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Abstract

We investigate the thermal entanglement between two end sites in spin chains and on fractal

lattices by taking the negativity as a measure and using the decimation renormalization-group

method. The effects of the temperature T , the anisotropy parameter ∆ and the size of system

L on the entanglement are examined detailedly. It is found that the entanglement decreases

monotonically with increasing T and vanishes beyond a critical value Tc. Our results also show

that with increasing ∆ from −∞ to zero the entanglement first increases to the maximum and

then decreases sharply to zero. Different from the cases of spin chains and Koch curves, the

entanglement on the diamond-type hierarchical (DH) lattices presents some interesting behaviors.

As the sizes of the DH lattices L become large, the entanglement is rather robust and there exists

sizable entanglement between long-distance end sites. This result indicates that different fractal

structures can result in various entanglement properties.
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I. INTRODUCTION

It is well known that the entanglement is the intriguing nonlocal correlation phenomenon

to test the fundament of the quantum mechanics [1–4], as well as the key resource to realize

the quantum information processing (QIP) such as quantum cryptography and quantum

communication [5–7]. Since the entanglement is fragile to environment and the decoherence

occurs easily for the entangled systems, many efforts are devoted to the research of the

stable entanglements for realistic systems at finite temperature. This problem has been

studied intensively under the name ”thermal entanglement”, and it is theoretically and

experimentally demonstrated that there exists thermal entanglement in solid systems even

at high temperature [8–10].

Solid spin systems, which can perfectly simulate various realistic systems such as ultracold

atoms and quantum dots [11], have become naturally important candidates for QIP. The

entanglement properties of the solid spin systems have also received considerable attention

in condensed-matter physics, because these works can provide a deeper understanding of the

quantum correlation in many-body systems, for example, the superconduction and quantum

Hall effect [12].

The thermal entanglements on solid spin systems have been investigated extensively by

several measure methods containing negativity, concurrence, entanglement of formation [8, 9,

13–21]. Most of these previous works focused on the pairwise thermal entanglement between

nearest, next-nearest or next-to-next-nearest neighbor sites in one-dimensional (1-D) spin

chains and other simple lattices. There are few studies about the entanglement properties on

the low symmetry systems including fractal lattices which can simulate some systems such

as random magnets, surfaces, and the like. This motivates us to propose a question whether

there exists entanglement between two non-nearest-neighbor end sites on fractal lattices,

and if there exists, how the entanglement evolves as the size of system becomes large. It

is very difficult or impossible to obtain exact results of the entanglement on many-body

complicated lattices especially on fractal lattices.

Recently, the entanglement properties of many-body systems at zero temperature have

been studied by using the renormalization-group (RG) methods such as the density matrix

RG [22, 23], the Kadanoff’s block RG [24, 25]. These works enlighten people on studying

thermal entanglement on complicated lattices. In this paper, we study the thermal entan-
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glement between two end sites in the spin chains, Koch curves and on the diamond-type

hierarchical (DH) lattices by taking the negativity as measure method and applying the

decimation RG method.

The organization of this paper is as follows. In Sec. II we briefly introduce the spin

systems on different fractal lattices and how to calculate the entanglement of end sites by

using the RG method. The entanglement properties in spin chains and on fractal lattices

are studied in Sec. III and Sec. IV, respectively. The summary is given in Sec. V.

II. MODEL AND METHOD

Let us consider a L-site anisotropic ferromagnetic Heisenberg spin system in thermal

equilibrium with the effective Hamiltonian

−βH =
∑

〈i,j〉
K

[

(1−∆)
(

σx
i σ

x
j + σy

i σ
y
j

)

+ σz
i σ

z
j

]

, (1)

where σα
i (α = x, y, z) denote the Pauli operators at site i. K ≡ βJ ≡ J/kBT , J is the

exchange coupling parameter, kB is the Boltzmann constant, and T is the absolute temper-

ature. For simplicity, we set J/kB = 1. ∆ is the anisotropy parameter, for ∆ = 0 and ∆ = 1

the isotropic Heisenberg and Ising systems are obtained, respectively. The sum is over all

the nearest-neighbor spin pairs on this system. The equilibrium state of this spin system at

certain temperature can be described by the canonical density operator ρ = e−βH/Z, where

Z = Tre−βH is the partition function of the system.

For a dimer containing two spins in the equilibrium state ρ
12
, the thermal entanglement

can be measured by using the negativity [36] which is based on the partial transpose method

[37] and is defined as

N (ρ
12
) = 2

∑

i

|µi| , (2)

where µi is the negative eigenvalue of ρT1

12 , T1 denotes the partial transpose with respect to

the first subsystem. Here, the factor 2 can make our results more clear (in order that N = 1

for the Bell state) and will not influence the correctness of the physical picture.

With the definition of negativity, we will focus on how to obtain the entanglement of

two end sites in spin chains and on both fractal lattices (which were given in the previous

Ref [26–28]) by implementing the decimation RG method [29–35]. In this RG method, the
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transformations can be done by tracing out the internal spins step by step (for simplicity, the

procedure of the transformation can be shown in Fig. 1). By comparing the Hamiltonians

after and before the transformation, the recurrence relations between the new parameters

and the original parameters can be obtained. Through combining the recurrence relations

and the negativity of dimer, we can work out the negativity of two distant end sites in spin

chains and on fractal lattices.

III. HEISENBERG SPIN CHAIN

We first study how the entanglement between two end sites in spin chain containing L

sites varies with temperature T . The results (shown in Fig. 2 (a)) exhibit the similar feature

that the entanglement decreases monotonically with increasing T (with the unit J/kB, the

same below) and vanishes beyond the critical temperature Tc. At T = 0, the system is

in the entangled ground state and the entanglement decreases as T increases due to the

mixture of the unentangled excited state with the ground state. At T = Tc, the system is

mainly governed by the unentangled excited state, and therefore the entanglement naturally

vanishes. It is also clear to see that with the increase of L the maximum of entanglement

(at T = 0) decreases sharply and the critical temperature Tc becomes low. Different from

the maximally entangled Bell ground state for the dimer with L = 2:

|ϕ
1
〉 = 1√

2
(|↑↓〉+ |↓↑〉) , (3)

the ground states for the chains with L > 2 are related to ∆ and degenerate states which

are not maximally entangled. For example, the ground states for the chain with L = 3 at

∆ < 0 are twofold degenerate:

|ψ
1
〉 = C (|↑↑↓〉+m |↑↓↑〉+ |↓↑↑〉) , (4)

|ψ
2
〉 = C (|↑↓↓〉+m |↓↑↓〉+ |↓↓↑〉) , (5)

where C = 1√
m2+2

is the normalization constant, and

m =

√

8 (1−∆)2 + 1− 1

2 (1−∆)
. (6)

There exists an energy gap Egap between the entangled ground state and the unentangled

excited one which is dependent on the energy level of the system. Because of the competition
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between the energy gap Egap and the thermal excitation energy ET, the chains with L > 2

can easily overcome Egap and enter the unentangled excited states. It leads to that Tc

decreases with the increase of L. This phenomenon reflects that thermal fluctuation can

suppress easily quantum effect in this system.

The influence of the anisotropic parameter ∆ on the entanglement in the spin chains

at T = 0.01 is shown in Fig. 2 (b). As can be seen, there is no thermal entanglement

between two end spins when 0 < ∆ ≤ 1. It means that the entanglement is absent when

the coupling along z-direction is stronger than the coupling along the x- and y-orientation.

With increasing ∆ at ∆ < 0, the dimer with L = 2 first keeps in the maximally entangled

Bell ground state |ϕ
1
〉, but for the chains with L > 2 the entanglement first increases with

increasing ∆. As ∆ approaches the isotropic point (∆ = 0), the entanglement for all cases

decreases sharply to zero (shown in the inset of Fig. 2 (b)). For the chains with L > 2, the

entanglement first increases with increasing ∆ because the ground states are related to ∆

(for the L = 3 case, |ψ
1
〉 and |ψ

2
〉). As ∆ is close to the isotropic point, the energy gap Egap

between the ground and the unentangled excited states becomes so small that the system

can jump to the unentangled excited state. Therefore there exists a sharp decease to zero for

entanglement when ∆ is close to zero. This result also accords with that the entanglement is

always absent in an isotropic Heisenberg ferromagnetic chain in Ref [8]. From above results,

we can see that the entanglement on the chains is fragile and the entanglement vanishes

when L ≥ 17.

IV. FRACTAL LATTICES

We turn to studying the entanglement in Koch curves with fractal dimension df = 1.26

and plot the numerical results of negativity versus T and ∆ in Fig. 3. Compared with the

result in the spin chain (L = 5) at ∆ = −0.2, it has similar properties that the entanglement

decreases with increasing T , the maximum of entanglement and the corresponding Tc are

approximately equal. But the variation of the entanglement versus ∆ for Koch curves and

spin chains are different, i.e., for Koch curves the range of ∆ where the entanglement can

survive is smaller and the corresponding maximum of entanglement is lager. The entangle-

ment decreases quickly as L increases and disappears when L ≥ 17. We can deduce this

result from the similar energy level structure and open boundary conditions of these two
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systems.

For two kinds of DH lattices with fractal dimensions df = 2 (lattice A, for simplicity) and

df = 2.32 (lattice B, for simplicity), we first discuss the dependence of the entanglement on

T with ∆ = −0.2 (shown in Fig. 4). It is found that the entanglement is the maximum

at T = 0, and decreases with increasing T and vanishes beyond the critical temperature

Tc. However, some interesting phenomena are also observed that the entanglement on both

lattices decreases more slowly with increasing L and two end sites are entangled even though

the size of the system becomes very large (L = 1564). For the lattice B, as L increases,

the maximum of entanglement at T = 0 decreases and there exists a crossing point on

the entanglement curves at T ≈ 0.49 (shown in Fig. 4 (b)). With L becoming large, the

entanglement decreases more slowly and the critical temperature Tc does not decrease but

increases and finally tends to the stable value. This result indicates that the entanglement

on the DH lattice is much robust against the decoherence caused by temperature. For both

DH lattices, the energy gap Egap between the entangled ground state and the unentangled

excited state is so large that the system can jump to the unentangled excited state only at

higher temperature. The behavior of the critical temperature Tc with the increase of the

size of system L is shown in Fig. 5. It is clear to see that Tc of both DH lattices (Fig. 5

(c) and (d)) decrease slowly or increase when L becomes large in contrast with that in spin

chain (Fig. 5 (a)) and Koch curve (Fig. 5 (b)). The fractal structure can affect the energy

level structures of systems, which can lead to the different entanglement properties.

The variation of the entanglement with ∆ at T = 0.01 is also obtained. For the lattice

A, Fig. 6 (a) presents that the entanglement firstly increases as ∆ increases, and then it

quickly decreases to zero when ∆ reaches to the isotropic point. The entanglement decreases

very slowly when L becomes very large and there is no cross point when ∆ reaches zero.

For the lattice B, Fig. 6 (b) shows that the entanglement also exhibits stable and it changes

slowly when ∆ is not very close to zero. The entanglement mainly remains robust with

the increase of L. It is well known that the indirect interaction between sites which do

not connect directly may lead to long-distance correlation for them. For the DH lattices,

there exist stronger indirect interactions between both end spins than that in spin chains

and Koch curves, which causes the subsistence of entanglement for large L. We can also

observe that an ”entanglement cross point” occurs at ∆ ≈ −0.045 in the inset of Fig. 6

(b). At a certain temperature, the thermal excitation energy of the system is certain. Only
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when ∆ is very close to zero, the energy gap between the entangled ground state and the

unentangled excited state becomes so small that the system can enter the unentangled state.

It also indicates that different fractal lattices have various entanglement properties due to

difference of energy level structures. The spin systems with short-ranged interaction on

both DH lattices do not show a fast decay of entanglement with the size of the system.

The spin systems with robust long-distance entanglement can be used to realize quantum

communication channels for teleportation and transfer state. This special topological feature

can be useful in developing the quantum networks. Some works about the quantum complex

networks can prove that long-distance entanglement between arbitrary nodes can exists on

2-D lattices [38, 39].

In this paper, we have applied the decimation RG method. In the procedure of deci-

mation transformation, some approximations, i. e., ignoring the non-commutative term of

Hamiltonians, are adopted, which can produce some errors. This approximation and the

influence of the error in this method have been detailedly discussed in Ref [31]. It is found

that the error is reduced with the increase of the temperature.

V. SUMMARY

We have investigated the thermal entanglement between two end spins in Heisenberg

chains, Koch curves and on DH lattices by using the decimation RG method. By considering

the energy level and the competition between the thermal excitation energy and the energy

gap, the effects of the temperature and the anisotropy parameter on thermal entanglement

are discussed. We have also found that the entanglement on some special lattices may

exhibit interesting properties when the size of system becomes large. The phenomenon of

the ”entanglement cross point” indicates that the special fractal structure does influence

on the entanglement between non-nearest-neighbor sites. The entanglement on both DH

lattices is quite robust and the long-distance entanglement exists between end sites, but the

entanglement in spin chain and the Koch curve is fragile. This special DH lattices can be

used to design quantum communications channels for teleportation and transfer state.
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Figure captions:

Fig. 1. (Color online) The procedure of the RG transformation: (a) 1-D spin chain; (b)

Koch curve; (c) DH lattice with df = 2; (d) DH lattice with df = 2.32.

Fig. 2. (Color online) The entanglement between two end sites in Heisenberg chain with

L-spin: (a) the entanglement versus temperature T (with the unit J/kB, the same below)

at ∆ = −0.2; (b) the entanglement versus anisotropy parameter ∆ at T = 0.01.

Fig. 3. (Color online) The entanglement of end sites in Koch curve with L-spin: (a)

the entanglement versus temperature T at ∆ = −0.2; (b) the entanglement versus ∆ at

T = 0.01.

Fig. 4. (Color online) The entanglement of end sites on the DH lattice versus T at

∆ = −0.2: (a) lattice A with df = 2; (b) lattice B with df = 2.32. The entanglement curves

for different L cases have a cross point at T ≈ 0.49.

Fig. 5. (Color online) The critical temperature Tc versus the system size L at ∆ = −0.2:

(a) 1-D spin chain; (b) Koch curve; (c) DH lattice with df = 2; (d) DH lattice with df = 2.32.

Fig. 6. (Color online) The entanglement on the DH lattice versus ∆ at T = 0.01: (a)

lattice A with df = 2; (b) lattice B with df = 2.32. The inset shows that the entanglement

curves for different L cases have a cross point at ∆ ≈ −0.045.
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