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We study the spectra of diamagnetic rubidium Rydberg atoms in strong magnetic and weak elec-
tric parallel fields, in the n-mixing regime. Our emphasis is on isolated pairs of near-degenerate,
opposite-parity, diamagnetic states that become mixed by the weak electric field. Such level pairs
allow for the generation of non-degenerate states with large, tunable permanent electric dipole mo-
ments and large optical excitation cross-sections from the atomic ground state. We investigate how
the dipole moments and the zero-electric-field energy defects of these level pairs can be tuned using
small variations of the electric and magnetic fields. Using calculations, we explore the abundance of
such level pairs over wide spectral regions for several magnetic quantum numbers. Applications of
polar, diamagnetic Rydberg states in Rydberg-atom interaction experiments are briefly discussed.

PACS numbers: 32.30.-r, 32.80.Ee, 32.10.Dk, 32.10.Ee

I. INTRODUCTION

Control of coherent interactions between neutral atoms
has shown considerable promise in quantum informa-
tion processing. Recent experiments have demonstrated
that Rydberg atoms, having long lifetimes and exhibiting
long-range interactions, form a strong candidate system
for creating quantum gates [1–3]. In particular, the ef-
fect of two types of long-range interactions, the dipole-
dipole interaction [4–6] and the van-der-Waals interac-
tion [7, 8], have been investigated as possible coupling
mechanisms. The Rydberg excitation blockade, which
follows from these interactions, has been used to pro-
duce entangled pairs of atoms [9] and to implement a
CNOT-gate [10].
In order to create a blockaded Rydberg system, both

strong electrostatic Rydberg-Rydberg interactions as
well as reasonably high optical excitation rates of the
utilized Rydberg levels are necessary. One approach is
to use states with large permanent electric dipole mo-
ments, which are found, for instance, in linear Stark
states [11, 12]. However, such states tend to have small
optical excitation cross sections, and the close prox-
imity of other Stark states can complicate the system
through unwanted level crossings and state mixing. An-
other method is to utilize states that exhibit an energy
exchange (Förster) resonance [6, 13]. The energy de-
fect of such resonances can be tuned to zero with ei-
ther DC electric fields [4, 14] or AC Stark shifts [15].
Under certain conditions, Förster resonances are inef-
fective because of the presence of Förster zeros [16],
which are due to magnetic level degeneracies. Further,
there are only a limited number of levels that exhibit
Förster resonances within a given atomic species. Since
robust atom-atom interaction schemes require insensitiv-
ity to moderate variations in experimental parameters
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(initial-state preparation, laser polarizations, stray elec-
tric and magnetic fields, etc.), level degeneracies and
near-degeneracies should be avoided if at all possible.
Degeneracy-free atomic levels enable more robust atom-
atom interactions.
In this paper we explore the Rydberg atom spectrum in

the presence of both a strong magnetic field and a weak
parallel electric field, with the aim of preparing states
with large dipole moments, large optical excitation cross
sections, and no close degeneracies with other states. The
paper is organized as follows. In Sec. II, we discuss the
properties of Rydberg atoms in parallel fields. This is fol-
lowed by the experimental details in Sec. III, and presen-
tation of observed spectra taken at fixed magnetic field
and variable electric field in Sec. IV. In Sec. V, we in-
vestigate the effect of varying the magnetic field at fixed
electric field. Then in Sec. VI, we compare measurements
to numerical calculations, which offer additional insight
into the abundance of states with the desired properties.
We conclude with a discussion of the results in Sec. VII.

II. RYDBERG ATOMS IN PARALLEL

ELECTRIC AND MAGNETIC FIELDS

The Hamiltonian for a Rydberg atom in parallel elec-
tric and magnetic fields can be written as:

Ĥ =
p̂2

2
−

1

r̂
+ F ẑ +

B

2
(ℓ̂z + gŝz) +

B2

8
ρ̂2 (1)

+V̂LS + V̂C(r)

Here, the electric and magnetic fields F and B are
directed along the z-axis, V̂LS represents the fine struc-
ture and V̂C is the core potential, which can be ac-
counted for through the quantum defects [11, 12]. The

operators ℓ̂z and ŝz represent the orbital and spin an-
gular momenta of the Rydberg electron in the field di-
rection, and g ≈ 2.00231 is the electron g-factor. Be-
cause of azimuthal symmetry, the total angular momen-

tum ĵz = ℓ̂z + ŝz is conserved. The diamagnetic term,
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ρ̂2 (where ρ̂2 = x̂2 + ŷ2), becomes important in the

case of a strong magnetic field. When F = 0 there ex-
ists another important symmetry, namely the parity Πz

along the z-axis [12]. The parity Πz is a discrete symme-
try (even/odd). We are interested in the case of strong
magnetic and relatively weak electric fields.

As the magnetic field is increased, the system pro-
gresses through several qualitatively different regimes.
In the case of low magnetic fields, where the diamag-
netic term is vanishing (B ≪ 2n−4 in atomic units),
the linear Zeeman shift lifts some of the zero-field Ryd-
berg level degeneracies by separating states of different
magnetic quantum numbers mJ . However, quantum-
defect-free states of the same mJ and n are still approx-
imately degenerate. If the magnetic field is further in-
creased, the diamagnetic component of the Hamiltonian
becomes important, lifting most of the remaining degen-
eracies. The energy spectrum in the ℓ-mixing regime
(2n−4 . B . 2n−3.5) is organized in rotator and vibra-
tor states [17, 18]. Rotator states are non-degenerate and
have wavefunctions extending mostly in the plane trans-
verse to B. They have large diamagnetic shifts and large
magnetic dipole moments. Vibrator states have wave-
functions extending mostly in the direction of B. Their
diamagnetic shifts and magnetic dipole moments are rela-
tively small. They are two-fold degenerate, with one state
having even Πz and the other having odd Πz. As B is fur-
ther increased, the system reaches the n-mixing regime
(B & 2n−3.5) [19, 20]. Here, the level structure organiza-
tion in rotator and vibrator states, and the vibrator-state
degeneracies, are increasingly lost, and Rydberg levels
become more or less evenly spread out in energy. Due to
the latter aspect, (near-) degeneracies become less likely,
though some near-degenerate vibrator pairs still exist up
to comparatively high magnetic field strength. Above
the n-mixing regime, for B & 2n−3 the system becomes
classically chaotic and exhibits signatures of “quantum
chaos” [11].

The regime of interest in this paper is the n-mixing
regime, where the levels are well spread out and a few
near-degenerate vibrator pairs are left. At B ≈ 2.6 T,
this corresponds to a range of 32 . n . 56 (or equiva-
lently −108 cm−1 to −35 cm−1). The calculations pre-
sented throughout the paper are accurate over that entire
range. At energies above −35 cm−1, the density of states
generally becomes so high that isolated, near-degenerate
level pairs with the mixing properties described in the fol-
lowing paragraph and with negligible perturbation from
nearby states cease to exist. Most of our studies are at
scaled energy ε = EB−2/3 ≈ −0.5 in atomic units (the
scaled energy is discussed in Ref. [11], section 5.3.5, and
references therein), with B ≈ 2.6 T and E ∼ −55 cm−1.
In this regime, the instantaneous magnetic dipole mo-
ment, given by the level energy slope (−∂E/∂B), varies
widely from state to state. The magnetic moments of
remnant, near-degenerate vibrator pairs tend to be rela-
tively low and somewhat different from each other, due to
varying, small admixtures of states extending in the plane

transverse to B (see wavefunction examples discussed in
Sec. VI). These admixtures are so small that they do not
fundamentally alter the character of the states, but they
are sufficient to cause small variations in the magnetic
dipole moments of the states. The resultant differential
response of near-degenerate vibrator pairs to magnetic-
field changes can be used to tune the pairs into resonance
(discussed in more detail in Sec. V).
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FIG. 1. Electron in a one-dimensional, symmetric double-
well potential perturbed by an electric field F . For F = 0
the double-well system has discrete Πz symmetry, which is
lost when F 6= 0. As explained in the text, this simple model
system mimics the essential properties of electric-field-coupled
vibrator states of Rydberg atoms in strong magnetic and weak
parallel electric fields.

If a small electric field F parallel to B is applied, non-
degenerate states exhibit small quadratic Stark shifts in
F . However, near-degenerate pairs of vibrator states of
the same mJ and opposite Πz become mixed and lose
their well-defined Πz character already at low values of
F . If the two near-degenerate states are vibrator states
of similar overall wavefunction structure and opposite
Πz, the F -induced mixing induces large, opposite electric
dipole moments in the state pair, which result in large
linear Stark shifts. The behavior of such electric-field-
coupled pairs of vibrator states is akin to state pairs in
a symmetric one-dimensional double-well potential, as il-
lustrated in Fig. 1. Considering identical harmonic wells
connected at z = 0, the oscillation frequency ωosc and
its inverse, the density of states, are set by the particle
mass and the force constant in the individual wells. The
separation of the wells determines how many sub-barrier
levels each well holds. As sketched in Fig. 1, the sub-
barrier states are grouped in near-degenerate pairs, with
one state being an even and the other an odd superpo-
sition of the single-well states. The tunneling-induced
energy differences of the pairs can be estimated by the
Gamow factor times ωosc. The effect of an electric field F
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is equivalent to a relative energy shift between the wells,
which lifts the near-degeneracy of the sub-barrier state
pairs. When the energy shift exceeds the tunneling fre-
quency, the state energies become linear in F and the
eigenstates become localized in the individual wells (cor-
responding to 50/50 superpositions of the even- and odd-
parity states). These characteristics are summarized in
Fig. 1. For particles of one electron mass and elementary
charge, ωosc ∼ 10 GHz, and well minima at ±2000 a0,
the level spectra mimic those in our experiment. For
these parameters, about three sub-barrier levels fit within
each well. The ground state level pair has a tunneling-
induced splitting of ∼ 10 MHz, and in an electric field
F the dipole moments are ±2000 ea0. The double-well
model, sketched in Fig. 1, can provide guidance in our
high-magnetic-field system when near-resonant vibrator
states of opposite parity become mixed by an applied
electric field.

III. EXPERIMENTAL METHOD

In the experiment, cold Rydberg atoms are excited
via a stepwise narrow-band photo-excitation process in
a 2.6 T high-field atom trap. Several tens of millions
of 85Rb atoms are laser-cooled to the Doppler limit
(∼ 150 µK) and magnetically confined within the Ioffe-
Pritchard trap. The trapped atom cloud is cigar-shaped
of axial full width at half maximum (FWHM) = 4.0 mm
and transverse FWHM = 2.2 mm. The size of the trap is
an invariable parameter of the superconducting-coil ge-
ometry in the available high-field atom trap. The trap
size is not well matched to the size of the excitation re-
gion, discussed in the following paragraph. The atom
density in the trap is of ∼ 109 cm−3. We have experi-
mentally determined that this density is too low for Ryd-
berg excitation blockade effects [4] to play a role for the
excitation energy range of interest in this paper. For a de-
tailed description of the high-magnetic-field trapping ap-
paratus see Refs. [21, 22]. The magnetic field is stable to
< 1 Gauss and can be varied in discrete steps of 10 Gauss.
Rydberg atoms are produced via two-photon excitation
at 780 nm and 480 nm (laser linewidths≤1 MHz) through
the intermediate 5P3/2|mI = 5/2,mJ = 3/2〉 state. We
are able to excite and detect states with energies rang-
ing from ∼ −90 cm−1 up into the ionization continuum;
this experimentally-accessible range overlaps well with
the above-mentioned range of interest (−108 cm−1 to
−35 cm−1).
The excitation pulses are of variable duration (10-

100 µs) and are focused into the trap with respective
FWHM of the intensity profiles of 60 µm and 20 µm, re-
spectively. The excitation beams are crossed at the trap
center, resulting in a small excitation region and ensuring
that the Rydberg states are produced in a well-defined,
uniform magnetic field. While the magnetic field varies
by about 1 Gauss over the entire trapping region, the
variation within the Rydberg excitation region is only in

the tens of mG range. The intensity of the lower (780 nm)
excitation pulse is set to ∼ 5 Isat (Isat = 1.6 mW/cm2)
as a compromise between count rate and power broaden-
ing, while the upper (480 nm) pulse has a total power of
20 mW for an intensity maximum of 2×106 mW/cm2 at
the focus. Excitation of the strongest lines is heavily sat-
urated for these intensities. At the current trap density
and Rydberg excitation energy, no Rydberg blockading
effects occur. Observed Rydberg excitation lines have
FWHM linewidths ∼ 10 MHz, as measured by scanning
the upper transition laser frequency and reading out the
generated Rydberg atom population as explained in the
following paragraph. These linewidths are limited by the
power broadening of the 5S → 5P transition; there is no
measurable power broadening due to the upper excita-
tion stage. Since we employ laser-cooled atoms, there
is no line-broadening due to residual Doppler shifts and
Lorentz electric fields (FLorentz = v × B). Also, the
ground-state atom sample is spin-polarized.

The electric field, F , is parallel to B and is applied dur-
ing the excitation pulse by varying the relative potential
between two electrodes surrounding the trap. The value
of F can be controlled to within an accuracy of 0.2 V/m,
limited by 60 Hz noise on the electrodes. Immediately
following the excitation, a much stronger field ionization
(FI) ramp of short duration (5 µs) is applied to the elec-
trodes. The resulting field-ionized electrons are directed
toward a micro-channel plate (MCP) detector assembly
located outside of the high-field region. The MCP has
a detection efficiency of . 50% (manufacturer technical
note [23]). The detector assembly provides both count-
able pulses as well as blips on a phosphor screen, allowing
for both temporal and spatial count resolution.

Only ground state atoms with mJ = ms = +1/2
are low-field-seeking and are contained within the
atom trap. Since we excite Rydberg atoms with
a stepwise two-photon process via the intermediate
5P3/2|mI = 5/2,mJ = 3/2〉 state, there are only three
optically accessible manifolds of Rydberg levels, namely
mJ = 1/2, 3/2 and 5/2. The accessible manifolds,
which we write as mJ = {1/2, 3/2, 5/2}, are not
coupled by parallel B and F -fields pointing in the z-
direction. Although the time-independent states are
of constant mJ and can be expressed as linear com-
binations of basis states with well-defined mℓ and ms,
the strong magnetic field decouples the fine structure,
and almost all time-independent states have expecta-
tion values of either 〈ŝz/~〉 ≈ 1/2 or 〈ŝz/~〉 ≈ −1/2.
Since only the states with 〈ŝz/~〉 ≈ 1/2 are acces-
sible via optical excitation from our intermediate 5P
level, only about half of the time-independent states
in the manifolds mJ = {1/2, 3/2, 5/2} are experi-
mentally excitable, with respective expectation values

〈ℓ̂z/~〉 ≈ {0, 1, 2}. In addition, for F = 0 the Ryd-
berg levels have well-defined parity Πz. Since the inter-
mediate 5P3/2|mI = 5/2,mJ = 3/2〉 state is Πz = even,
at F = 0 parity conservation considerations yield
Πz = {even, odd, even} for the optically accessible
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FIG. 2. (Color online) A) Rydberg levels observed in the
vicinity of scaled energy ε ≈ −0.51, probed by scanning
the upper transition laser frequency, for Bexp = 2.577 T,
and at the indicated electric-field values. Level energies are
shown with respect to the field-free photo-ionization thresh-
old. Some close-lying level pairs of the same mJ exhibit large
and opposite electric dipole moments (slopes of the dotted
lines). B) Calculated line spectra, as detailed in Section VI,
for Bth = 2.581 T. In the calculations states of both pari-
ties are shown for all optically accessible mJ -levels. Hence,
numerous calculated levels are experimentally undetectable.

Rydberg states with mJ = {1/2, 3/2, 5/2}, respec-
tively. Hence, when parity and spin-selection consider-
ations are combined, at F = 0 only about one quar-
ter of the time-independent states within the manifolds
mJ = {1/2, 3/2, 5/2} have substantial excitation rates.

IV. LEVEL STRUCTURE AT FIXED

MAGNETIC AND VARIED ELECTRIC FIELDS

We first consider spectra taken at fixed magnetic field
B of approximately 2.58 T, and F ranging from zero to
about 50 V/m. Figure 2A shows the Rydberg states ob-
served as a function of frequency as the upper transition
(480 nm) laser is scanned over several GHz at a scaled en-
ergy ǫ ≈ −0.51, with excitation pulses of 100 µs duration.
The polarization of the 480 nm laser is set mostly paral-
lel to the B-field axis to excite mJ = 3/2 states. Due
to the beam’s angle of incidence, a small amount of the
orthogonal polarization is also present, so that mJ = 1/2
and 5/2 states are also excited. Additional scans, similar
to those shown in Figure 2A, have been taken in sev-
eral higher-lying energy ranges. Since all scans recorded
are in the n-mixing regime, the observed Rydberg states
are fairly evenly spread out and, with a few exceptions,
non-degenerate.
For the spectra to be suitable for studies involving co-

herent Rydberg-atom interactions, the average density
of states should be lower than the inverse of anticipated

Rydberg-atom interaction energies, so that off-resonant
levels can be ignored. Since anticipated Rydberg-atom
interaction energies are on the order of tens of MHz (see
Sec. VII), densities of states well below ∼ 100/GHz are
desired. From Figure 2A and similar data, for F = 0
we determine average densities of states of 0.5/GHz and
1.9/GHz at energies of −55 cm−1 and −19 cm−1, re-
spectively. The average density of states increases with
excitation energy, but it is always well below ∼100/GHz
over the mentioned energy range. Therefore, we expect
to find quantum states that are far away from other levels
and that are conducive to strong atom-atom interactions
(by having large electric dipole moments, for instance).

The experimentally observed densities of states com-
pare well with a semiclassical calculation of the av-
erage densities of states using the Weyl theorem (see
Eq. 16.4 in Ref. [24]). Counting only states of one Πz-
parity, the semiclassical calculation yields state densities
of 0.57/GHz and 1.6/GHz for −55 cm−1 and −20 cm−1,
respectively. These results are sums over the three op-
tically accessible manifolds. The local density of states
varies about the given average values in a manner that
can only be revealed by measurements or calculations
of the actual quantum spectrum described by Eq. 1.
The level statistics and the level distribution depend on
how deep the system is in the “quantum-chaotic” regime,
where level repulsion occurs. For detailed discussions of
this topic, see Refs. [11, 24] and references therein.

While the above average densities of states are fairly
low, near-degeneracies of states of the same mJ do oc-
cur. From the viewpoint of creating states with large
electric dipole moments, the most interesting candidates
are degeneracies between states of same mJ and oppo-
site parity, which we may refer to as |1〉 and |2〉. In that
case, a weak parallel electric field F can be used to gen-
erate states with a permanent electric dipole moment,
p0 = −e〈1|z|2〉, and large linear Stark shifts. The de-
tailed behavior depends on the overlap between |1〉 and
|2〉, and on the energy defect at F = 0. We explore the
behavior in Fig. 2A. Some energy levels shift strongly as a
function of F , while others are largely unaffected. For in-
stance, the level pair labeled “X” in Fig. 2 exhibits strong
linear Stark shifts. The level pair “X” represents a near-
degenerate pair of vibrator states of opposite parity, as
discussed in Sec. II. To reveal more detail near F = 0, in
Fig. 3 we show a set of higher-resolution scans of the same
pair over a much smaller range of F . From Fig. 3 the per-
manent dipole moment of the “X” pair of levels, given by
the negative slope, is found to be ±1500 ea0. The magni-
tude of the permanent electric dipole moment of the “X”
pair is quite large; it is about half the dipole moment of
extreme Stark states of Rydberg atoms in no magnetic
and weak electric fields (which is (3/2)n2 = −3/(4E) in
atomic units [25]). The “X” pair of levels becomes degen-
erate at a local electric field of F = 0 V/m, as shown in
Fig. 3. We note that in the experiment the degeneracy is
observed at an applied voltage of 16 mV, corresponding
to an offset field of F = 0.9 V/m. The small offset is
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likely due to static patch or contact potentials, or caused
by the analog control electronics.
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FIG. 3. (Color online) High-resolution contour plot show-
ing the pair of Rydberg states labeled “X” in Fig. 2 at
−55.1 cm−1, with Bexp = 2.576 T and excitation pulse lengths
of 10 µs. Excitation frequency versus applied electric field
(V/m) is plotted, with color representing the observed exci-
tation rate (white = 0, red = 14 counts per shot). The electric
field is varied in steps of 0.3 V/m, and a few selected scans are
overlaid as black lines. The weak state at a fixed frequency
offset of about 40 MHz has mJ = 5/2, and is excited due to
imperfect polarization. The mJ = 5/2 state has a negligible
Stark shift and does not couple to themJ = 3/2 pair of states.

The “X”-pair of states in Figs. 2 and 3 are 50/50 mix-
tures of a Πz even and a Πz odd state at all values of
F . Since in the experiment we excite one definite par-
ity (odd parity for mJ = 3/2), both components of the
pair should exhibit equal line strength, regardless of F .
Figures 2 and 3 show that for the “X”-pair of states this
is indeed the case. It is noted that an exact crossing,
as shown in Fig. 3, requires a well-tuned magnetic field.
The resonant magnetic-field value is different for each in-
dividual set of near-degenerate states (see Sec. V). The
case of coupled vibrator states that are near-degenerate
at F = 0 is visualized by the model in Fig. 1, where the
double-well is assumed to be symmetric.
In our regime of study, most electric-field-coupled pairs

of vibrator states encountered are non-degenerate at F =
0, with an energy defect on the order of ∆E ∼ 100 MHz.
An instance of that case, which would correspond to an
asymmetric double-well potential in Fig. 1, is found in
the “Y”-pair of lines in Fig. 2A. In that case, the time-
independent states maintain opposite parities Πz at small
values of F . It takes a substantial field F for the Stark
shifts to become comparable to the energy defect ∆E,
and for substantial state mixing to occur. Since in our

experiment only one parity is optically excited, one ob-
serves highly asymmetric line strengths up to values of F
at which the Stark shifts become larger the energy defect
∆E. If F is increased further, the line-strength ratio of
such state pairs trends toward unity. Those characteris-
tics are found in the “Y” pair of lines in Fig. 2A.

V. MAGNETIC-FIELD TUNING OF

NEAR-DEGENERATE STATES

The magnetic-field-dependence of Rydberg level ener-
gies can be used to tune near-degenerate opposite-parity
vibrators states into resonance, i.e. to tune their energy
defect ∆E. This enables the creation of highly polar
states by application of a weak parallel electric field F .
As an example, in this Section we show that the “X”-pair
of levels in Figs. 2 and 3 can be tuned through resonance
at F = 0 by exploiting the difference in their magnetic
moments.
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FIG. 4. A) Scans of the state pair labeled “X” in Fig. 2 for
the indicated magnetic field values and a weak parallel elec-
tric field F ≈ 1 V/m. We show the line shifts relative to that
of the 5P3/2|mI = 5/2, mJ = 3/2〉 level. The two states of
opposite parity have different magnetic dipole moments, of
-9.2 µB (-11.7 µB) for the odd (even) parity peak. B) Levels
of the “X”-pair of states, which both have mJ = 3/2, relative
to the mJ = 5/2 level, which is used as a convenient refer-
ence line. Symbol size qualitatively represents line strength.
The “X”-pair of states exhibits an anti-crossing (instead of an
exact crossing) because of the coupling induced by the weak
electric field F .

Since the diamagnetic shift depends on the transverse
spread of the wavefunction, which varies from state to
state, usually one can use the magnetic field to fine-tune
the energy defect ∆E of any arbitrary level pair. Lines
observed near −55 cm−1 and B ≈ 2.6 T bear a range of
instantaneous magnetic dipole moments varying from 0
to −20 µB. We measure the magnetic dipole moments
by incrementing the magnetic field by a small amount
∆B = 10 G, corresponding to a 0.04 % change of the
2.6 T field, and then measuring the corresponding en-
ergy shifts of the Rydberg states of interest. In Fig. 4A
we show the response of the level pair marked “X” in
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Fig. 2. A slight electric field, F ≈ 1 V/m, is applied to
resolve the two states in the crossing region. It is noted
that in Fig. 4A all three energy levels exhibit a large
common shift as a function of magnetic field, indicating
that all three states have similar magnetic dipole mo-
ments. In identifying which Rydberg levels correspond
to each other in the displayed scans, it helps to note
that the three levels fall on three approximately straight
lines, indicating that the individual magnetic dipole mo-
ments of the three levels are fairly constant throughout
the displayed magnetic field range (values provided in
the caption of Figure 4). This is clearly seen in Fig 4B,
where we show the measured frequency shifts of the two
mJ = 3/2 levels relative to a convenient mJ = 5/2 ref-
erence line (which does not couple to mJ = 3/2 levels).
The observed line strengths of the states are visualized
by the size of the plotted symbols. Away from the cross-
ing region the applied electric field is insufficient to cou-
ple the states. There, only the odd state is observed
while the even one is (almost) undetectable, and both
states have zero electric dipole moment. At resonance
(B = 2.576 T), the weak electric field couples the even-
and odd-parity levels into highly polar states that have
equal optical excitation cross sections.
The width of the anti-crossing, measured to be 28 MHz

in Fig. 4B, is in good qualitative agreement with a simple
two-state Hamiltonian:

Ĥ2 = −µ1(B −B0)|1〉〈1| − µ2(B −B0)|2〉〈2| (2)

+ Fp0(|1〉〈2|+ |2〉〈1|)

Here, µ1 and µ2 are the magnetic dipole moments
of states |1〉 and |2〉, respectively. For the magnetic
dipole moments given in Fig. 4, an electric dipole mo-
ment of p0 = 1500 ea0 (derived from Fig. 3), and with
F = 1 V/m the level separation at the resonant mag-
netic field (B = B0) is 2Fp0 = h × 38 MHz. This is
in good qualitative agreement with the measured value
of 28 MHz. The discrepancy is due to the experimental
level resolution (10 MHz), the electric-field uncertainty
(0.2 V/m, i.e. 20 % of the field applied in Fig. 4), and
the uncertainty of the measured electric dipole moment
(∼ 100 ea0). We are able to reduce the applied electric
field F such that the two mJ = 3/2 states in Fig. 4 ex-
actly cross to within the experimental level resolution of
10 MHz.
In this Section we have shown that magnetic-field con-

trol allows one to shift pairs of remaining vibrator-state
pairs of the samemJ but opposite Πz into resonance with
one another. These resonant states can then be subjected
to a parallel electric field F in order to form highly polar
non-degenerate states with large electric dipole moments
that are fairly insensitive to F . Choosing an electric field
F of a few 10 V/m separates the polar states by several
100 MHz. This setting will be ideal for Rydberg-atom
interaction schemes that require atoms in well-defined,
non-degenerate and highly polar states.

VI. LEVEL AND WAVEFUNCTION

CALCULATIONS

We have complemented our experimental results with
numerical calculations of Rydberg spectra and wave-
functions in parallel electric and magnetic fields. The
electric-dipole and the diamagnetic matrix elements re-
quired for the diagonalization of the Hamiltonian in
Eq. 1 are computed with numerically obtained Rydberg
electron wavefunctions. For the fine structure param-
eters and the quantum defects we use previously pub-
lished values [12, 26]. For each mJ , we use a spherical
basis set that includes all states with principal quan-
tum numbers between 10 and 90. The value of mJ is
fixed for any given diagonalization. The Hamiltonian
matrix is numerically diagonalized for given field value
parameters B and F using Lapack routines. Energy
levels and excitation amplitudes from the intermediate
5P3/2|mI = 5/2,mJ = 3/2〉 state are calculated for the
optically accessible manifolds mJ = {1/2, 3/2, 5/2}.
Figure 2B shows the resulting calculated spectrum and
transition amplitudes over the same spectral region that
was used in the experiment (part A of the figure). There,
we have defined the transition amplitude into a Ryd-
berg state |ψ〉 as the square root of the non-saturated
excitation rate, 4Ω2

R/Γ. Here, ΩR is the Rabi frequency
ΩR = −eF0ǫ̂ · 〈ψ|̂r|5P3/2,mJ = 3/2〉/~ in rad/s. The
parameter Γ is the effective bandwidth of the optical ex-
citation in rad/s. The laser field amplitude is denoted as
F0, the electric dipole operator −er̂, and the polarization
unit vector ǫ̂. For the manifolds mJ = {1/2, 3/2, 5/2},
the polarization unit vectors in the calculation are set to
ǫ̂ = {x̂, ẑ, x̂}, respectively. The effective level width is set
to Γ = 2π×10 MHz, according to typical experimentally
observed linewidths. The laser electric field F0 is set in
accordance with an intensity of I = 2× 106 mW/cm2, as
used in the experiment. Comparing Fig. 2A and Fig. 2B
we find good agreement between calculated and experi-
mental results, both in terms of absolute frequency and
relative line strengths. Further, comparing calculations
with varying basis sizes we find our simulated spectra to
be useful up to energies of about −20 cm−1.

Best agreement between experimental and simulated
spectra is obtained when the simulated magnetic fields
are taken to be 0.005 T higher than the ones used in
the experiment, corresponding to a discrepancy of 0.2 %.
This magnetic-field offset is consistent from day to day.
We believe that the offset is due either to a calibration
error in the magnet system, or due to a minor variation
of the main trap magnet over about ten years of use.

We have used the calculations in order to obtain the
distribution of electric and magnetic dipole moments
of Rydberg levels in selected spectral regions. These
moments are important for applications that involve
Rydberg atom interactions. We calculate the instanta-
neous magnetic dipole moments by slightly increment-
ing the magnetic field at F = 0. The results can
be used to predict the magnetic trapping behavior of
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FIG. 5. A) Histograms of all magnetic dipole moments in the
interval from −60 cm−1 to −50 cm−1, for Bth = 2.581 T. For
each value of mJ , the total number of Rydberg states in this
interval is indicated below the legend. B) Histograms of all
electric dipole moment magnitudes, for the same energy in-
terval and magnetic field value, with an applied electric field
of F = 3 V/m. For clarity, the bars with dipole moments
< 100 ea0 are cut off at height 40, with the number of occur-
rences indicated on the bar.

the Rydberg levels. As shown in the histograms in
Fig. 5A, in the interval from −60 cm−1 to −50 cm−1

(all within the n-mixing regime, representing the region
about the experimentally-observed lines at ∼ −55 cm−1)
the probability distributions of the magnetic moment
exhibit fairly well-defined bell-shaped maxima. The
magnetic dipole moments are quite large, with means
{−10.8 µB,−12.1 µB,−13.3 µB} for the respective op-
tically accessible manifolds mJ = {1/2, 3/2, 5/2}. The
standard deviations are {4.0 µB, 4.8 µB, 5.5 µB}. The
extreme values are 0 µB and −27 µB.

Knowledge of the electric dipole moments is important,
for instance, to estimate the permanent-electric-dipole in-
teraction between Rydberg atom pairs. We determine
the permanent electric dipole moments by performing
two calculations with parallel electric fields F = 3 V/m
and F = 3.3 V/m, and calculating the energy shift of
each state. As shown in Fig. 5B, the distributions of
magnitudes of the electric dipole moments are peaked at
values below 100 ea0, while typical averages are 400 ea0
and standard deviations 800 ea0. The distributions of the
electric-dipole magnitudes tend to have bi-modal shapes,
with a dominant first group of states close to zero and a
second group with electric dipole moments up to a few
thousand ea0. Most energy levels in the n-mixing regime
are clearly non-degenerate, resulting in small electric po-
larizabilities and small electric dipole moments at low
values of F . This majority of levels gives rise to the first
group in the electric-dipole distributions. The second
group is due to remnant pairs of near-degenerate vibra-
tor states of opposite parity and similar overall shape,
such as the state pair “X” analyzed in Figs. 2 through 4.
While the second group of states is much smaller than
the first, it drives up the magnitudes of the averages and

standard deviations.

The abundance of state pairs with large and approxi-
mately opposite electric dipole moments, such as the “X”
and “Y” pairs in Fig. 2, is of primary interest for applica-
tions that involve electric-dipole Rydberg atom interac-
tions. We determine the number of such pairs by parsing
the computed spectra for pairs of neighboring lines with
same mJ and large, opposite electric dipole moments
of similar magnitude (to within 30 %). In the consid-
ered energy range −60 cm−1 to −50 cm−1, the manifolds
mJ = {1/2, 3/2, 5/2} include a total of 697 levels. The
numbers of pairs with electric dipole moments greater
than 100 ea0 and with excitation amplitudes larger than
0.3 × 103 s−1/2 are {14, 17, 10}. In Fig. 6 we show the
distribution of these pairs versus dipole moment and ex-
citation amplitude. We observe a weak trend that excita-
tion amplitude diminishes with dipole moment. However,
even for the highest dipole moments, which are of order
2000 ea0, one can still find state pairs with fairly large
excitation amplitudes (states within the dotted region in
Fig. 6).
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FIG. 6. (Color online) Scatter plot of line pairs with electric
dipole moments > 100 ea0 at Bth = 2.581 T and F = 3 V/m,
for the energy range between −60 cm−1 and −50 cm−1. The
pairs are plotted versus dipole moment and excitation ampli-
tude. The dashed line indicates our experimental excitation-
amplitude limit above which lines can be easily observed.

We have used the calculations to test our detailed ex-
perimental analysis of the “X” pair of states. Using a
procedure equivalent to the one used in Fig. 4, by varying
the magnetic field we obtain the resonant magnetic field
value at which the level pair is degenerate. We find a the-
oretical resonant magnetic field value of Bth = 2.581 T.
As mentioned above, this value differs by 0.005 T from
the experimentally observed one (Bexp = 2.576 T). The
calculated magnetic dipole moments of the Πz odd and
Πz even states of the “X” pair are −9.4 µB and −11.6 µB,
respectively. These values agree well with the measured
values of −9.2 µB and −11.7 µB from Fig. 4. Further,



8

the calculations yield an average electric dipole moment
of 1410 ea0 for the “X” pair. This value compares well
to the measured value of 1500 ea0. The 7 % discrepancy
probably arises from the uncertainty of the exact posi-
tion of the excitation region within the inhomogeneous
applied electric field. Also, in the experiment the electric
field might have a very small component transverse to the
magnetic field, which is not included in the calculations.
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FIG. 7. (Color online) Calculated normalized electron wave-
function probabilities P = |ψ(r)|2r sin θ for the “X” line pair
at −55.1 cm−1 with Bth = 2.589 T and F = 0 V/m, on a
linear color gradation scale. The sign of the wavefunction is
indicated by the color, in order to show whether the state is
Πz-even or odd.

In order to further explore the nature of the state pairs
with large electric dipole moments, we have calculated
Rydberg state wavefunctions. In Fig. 7, we plot the
wavefunction probabilities for the “X” pair of states at
Bth = 2.589 T and F = 0. The wavefunction structures
reiterate that the “X”-pair represents an instance of a
remnant pair of vibrator states in the n-mixing regime.
The two wavefunctions differ slightly in the exact amount
of admixtures of states that extend in the xy-plane (re-
gion near z = 0 and ρ & 2000 a0). This gives rise to the
difference in magnetic dipole moments, which we have
employed to tune the level pair into resonance at F = 0
(see Sec. V). The large size of the electric dipole mo-
ments that result from the F -induced coupling between
these two states stems from the fact that their wavefunc-
tions have similar extents and node line patterns. The
probability distributions of the wavefunctions of the cou-
pled states under an applied electric field of F = 3 V/m
are shown in Fig. 8. The coupled states are even and odd
linear superpositions of the wavefunctions at F = 0; it is
clear from Fig. 8 that the coupled states have large and
opposite permanent electric dipole moments.
To conclude our theoretical considerations, we have

performed classical trajectory calculations that demon-
strate the vibrator character of the “X”-pair of levels.
The trajectory calculations also show that the “X”-pair
and other remnant vibrator states in the n-mixing regime
are associated with a classically regular domain of phase
space, where classical and quantum dynamics exhibit
close correspondence. In Fig. 9A we display two tra-
jectories of a classical Rydberg electron at B = 2.580 T,
energy −55.1 cm−1 and electric field F ≈ 0. Initial con-
ditions are chosen such that the trajectories mimic the
wavefunction probabilities in Figs. 7 and 8. Over short
time scales, the trajectories are Kepler-like. Over longer
times the eccentricity and alignment vary in a periodic
fashion. The alignment wobbles about the z-direction,
which is one of the reasons why the corresponding quan-
tum states have been labeled as “vibrator states”. At
F = 0, the trajectories displayed in Fig. 9A are ex-
actly equivalent. The wavefunction probabilities of cor-
responding quantum states must mimic the sum of the
point densities of the two equivalent trajectories. Fig-
ure 9A indeed closely resembles the wavefunction proba-
bilities in Fig. 7. If a weak parallel electric field is added,
both classical and quantum degeneracies are lifted. In
that case, the wavefunction probabilities of correspond-
ing quantum states mimic the point density of only one
of the two trajectories. This applies to the wavefunc-
tion probabilities shown in Fig. 8, which closely resemble
Figs. 9B and C.
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FIG. 8. (Color online) Calculated normalized electron wave-
function probabilities P = |ψ(r)|2r sin θ for the “X” line pair
at ∼ −55.1 cm−1 with Bth = 2.589 T, with a weak parallel
electric field of F = 3 V/m. The F -induced coupling leads
to the displayed states with large permanent electric dipole
moments.
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FIG. 9. Classical electron trajectories at an energy of
∼ −55.1 cm−1, Bth = 2.580 T. The simulated trajectory du-
ration is 137 ns and the electron position is plotted every
8.2 ps. At F = 0, the sum of the point densities of two equiv-
alent trajectories (A) mimics the wavefunction probabilities
in Fig. 7. At small but non-zero F , the point densities of indi-
vidual, slightly non-degenerate trajectories (B and C) mimic
the wavefunction probabilities in Fig. 8.

VII. DISCUSSION

We have performed high-resolution spectroscopy of ru-
bidium Rydberg atoms in parallel electric and magnetic
fields in the n-mixing regime. The spectra contain resid-
ual pairs of near-degenerate vibrator states embedded in
an otherwise non-degenerate spectrum. Small changes
of the B-field have been used to tune a sample pair of
such states into resonance. An additional weak, parallel
electric field has then been applied to prepare states with
large electric dipole moments. In the theoretical compo-
nent of our work, we have reproduced the experimentally
observed spectra and analyzed the distribution of states
with respect to their electric and magnetic dipole mo-
ments and their optical excitation rates. In the following
we briefly discuss possible future work.
Dipolar states of Rydberg atoms in strong magnetic

and weak parallel electric fields are good candidates
for Rydberg-atom interaction studies and applications
thereof. They are non-degenerate and have high opti-
cal excitation rates from low-lying atomic states. The
states we have labeled the “X”-pair have dipole moments
of p0 ≈ 1500 ea0. The electric-dipole interaction energy
between two such atoms, Edd ∼ p20/(4πǫ0d

3), amounts to
several tens of MHz at a distance d = 5 µm. This level of
interaction strength is within the desirable range for ap-
plications. For instance, the implementation of a phase
gate akin to Ref. [10] would require optical excitation

pulses of less than about 1 µs in duration, leading to to-
tal gate times of a few µs. This is fast enough that atomic
decay can largely be neglected. As a second example of
quantum control, consider a pair of Rydberg atoms in one
of the “X”-pair levels at a distance d = 10 µm, in a mag-
netic field where the two states are non-degenerate and
separated by an energy defect ∆E = h×100 MHz at F =
0. A smooth electric-field pulse F (t) that begins and ends
at zero is applied. The time-dependent electric-dipole
moment p(t) = F (t)p20/

√

∆E2/4 + F (t)2p20, where p0 ≈
1500 ea0, and the acquired interaction-induced phase
|∆φ| ∼

∫

p2(t)dt/(4πǫ0~d
3). To implement a 2π phase

shift, an electric-field pulse with a peak field of several
V/m and a duration of about 1 µs would be needed.
This is short compared to the atomic lifetime, but long
enough to ensure adiabatic evolution (which requires a
ramp duration tramp ≫ h/(∆E) = 10 ns).

Magnetic-dipole interactions between pairs of diamag-
netic Rydberg atoms are in the sub-Hz range and are
negligible. However, the magnetic dipole moments deter-
mine the suitability for magnetic trapping. Values in the
range. −10 µB, as encountered in the “X”-pair of levels,
are ideal for that purpose. Although Rydberg atom trap-
ping has previously been accomplished using optical and
electrostatic interactions, magnetic trapping of specific
well-defined states is still to be demonstrated. Diamag-
netic Rydberg levels in the n-mixing regime are suitable
for this purpose due to their combination of high optical
excitation rates and large magnetic dipole moments.

Diamagnetic Rydberg atoms can be expected to ex-
hibit many Förster resonances. In a Förster energy-
exchange process, two atoms or molecules undergo an
energy-conserving state change |ψA〉 + |ψB〉 → |ψC〉 +
|ψD〉, where states |ψA〉 and |ψC〉 are electric-dipole
coupled, as are states |ψB〉 and |ψD〉. Förster reso-
nances have been studied widely as a method to generate
long-range Rydberg atom interactions (see, for instance
[6, 13]). Rydberg atoms in strong magnetic and weak
electric fields offer a non-degenerate spectrum at a much
higher density of optically accessible states than Rydberg
atoms in zero or weak fields. Hence, one may expect to
find numerous Förster resonances. Two field parameters,
B and F , would be available to tune their energy defects.
Work in this direction is in progress.

ACKNOWLEDGMENTS

This work was supported by the Chemical Sciences,
Geosciences and Biosciences Division of the Office of Ba-
sic Energy Sciences, Office of Science, U.S. Department
of Energy, and NSF Grant No. PHY-0855871. E.P. ac-
knowledges support from the Natural Sciences and Engi-
neering Research Council of Canada.



10

[1] D. Jaksch, J.I. Cirac, P. Zoller, S.L. Rolston, R. Côté,
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