflects the averaging of the frequency
dependence of the polarizability over the frequency of
the blackbody radiation spectrum. Corresponding shift

in the clock transition frequency, ∆νdyn3P o

0
−1S0

= (∆Edyn
3P o

0

−

∆Edyn
1S0

)/h, is referred to as dynamic correction to the

BBR shift. The quantity η can be approximated by [12]

η = η1 + η2 + η3 =
80

63 (2Jg + 1)

π2

αg(0)kBT

×
∑

n

|〈n||D||g〉|2

y3n

(

1 +
21π2

5 y2n
+

336π4

11y4n

)

. (7)

The dynamic corrections to the BBR shift of the
5s2 1S0 − 5s5p 3P o

0 clock transition in Sr at T = 300 K
are given in Table VI (in Hz). The dynamic correction
to the BBR shift of the 3P o

0 level is dominated by the
contribution from the 5s5p 3P o

0 − 5s4d 3D1 transition,
which contributes 98.2% of the total. Our final result
−0.1492(16) Hz is in excellent agreement with recent
value −0.1477(23) Hz of Ref. [13].
Our result enables us to propose an approach for fur-

ther reduction of the uncertainty in the BBR shift: a
measurement of the 5s4d 3D1 lifetime with 0.5% uncer-
tainty would provide the value of the BBR shift in Sr
clock that is accurate to about 0.5%, which would be a
factor of 2 improvement in the uncertainty stated here.
Such a determination assumes accurate knowledge of the
branching ratios.
The 5s4d 3D1 level decays to all three 5s5p 3P o

0,1,2

states, but the branching ratio to the 3P o
2 level is very

small. The lifetime of a state a is calculated as

τa =
1

∑

b≤a Aab

.

The E1 transition rates Aab are calculated using

Aab =
2.02613× 1018

λ3
S

2Ja + 1
s−1,
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TABLE VI: Dynamic corrections to the BBR shift of the 5s2 1S0 − 5s5p 3P o
0 clock transition in Sr at T = 300 K (in Hz).

Quantities ηi, η, ∆Edyn
g , and ∆νdyn

3Po

0
− 1S0

are defined in text.

η1 η2 η3 η α0(ω = 0) ∆Edyn
g /h

Total (5s2 1S0) 0.00163 0.00001 0 0.00164 197.1 -0.0028

5s5p 3P o
0 − 5s4d 3D1 0.03394 0.00414 0.00088 0.03896

5s5p 3P o
0 − 5s6s 3S1 0.00032 0 0 0.00032

5s5p 3P o
0 − 5s5d 3D1 0.00018 0 0 0.00018

5s5p 3P o
0 − 5p2 3P1 0.00019 0 0 0.00020

5s5p 3P o
0 − 5s7s 3S1 0.00001 0 0 0.00001

5s5p 3P o
0 − 5s6d 3D1 0.00002 0 0 0.00002

Total (5s5p 3P o
0 ) 0.03467 0.00415 0.00088 0.03970 444.6 -0.1520

Final ∆νdyn
3Po

0
− 1S0

-0.1492(16)

Ref. [13] -0.1477(23)

TABLE VII: Experimental transition energies (in cm−1), theoretical line strengths (in a.u.), transition rates (in s−1), and
branching ratios for transitions contributing to the 5s4d 3DJ lifetimes. The CI+RPA, CI+MBPT+RPA, and CI+all-
order+RPA results are listed in columns labeled “CI”, “MBPT”, and “All”, respectively. The recommended values of the
|〈5s5p 3P o

1,2||Deff ||5s4d
3D1,2〉| and |〈5s5p 3P o

2 ||Deff ||5s4d
3D3〉| matrix elements are obtained using the recommended matrix

element for the 5s4d 3D1 → 5s5p 3P o
0 transition (i.e. scaled by 0.9862). Experimental energies are used in all cases. Numbers

in square brackets represent powers of 10.

Transition ∆Eepxt Line strengths S Transition rates Aab Branching ratios
CI MBPT All Recomm. MBPT All Recomm. CI MBPT All

3D1 → 3P o
0 3842 9.503 7.189 7.357 7.156 2.753[5] 2.817[5] 2.740[5] 0.5949 0.5954 0.5953

3D1 → 3P o
1 3655 7.172 5.414 5.543 5.391 1.785[5] 1.828[5] 1.777[5] 0.3866 0.3861 0.3862

3D1 → 3P o
2 3260 0.485 0.365 0.374 0.364 8.541[3] 8.750[3] 8.510[3] 0.0186 0.0185 0.0185∑

b≤a
Aab 4.623[5] 4.722[5] 4.602[5]

3D2 → 3P o
1 3714 16.605 16.149 3.448[5] 3.354[5] 0.8058

3D2 → 3P o
2 3320 5.602 5.449 0.831[5] 0.808[5] 0.1942∑

b≤a
Aab 4.279[5] 4.162[5]

3D3 → 3P o
2 3421 31.519 30.655 3.652[5] 3.552[5]

where λ is the wavelength of the transition in Å and S is
the line strength.

We find that the branching ratios are essentially in-
dependent of the correlation corrections to the matrix
elements. We note that the line strength ratios are close
to the non-relativistic ones (5/9, 5/12, 1/36), with the
differences being −0.23%, +0.22%, and 1.4% for the
3D1 − 3P o

J transitions, respectively. We illustrate this
point in Table VII, where we list the relevant energies,
line strengths S, transition rates A, and branching ratios
in the CI, CI+MBPT, and CI+all-order approximations.

We used the experimental energies in all calculations
for consistency. We find that the difference in the CI,
CI+MBPT, and CI+all-order branching ratio results is
less than 0.1%. Since all the other corrections are small,
their uncertainties should be even smaller. As a result,
the accuracy of our branching ratios should be better
than 0.2%. The recommended values for the 5s5p 3P o

1,2−

5s4d 3D1 matrix elements are obtained using the recom-

TABLE VIII: The lifetimes of the 5s4d 3DJ states in ns. The
last three rows give term-averaged 3D lifetime.

MBPT All Recomm.
τ (5s4d 3D1) 2163 2113 2171(24)
τ (5s4d 3D2) 2337 2403(27)
τ (5s4d 3D3) 2738 2816(31)

τ (5s4d 3D) 2453 2522(28)
Expt. [16] 2900(200)
Expt. [17] 2500(200)
Expt. [42] 4100(600)

mended matrix element for the 5s5p 3P o
0 −5s4d 3D1 tran-

sition and CI+all-order branching ratios. The recom-
mended values for the transition rates and the 5s4d 3D1

lifetime, 2172(24) ns, are obtained using the recom-
mended values of the matrix elements and experimen-
tal energies. We also list the recommended values 3D2,
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3D3, and term-averaged 3D lifetimes in Table VIII. The
3D term-averaged lifetime is compared with the experi-
ments [16, 17, 42].

VII. CONCLUSION

We have evaluated the static and dynamic polarizabil-
ities of the 5s2 1S0 and 5s5p 3P o

0 states of Sr and ex-
plained the discrepancy between the recent experimental
5s2 1S0 − 5s5p 3P o

0 dc Stark shift measurement [13] and
the earlier theoretical result [12]. Our theoretical value
for the dc Stark shift of the clock transition, 247.5 a.u., is
in excellent agreement with the experimental result. We
have provided the recommended values of the matrix el-
ements for transitions that give dominant contributions
to the clock Stark shift and evaluated their uncertain-

ties. We evaluated the dynamic correction to the BBR
shift of the 1S0 − 3P o

0 clock transition at 300 K to be
-0.1492(16) Hz and proposed an approach for further re-
duction of the uncertainty in the BBR shift.
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