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In this work, inspired by the study of semidefinite programming for block-diagonalizing matrix *-
algebras, we propose an algorithm that can find the algebraic structure of decoherence-free subspaces
(DFS’s) for a given noisy quantum channel. We prove that this algorithm will work for all cases
with probability one, and it is more efficient than the algorithm proposed by Holbrook, Kribs,
and Laflamme [Quant. Inf. Proc. 80, 381 (2003)]. In fact, our results reveal that this previous
algorithm only works for special cases. As an application, we discuss how this method can be applied
to increase the efficiency of an optimization procedure for finding an approximate DFS.
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I. INTRODUCTION

Decoherence and other noises cause errors in quan-
tum information processing. Several methods have been
proposed to significantly reduce these errors [1], such
as quantum error correcting codes [2–8], decoherence-
free/noiseless subsystems (DFS’s) [9–19], and dynami-
cal decoupling (DD) [20–26]. However, dynamical decou-
pling controls often do not satisfy the strict experimental
requirements and quantum error correcting codes, while
possibly protecting against any error, require a large re-
source overhead. Decoherence-free subspaces, or noise-
less subsystems, can reduce overhead since they do not
require detecting and correcting errors but are difficult
to identify and use.

In terms of the (Krauss) operator-sum representation,
the noisy quantum evolution can be fully characterized
by a set of operators that generate a noise algebra A.
The structure of a DFS can be recovered by studying
the algebraic structure of A, or its commutant algebra
A′, both of which are special examples of a so-called C∗-
algebra, or matrix ∗-algebra [27]. Although DFS’s can
be obtained analytically for certain noisy systems, this
is not possible in general. In [28] a numerical algorithm
is proposed in which the noise algebra A is used to cal-
culate the commutant algebra A′ and decompose it into
the algebraic form which gives the structure of all DFS’s
if any exist. However, we find that this algorithm is in-
complete although useful for the special solutions of the
basis of A′ as chosen in [28]. In practice, in most of the
cases, computers will pick up other solutions in which
their algorithm does not give the complete decomposi-
tion. Because of this we were motivated to find a new
algorithm that provides a general algorithm which can
be explicitly implemented to give the required decompo-
sition.

In fact, since A and A′ are special examples of a matrix
∗-algebra, we can try to solve the more general problem
of how to decompose an arbitrary matrix ∗-algebra. We

find that this problem is equivalent to that of simultane-
ously block-diagonalizing a matrix ∗-algebra, and this has
been well-studied in research on semidefinite program-
ming [29, 30]. In particular, in [29], a numerical method
was proposed to find the finest block-diagonalization of
the algebra generated by real symmetric matrices. Their
method consists of two steps. First, decompose the al-
gebra into simple components, and second, decompose
each simple component into irreducible components (the
details of this procedure will be clarified in the follow-
ing). In this work, we will show that such a two-step
algorithm can also be applied to the algebra generated
by Hermitian matrices, such as A and A′. We will also
give analysis and proofs to show the validity of this algo-
rithm. As applications, we apply our new algorithm to
the collective-noise model in [28], and compare the nu-
merical results with the algorithm proposed there. We
find that our improved algorithm is not only valid in
general, but is also more efficient : it requires fewer con-
ditional loops, and requires only A or A′ alone, rather
than both [28].
The paper is organized as follows: in Section II, we in-

troduce the matrix *-algebra A generated by noise oper-
ators for a given quantum channel, and the Wedderburn
decomposition for a DFS. In Section III, we present an al-
gorithm to transform A into the Wedderburn form using
two steps. Finally in Section IV, for the collective-noise
model, we numerically implement and compare our algo-
rithm with the one proposed in [28]. We will also briefly
discuss how our algorithm can be used to find a good
initial point for the optimization process in searching for
an approximate DFS.

II. ALGEBRAIC STRUCTURE OF A NOISE

ALGEBRA

A. Noise Algebra for a Noisy Quantum Channel

Let ρ be the density operator of an n-dimensional
quantum system with Hilbert space H. In real physical
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systems, the evolution of ρ suffers from noise due to its in-
teraction with the environment. Such noisy evolution can
be represented as a quantum channel E : ρ → E(ρ), where
E is characterized by a set of operators {Ak}, j = 1, . . . , p:

E(ρ) =
p

∑

k=1

AkρA
†
k = p0ρ+

p
∑

k=2

AkρA
†
k,

∑

k

A†
kAk = I.

This is often referred to as the Kraus operator-sum rep-
resentation [31], where {Ak} can include a Hamiltonian
as well as irreversible coupling to a Markovian bath. In
the following, we will assume the Hamiltonian H = 0
and only focus on the noise effect on ρ. In this case the
{Ak} contain information purely about the noise, and are
known as noise operators. For many channels, we have
A1 =

√
p0I, where p0 represents the probability that no

error occurs. The noisy channel is referred to as uni-

tal if E(I) =
∑

k AkA
†
k = I. Define the noise algebra A

to be the C∗-algebra, or the matrix ∗-algebra generated
by {Ak}. The definition of a matrix ∗-algebra simply
implies that A is closed under matrix summation, multi-
plication and †-operation. The reason why we introduce
the concept of a matrix ∗-algebra is that it can be de-
composed into a nice algebraic structure, with details in
the following.

B. Wedderburn Decomposition for a DFS

For a general ρ, E(ρ) 6= ρ, and thus the quantum infor-
mation stored in ρ will not be preserved by the noise. It
may be possible, however, find a subspace or subsystem
in some space H1 ∈ H such that for ρ ∈ H1, E(ρ) = ρ. If
so H1 is called a decoherence free subspace or subsystem
(DFS). Notice that for a unital channel E , if [ρ,Ak] = 0,
for all k, then E(ρ) = ρ. Hence to locate a DFS it is
enough to study the commutant of A, which is defined
to be

A′ = {B|[B,A] = 0, A ∈ A},

and is also a matrix ∗-algebra. Applying the
Wedderburn-Artin theorem[27, 32] to a special case, it
can be shown that every matrix ∗-algebra with an iden-
tity has the following fundamental structure decomposi-
tion [32, 33]:

Theorem 1. (Wedderburn decomposition) Let A ⊆
Cn×n be a matrix ∗-algebra with an identity. Then there
exists a unitary transformation U such that U †AU has a
block-diagonal structure:

U †AU = diag(N1,N2, · · · ,Nℓ)

where each Ni corresponds to a simple subalgebra com-
ponent. Moreover, Ni has the following block-diagonal
structure:

Ni = {diag(Mi, · · · ,Mi), Mi ∈ Mni
} = Mni

⊗ Imi

(1)

where Mni
denotes the ni ×ni matrix ∗-algebra over the

complex field C.

Here Ni = Mni
⊗ Imi

is an algebra different from
Mni

⊕ · · · ⊕ Mni
. Applying Theorem 1 to the conju-

gates A and A′, we can find some unitary U such that:

U †AU =

ℓ
⊕

i

Ni =

ℓ
⊕

i

Mni
⊗ Imi

, (2a)

U †A′U =

ℓ
⊕

i

N ′
i =

ℓ
⊕

i

Ini
⊗Mmi

. (2b)

Mathematically, each Ni, i = 1, · · · , ℓ, corresponds to a
simple component of A, while the subblock Mi at each
diagonal position corresponds to an irreducible compo-
nent.
Assume that there exists some mi > 1, and call this

mk. We can encode an arbitrary mk-dimensional state ρ̄
into ρ = Ink

⊗ ρ̄ ⊕ 0res ∈ A′ such that E(ρ) = ρ, where
0res represents the zero density operator on the rest of
the Hilbert space with respect to Ini

⊗ρ̄. Hence, if we find
the Wedderburn decomposition for A or A′, then eachNi

withmi > 1 corresponds to a decoherence-free subsystem
(which reduces to a decoherence-free subspace if ni = 1).
Moreover, since A and A′ obey the commutant relation
given in Eq.(2), we do not need both the decompositions
for A and A′; one will suffice.

III. NUMERICAL ALGORITHM TO OBTAIN

THE WEDDERBURN DECOMPOSITION

To find the Wedderburn decomposition for a quantum
channel given by a group of noise operators {Ak}, it is
sufficient to find the unitary transform U such that A
and A′ are simultaneously block-diagonalized into the
decomposition in Eq. (2). An algorithm to do this for
real symmetric Ak is given in [29]. Here we construct an
equivalent algorithm that we prove works for Hermitian
Ak. This is sufficient for our purposes, because while the
noise operators Ak need not be Hermitian, we can always
replace a non-Hermitian operator Aj with the two Her-

mitian operators A
(1)
j = Aj + A†

j and A
(2)
j = i(Aj − A†

j)
and still have a generating set for the algebra A. For
simplicity we simply assume that all the Ak are Hermi-
tian and form a basis for A. The advantage of choosing
an Hermitian basis will be clear in the following analysis.
The algorithm breaks into two steps:

Algorithm 1. (Wedderburn decomposition) Let A ⊆
Cn×n be a matrix ∗-algebra with an identity, and A a
“generic” element of A (“generic” is defined below).
Step 1: Find the unitary transform V such that

V †AV = diag(C1, C2, · · · , Cℓ), (3)

where each Ci corresponds to some representation of the
simple component Ni in (2).
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Step 2: Find the local unitary transform P such that
within each Ci, P †V †AV P is equal to Ni = Mni

⊗ Imi
.

Then U ≡ V P is the required unitary transform for the
Wedderburn decomposition.

To implement the two steps above one picks a single
operator A ∈ A, and diagonalizes A to find the required
decompositions. Due to the decomposition in Eq. (2), we
know that there exists a unitary transformation V̄ such
that for A ∈ A,

V̄ †AV̄ =
ℓ

⊕

i

(Imi
⊗Di), (4)

where the Di are diagonal matrices whose elements are
the eigenvalues of A. To obtain the spaces spanned by
the simple algebras from this eigenvalue decomposition,
we need to pick an A such that the D1, . . . , Dℓ do not
share any eigenvalues, and the eigenvalues in each Di are
distinct. Note that A will have this property if it has
the maximum possible number of distinct eigenvalues. It
can be shown [29] that the set of operators that have
this maximum number of distinct eigenvalues is topolog-
ically dense in A, and so we will refer to such A as being
generic. If we randomly choose A fromA using a suitable
measure, it will be generic with probability 1. A simple
way to generate a generic A is to choose a random vector

α = (α1, . . . , αk) and generate A =
∑k

j=1 αjAj .
After picking a generic A, we diagonalize A and obtain

the distinct eigenvalues, λj , and their multiplicities, kj ,
j = 1, . . . , q. We then group these eigenvalues and write
down the eigenspace decomposition according to their
multiplicities in a non-decreasing order:

V †AV = diag(λ1Ik1
, λ2Ik2

, · · · , λqIkq
) (5)

with V = (V1, V2, . . . , Vq) where each Vj is composed
of the eigenvectors corresponding to the eigenspace of
λj . We can further define a new division of V : V =

(K(1),K(2), · · · ,K(s)) where each K(r) is the union of
all eigenspaces Vj with the same multiplicity pr:

K(r) =
⊕

kj=pr

Vj

where p1 < p2 < · · · < ps are the distinct multiplicities
of the eigenvalue αj ’s.
By Theorem 1, each Vj will lie in some simple compo-

nentNi, i = 1, . . . , ℓ. Due to the form ofNi = Mni
⊗Imi

,
we immediately know that only Vj ’s within the same

K(r) can belong to the same Ni, and Vj ’s in differ-

ent K(r)’s must belong to different Ni’s. Hence, each
K(r) must either be some Ni, or a direct sum of a few
Ni’s, in which case K(r) can be further decomposed.
In either case A is block-diagonalized over the division
V = (K(1),K(2), · · · ,K(s)).
There is a simple method to check whether K(r) can

be further decomposed: we choose another randomly

generated Ā =
∑k

j=1 βjAj ∈ A. Since α and β are

independent, with probability 1, A and Ā will gener-
ate the whole algebra A. As we have pointed out,
both A and Ā are block-diagonalized over the division
(K(1),K(2), · · · ,K(s)). If there exist Vj and Vj′ within

some K(r) such that V †
j ĀVj′ = 0, then Ā can be further

block-diagonalized on K(r) over the division between Vj

and Vj′ . In this way, by checking the value of V †
j ĀVj′

between all different j and j′ on each K(r), we can iden-
tify the structure of each Ni in each K(r), and finally
make both A and Ā simultaneously block-diagonalized
over ⊕iNi. Since A and Ā will generate A with proba-
bility 1, we can claim that the whole algebra A has been
simultaneously block-diagonalized over ⊕iNi. However,
we should notice that within each sub-block Ni, A may
not be the same as Mni

⊗ Imi
, but some representation

of it, so we will instead denote the sub-block by Ci. Thus
we have obtained a V that transforms A into the form
of Eq. (3). In particular this V has already transformed
the generic A into the Wedderburn form:

V †AV =

ℓ
⊕

i

(Di ⊗ Imi
), (6)

whereDi is a diagonal matrix with all distinct eigenvalues
of A on each Ci.
Now we note that V †ĀV is usually not in the form of

Ni on Ci. In the next step, we are looking for a further
unitary transform that leaves V †AV invariant but trans-
forms V †ĀV into the form of Ni on each Ci. Without
loss of generality, let us focus on a simple component Ci
which is composed of a few eigenspaces Vj of A:

Ci = V
(i)
1 ⊕ V

(i)
2 ⊕ · · · ⊕ V (i)

mi

If according to the division ⊕iCi, we define a local unitary
transform P to be:

P ≡ diag(P (1), P (1), · · · , P (ℓ)) (7)

P (i) ≡ diag(P
(i)
1 , P

(i)
2 , · · · , P (i)

mi
) (8)

where P
(i)
j is a unitary matrix on the subspace V

(i)
j , then

such P will leave V †ĀV invariant. Moreover, the follow-
ing result is proved in Proposition 3.7 in [29]:

Theorem 2. For A and V satisfying (6), there ex-
ists a local unitary transform P as in (7) such that
P †V †AV P = ⊕i(Mni

⊗ Imi
).

Hence, it is possible to construct a local unitary Q
(which may not be equal to P ) in the form of Eq. (7)
such that Q̄†V †AV Q̄ is in the Wedderburn form. Before
we design the required Q, we would like to find out what
the matrix of V †ĀV looks like on Ci after the transform
V . Notice that since Theorem 2 only claims the existence
of such P , the local transform Q we finally construct may
look either the same as, or different from P .
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A matrix is called a scalar matrix if it is equal to a
scalar times an identity matrix. On each Ci, as a corollary
of Theorem 2, we have

Āj,j′ ≡ (V †ĀV )
(i)
j,j′ = V

(i)†
j ĀV

(i)
j′ = kj,j′P

(i)
j P

(i)†
j′ (9)

For j = j′, Āj,j′ is equal to kj,jImi
(that is, the di-

agonal sub-blocks of (V †ĀV )(i) are already in scalar-
matrix form). For j 6= j′ the off-diagonal sub-blocks
Āj,j′ may or may not be in this form. Our next goal is
to find a local transform Q in the form of (7) such that
(Q(i)†(V †ĀV )(i)Q(i))j,j′ are in scalar-matrix form for all
j and j′.

On each Ci, we can sequentially construct each Q
(i)
j

in Q(i) ≡ diag(Q
(i)
1 , Q

(i)
2 , · · · , Q(i)

mi). First, choose Q
(i)
1 =

Imi
. Then for j ≥ 2 define

Q̂
(i)
j =

(

V
(i)†
1 ĀV

(i)
j

)−1
Q

(i)
1 , (10a)

Q
(i)
j =

1

||qj ||
Q̂

(i)
j , (10b)

where qj is the first row of Q̂
(i)
j . We now prove that this

Q(i) is the required unitary transform.

Theorem 3. Q
(i)
j as defined in (10) are unitary matri-

ces, and Q(i) ≡ diag(Q
(i)
1 , Q

(i)
2 , · · · , Q(i)

mi) is the unitary

transform such that Q
(i)†

j (V †ĀV )
(i)
j,j′Q

(i)
j′ are scalar ma-

trices.

Proof. To show Q
(i)
j is a unitary matrix, it is sufficient to

show Q̂
(i)
j Q̂

(i)†
j is in scalar-matrix form. For j ≥ 2, from

(9), we have:

Q̂
(i)
j Q̂

(i)†
j = (k1,jP

(i)
1 P

(i)†
j )−1(k∗1,jP

(i)
j P

(i)†
1 )−1

= |k1,j |−2
(

P
(i)
j P

(i)†
1 P

(i)
1 P

(i)†
j

)−1
= |k1,j |−2

Imi

Hence, after normalization, Q
(i)
j becomes a unitary ma-

trix. In addition,

Q
(i)†

j (V †ĀV )
(i)
j,j′Q

(i)
j′ = Q

(i)†

j kj,j′P
(i)
j P

(i)†
j′ Q

(i)
j′

=kj,j′/(k
∗
1,jk1,j′ )P

(i)
1 P

(i)†
j P

(i)
j P

(i)†
j′ P

(i)
j′ P

(i)†
1

=kj,j′/(k
∗
1,jk1,j′ )Imi

,

and so all sub-blocks are in the scalar-matrix form.

Numerically, following Eq. (10), we can construct the
local unitary transformQ in the form of Eq. (7) that leave
A invariant but transforms Ā into the form ⊕i(Mni

⊗
Imi

). Since A is generated by A and Ā, we can claim
that the whole algebraA is in the Wedderburn form after
the unitary transform U ≡ V Q. We summarize the full
algorithm in Table I.
When implementing the algorithm for a given noisy

channel, we can calculate the Wedderburn form for ei-
ther A or A′, depending on which one is easier to derive.

Step 1: (a) from A, pick two generic matrices A and Ā

(b) diagonalize A and Ā to get V as in Eq. (5)

(c) find the structure of Ni in K(r), getting Eq. (6)
Step 2: (d) build the local transform Q using Eq. (10)

(e) U = V Q is the required unitary in Eq. (2)

TABLE I. Algorithm to find U in the decomposition Eq. (2).

Notice that for special cases when Ni = Mk ⊗ I1, or
Ni = Ik, after Step 1 in Algorithm 1, Ci will already be
the same as Ni. For such cases, there is no need to im-
plement Step 2, and we can simply choose Q(i) = I on
Ni.

IV. APPLICATIONS

A. Finding the DFS Structure of a Channel

The primary application for the above algorithm is de-
riving the DFS structure for a given noisy quantum chan-
nel, and finding the corresponding unitary transform U
in Eq. (2). First of all, let’s reinvestigate the collective
noise model calculated in [28]. For a system with nq

qubits, we say a quantum channel E is under collective
noise if

E(ρ) = AxρA
†
x +AyρA

†
y +AzρA

†
z ,

Ak =
1√
3
eiSk , k = x, y, z,

where

Sx =

nq
∑

i=1

Xi, Sy =

nq
∑

i=1

Yi, Sz =

nq
∑

i=1

Zi

are sums of local Pauli operators on each qubit. For such
a noisy channel, we can define the algebra generated by
the noise operators by

A ≡ span{Ax, Ay, Az} = span{Sx, Sy, Sz},
= span{Sx, Sy} = span{Sy, Sz} = span{Sx, Sz},

We would like to find the Wedderburn decomposition
of A or A′ in the form of Eq. (2). Notice that since
the collective noise channel is a special type of noisy
channel, we can actually derive the the fundamental de-
composition by using Young diagrams for the addition
of angular momentum for any value of nq [34]. For ex-
ample, for nq = 3, A = (M2 ⊗ I2) ⊕ M4; for nq = 4,
A = I2⊕(M3⊗I3)⊕M5. However, theory does not give
a specific basis for the operatorsA, and must identify one
numerically. In the following, we shall apply both the al-
gorithm suggested in [28] and the above Algorithm 1 to
the collective noise channel and compare the numerical
results.
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In the algorithm suggested by [28], we need to first
calculate each Bj in A′ = span{B1, . . . , Br}, where {Bj}
form a basis for A′. Next, based on the operators {Bj},
j = 1, · · · , r, we find a group of so-called minimal-
reducing projectors Pj , and then block-diagonalize A′

into the form diag(C1, C2, · · · , Cℓ), where Ci is a repre-
sentation of Ni ≡ Mni

⊗ Imi
. Then after reshuffling

the order of basis vectors, all the diagonal sub-blocks
are transformed into the scalar-matrix form. It is then
claimed in [28] that the whole algebra A′ is in the form
of Eq. (2).

If we compare the algorithm in [28] with the algorithm
in Table I, we find that the former achieves Step 1, but
Step 2 is missing. Step 2 turns out to be necessary for
most cases, since the solution {Bj} as the set of basis
A′ is not unique. It is true that for the {Bj} chosen
in [28], Step 1 and reshuffling of basis vectors are enough
to transform A′ into the form of (2), but such choice of
{Bj} is very special. A different solution for the {Bj}
will be obtained it is derived numerically by solving the
system of linear equations [Bj , Ak] = 0, k = 1, · · · , p.
As an example of the necessity of step 2, consider

for nq = 4, and A′ = M2 ⊕ (M3 ⊗ I3) ⊕ I5. Follow-
ing the algorithm in [28] and using Matlab, we derive a
group of 14 orthonormal basis matrices in A′ ({Bj}, j =
1, · · · , 14) which are different from those in [28]. Then we
find the corresponding minimal-reducing projectors Pm,
m = 1, · · · , 6, in which rank(P1) = rank(P2) = 1 corre-
sponding to the N1 = M2 subspace, rank(P6) = 5 cor-
responding to the N3 = I5 subspace, and rank(Pi) = 3,
i = 3, 4, 5, corresponding to the N2 = M3 ⊗ I3 subspace.
Hence, {Pm} induces a unitary transform V such that
V †A′V is in the form diag(C1, C2, C3), where C1 = N1,
C3 = N3, and C2 is some representation of N2. After
reshuffling the basis vectors we can make the three di-
agonal sub-blocks of V †BjV on C2 in the scalar-matrix
form.
Specifically, if we still denote V †B1V as B1, then after

reshuffling, on C2 we have

B1 =





−0.167I3 B1,2 B1,3

B†
1,2 0.233I3 B2,3

B†
1,3 B†

2,3 0.308I3,





where

B1,2 =





−0.180 + 0.089i −0.120− 0.242i −0.042 + 0.063i
0.097 + 0.169i 0.103− 0.001i −0.259 + 0.059i
0.193− 0.060i −0.100− 0.159i −0.051− 0.200i



 ,

B1,3 =





−0.074 + 0.136i 0.055 + 0.047i 0.072 + 0.055i
−0.003 + 0.087i −0.094 + 0.080i −0.074− 0.095i
−0.066 + 0.039i 0.087− 0.0960i −0.114− 0.041i



 ,

B2,3 =





−0.030− 0.078i −0.020− 0.068i −0.067 + 0.180i
−0.118 + 0.099i 0.139 + 0.050i −0.037 + 0.045i
−0.133− 0.023i −0.016− 0.147i −0.009− 0.093i



 .

Therefore, we see that for a general solution {Bj} for A′, such as the solution derived from the matlab routine, the
algorithm suggested by [28] fails to give the Wedderburn decomposition, although it does give the the correct form
for the particularly chosen {Bj} in [28]. Hence, in practice, the algorithm in [28] is sometimes insufficient, which
motivated us to develop the modified algorithm presented here. Next, we would like to continue with this example
for nq = 4, and following our algorithm to find the local unitary transform Q = diag(Q1, Q2, Q3) such that all the
sub-blocks of Q†BjQ are in the scalar matrix form. Strictly speaking, we should use the random combination method
in the last section to pick up a generic B̄ for Step 2. However, for this particular example, the above B1 is already a
generic matrix, so we will instead based on B1 to construct Q.
Define Q1 = I3, and according to Step 2 in Table I, we define Q̂k = B−1

1,k and Qk = 1/||qk||Q̂k, k = 2, 3, where qk is

the first row of Q̂k. Then we have

Q†B1Q =





−0.167I3 0.345I3 0.1931I3
0.345I3 0.233I3 −0.033− 0.219iI3
0.193I3 −0.033 + 0.219iI3 0.308I3





We can double-check the form of Q†BjQ for other Bj

and we will find that all Bj are transformed in the form
of M3 ⊗ I3. Hence, for this particular set of {Bj}, we

have explicitly constructed the unitary matrix U = V Q
that transforms A′ into the Wedderburn decomposition,
which is not accessible from the algorithm in [28]. Now
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we know how to encode an arbitrary three-level quantum
state ρ̄ into the DFS N2. In the current computational
basis, the encoded density operator ρ should take the
form:

ρ = U
(

0⊕ (ρ̄⊗ I3)⊕ 0
)

U †

We note finally that: i) in the above implementation of
our algorithm, we have skipped Step 1 since the algorithm
in [28] has already transformed all Bj into 3. ii) We have
applied Step 2 to B1 instead of to a random combination
of the {Bj}, so as to make it easy for comparison. In
practice, we do not really have to use the two generic
operators as we suggest. They are introduced primarily
to guarantee the validity of the algorithm.

B. Searching for an Approximate DFS

Although for every noisy channel there exists a decom-
position as in (2), not all channels have a DFS that is
useful for protecting quantum information. In fact, the
noisy channels with a useful DFS constitute only a very
small set. For many channels the algebraic decomposi-
tion (2) looks like the following:

A′ =
⊕

i

kiImi
,

where ki 6= kj , for i 6= j, which means that all the Mni
’s

are 1-dimensional and so cannot store quantum informa-
tion. When this happens, we would like to ask an alter-
native question: does there exist a subsystem on which
the noise, even if not zero, is significantly reduced? This
is the concept of an approximate DFS (ADFS).
It is not easy to characterize an ADFS by algebraic

conditions, as we have done for a perfect DFS. Rather,
an ADFS should be formulated as an optimal solution
such that the noise on the system is reduced as much as
possible. Hence, it is possible to obtain an ADFS numeri-
cally by solving the corresponding optimization problem.
Since there is more than one way to quantify the effects of
noise, there is more than one way to define the function
to be minimized in the optimization. For the purposes
of our analysis in what follows, we simply assume that
one such function has been chosen, and denote it by J .
Furthermore, one must specify when the noise is “small
enough” to be helpful as an ADFS.
The problem of finding an ADFS involves searching for

the optimal unitary matrix U that transforms the origi-
nal basis into a new basis, such that a state ρ1, encoded
in ρ = 1

n2

ρ1⊗In2
⊕0res, experiences the least noise under

the noise operators {Āk}, where Āk = UAkU
†. That is,

we want to minimize J(U), where U varies over the uni-
tary group. Numerically, we can apply the BFGS quasi
Newton method for the optimization [35]. Broadly speak-
ing this involves i) choosing an initial point U = U (0) in
the unitary matrix space; ii) calculating the value and
the gradient of the objective function J (0) = J [U (0)]; iii)

N 1 2 3 4 5 6
Jmin 0.2195 0.2078 0.2088 0.0123 0.4788 0.0125

TABLE II. The final value of Jmin obtained from numerical
optimization, using 6 different random starting points enu-
merated by N .

using the value and the gradient to implicitly derive the
Hessian information and use them all to get a new U (1)

such that J [U (1)] < J [U (0)]. Repeating steps ii) and iii),
we obtain a sequence of {U (k)} with a limit corresponding
to a local minimum of J . The limiting unitary transform
Ū is what we are looking for.
Due to the existence of many local minima, different

initial choices of U (0) may result in different values of the
optimized J . In particular, as the dimension gets larger
we may need to run the optimization many times be-
fore we obtain a value of J close to the global minimum.
Hence a wise choice of U (0) can be very important in per-
forming the numerical optimization. One important re-
sult in optimization theory is that any gradient-based al-
gorithm only guarantees that the iteration sequence will
converge to some local minimum; however, if the initial
point of optimization iteration is very close to the global
minimum, then the iteration sequence will converge to
the global minimum. On the other hand, if our noisy
quantum channel E can be considered as a perturbation
of another channel E ′ that has a perfect DFS, then the
ADFS of E should be pretty close to the DFS of E . Hence,
we can apply the DFS algorithm in Section III to first cal-
culate the unitary matrix U0 for the DFS of E ′, and then
run the optimization for ADFS, with U (0) = U0. In that
way, we will be able to derive the ADFS more efficiently.
Specifically, let us take the collective noise model as an

example, but this time add a perturbation to the original
noise operators:

Ãx = VǫAx, Ãy = Ay , Ãz = Az,

where we have defined a perturbation unitary matrix Vǫ

that is sufficiently close to the identity: ||Vǫ − I|| < ǫ.

Under the new noise operators Ãx,y,z, we apply the al-
gorithm in Section III and find that there is no useful
DFS. Next we try to run optimization to this model in
searching for ADFS. First we do the optimization using
random initial point. For example, choosing ǫ = 1 and
nq = 4, we run the optimization routine 6 times, starting

from different initial U (0), and record the final minimized
Jmin in Table II. We see that among the six different
runs, only two of them have obtained Jmin < 0.0125.
Hence we cannot guarantee that we have the best min-
imized J from a single run of the optimization process
from an arbitrary random initial {U (0)}. However, if we
instead choose U (0) = U0, where U0 is the unitary matrix
in the Wedderburn decomposition for the perfect DFS of
{Ax,y,z}, then the optimization generates the minimized
Jmin = 0.0123. For other values of nq we find similar
results. Thus our DFS-finding algorithm helps in finding
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good initial points for the optimization of ADFS search-
ing.
In addition, many local minima may also result in op-

tions for our ADFS implementation. Whereas our algo-
rithm gives the dimensionally optimal DFS, there may
be several ADFSs and the ”best” one may not be the
dimensionally optimal one. The “best” might be the one
which has robust, experimentally available controls, or
one that has the lowest error rate per unit time.

V. CONCLUSION

In this work, for a given noisy quantum channel, we
have presented an algorithm to numerically calculate the
unitary matrix that transforms the original noise algebra
into the Wedderburn form, and this gives the structure
of all DFS’s if any exist. This algorithm is based on
the theory of the Wedderburn decomposition of matrix
*-algebras. We also compared our algorithm with the
earlier algorithm proposed in [28], which we found was
incomplete. The new algorithm is also more efficient, in
that it requires fewer checks and evaluations, and requires

only information from either the noise algebra A or its
conjugate A′, rather than both. As an application, we
show that the DFS-finding method is helpful in locating
good initial points for finding approximate DFS’s, and
this is likely to be a more practical use for the algorithm.
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