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We introduce a measurement-based method for verifying quantum discord of any bipartite quan-
tum system. We show that by performing an informationally complete POVM (IC-POVM) on
one subsystem and checking the commutativity of the conditional states of the other subsystem,
quantum discord from the second subsystem to the first can be verified. This is an improvement
upon previous methods, which enables us to efficiently apply our method to continuous-variable sys-
tems, as IC-POVMs are readily available from homodyne or heterodyne measurements. We show
that quantum discord for Gaussian states can be verified by checking whether the peaks of the
conditional Wigner functions corresponding to two different outcomes of heterodyne measurement
coincide at the same point in the phase space. Using this method, we also prove that the only
Gaussian states with zero discord are product states; hence, Gaussian states with Gaussian discord
have nonzero quantum discord.

PACS numbers: 42.50.Dv, 03.65.Ta, 03.65.Ud

I. INTRODUCTION

Quantum correlations play a central role as a re-
source in quantum information processing and quantum
communication tasks. Traditionally, entanglement was
thought of as the unique form of quantum correlation
and the reason why quantum computers can outperform
classical computers. Yet there are tasks that are believed
to be exponentially hard classically, which can be done ef-
ficiently using quantum computational models with little
or no entanglement [1, 2]. Quantum discord was intro-
duced as a more general measure of quantum correlation
for bipartite systems, with no classical analogue [3], and
it was suggested as a resource for certain quantum com-
putation models [4], quantum state merging [5, 6], and
for encoding information onto a quantum state [7]. Dis-
cord has been generalized to continuous-variable systems
to study quantum correlations in Gaussian states [8, 9]
and certain nonGaussian states [10].

Recently, schemes have been proposed to test for non-
vanishing quantum discord of discrete-variable quantum
states [11–20], and some of these have been implemented
in nuclear-magnetic-resonance systems [21, 22] and in an
optical system [23]. Of particular practical interest, how-
ever, is a general method for detecting nonvanishing dis-
cord in the joint state of both discrete and continuous-
variable systems.

In this paper we introduce a measurement-based
method for verifying quantum discord of any bipartite
quantum state, without requiring any prior knowledge of
the joint state. We consider the post-measurement states
of one subsystem, B, conditioned to all the outcomes
of an informationally complete POVM (IC-POVM) per-
formed on the other subsystem, A. We show that if
the post-measurement states of B commute with one an-

other, then the quantum discord from B to A is zero.
Conversely, if they do not commute, the quantum dis-
cord from B to A is necessarily nonzero. A POVM is
informationally complete if its outcome probabilities are
sufficient to determine uniquely the quantum state, i.e.,
to perform quantum state tomography [24, 25]. In other
words, a bipartite state has zero discord from B to A if
tomography on A leaves the eigenstates of the density
operator of B unchanged.

Our method for verifying quantum discord is an im-
provement on the existing method [15], as it only re-
quires measurement of one IC-POVM on A. Hence, this
method can be readily applied to continuous-variable sys-
tems where an IC-POVM is available from either hetero-
dyne or homodyne measurements. We discuss in Sec. II
that the commutativity of the conditional states of B
can be efficiently tested by checking the commutation re-
lations between one nondegenerate conditional state and
all other states.

Quantum discord is defined as the difference between
two classically equivalent measures for mutual informa-
tion [3]. According to Bayes’s rule for classically corre-
lated probability distributions, the quantities I(A : B) =
H(A) + H(B) − H(A,B), J(A|B) = H(A) − H(A|B),
and J(B|A) = H(B) − H(B|A), where H denotes the
Shannon entropy and H(A|B) = H(A,B)−H(B) is the
conditional entropy, are all equal; they are called the clas-
sical mutual information. For a bipartite quantum sys-
tem, the quantum mutual information is defined, in anal-
ogy to I(A : B), by I(ρAB) = S(ρA) + S(ρB)− S(ρAB),
where S(ρ) = −Tr[ρ log(ρ)] is the von Neumann entropy.
A measurement-based, quantum version of the condi-
tional entropy is S{Πj}(A|B) =

∑

j pjS(ρA|j), where

pj = Tr[ρABΠj ], ρA|j = TrB[ρABΠj ]/pj , and the set
{Πj}, with

∑

j Πj = I, makes up a POVM measure-
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ment on subsystem B. This conditional entropy depends
on the choice of measurement; hence, the quantum ana-
logue of J(A|B) is defined by minimizing over all possible
measurements: J←(ρAB) = S(ρA)− inf{Πj}S{Πj}(A|B).
The quantum discord from B to A is then defined as

the difference between these two ways of defining a quan-
tum mutual information:

D←(ρAB) = I(ρAB)− J←(ρAB)

= S(ρB)− S(ρAB) + inf{Πj}S{Πj}(A|B) .

(1)

The quantum discord is zero if and only if the quantum
state can be expressed in the form

ρAB =
∑

j

pjρj ⊗ |j〉 〈j | , (2)

where {|j〉} are orthogonal states and 0 ≤ pj ≤ 1 [3, 26].
For a quantum state with this form, local measurements
on B in the basis {|j 〉 〈j |} leave the system unperturbed,
and all the state information can be extracted without
joint measurements. Notice that the state (2) is diagonal
in a conditional product basis pointing from B to A, i.e.,
an orthogonal basis of the form {|fjk〉 ⊗ |ej〉}, where the
states |fjk〉 are the eigenstates of ρj. Hence, for a given
quantum state, quantum discord can be directly verified
by diagonalizing the joint density operator [26].
Although there is no general method for minimizing

over all possible measurements in order to calculate the
conditional entropy of a state, this can sometimes be done
when there are restrictions to certain classes of states and
POVMs. Thus the Gaussian quantum discord is defined
as the quantum discord for two-mode Gaussian states
where the evaluation of the conditional entropy is re-
stricted to generalized Gaussian measurements [8, 9].
This paper is structured as follows. In the next sec-

tion, we introduce the method for verifying quantum dis-
cord. In Sec. III, we discuss the application of the method
to continuous-variable systems. In Sec. IV, we propose
a technique for verifying quantum discord of Gaussian
states. Based on that, we show that for Gaussian states,
only product states have zero discord; hence states with
nonzero Gaussian discord have nonvanishing quantum
discord.

II. METHOD

A previously proposed measurement-based
method [15] for verifying quantum discord is based
on testing whether a quantum state can be expressed
in the form (2) of states with zero discord. We improve
this previous proposal by showing that the quantum
discord can be verified with only one IC-POVM.

Theorem. For a bipartite system ρAB, the necessary
and sufficient condition for having zero discord from B
to A, D←(ρAB) = 0, is that the states of subsystem B,

ρB|k = TrA[MkρAB]/TrAB[MkρAB] = TrA[MkρAB]/pk,
conditioned to the outcomes k of an IC-POVM on A
(POVM elements {Mk}), commute with one another,
i.e.,

[

ρB|k, ρB|k′

]

= 0 , for any k and k′ . (3)

Proof. For a state having the zero-discord form (2),

ρB|k =

∑

j pjTrA[Mkρj]|j 〉〈j |
∑

j pjTrA[Mkρj ]
, (4)

immediately demonstrating that the states ρB|k are all
diagonal in the basis {|j〉} and thus commute.
For the converse, we assume the condition (3). For

such a set of commuting conditional states {ρB|k}, there
exists an orthonormal basis, {|j〉}, that diagonalizes all
the conditional states, ρB|k =

∑

j λkj |j 〉 〈j |. To say that

the POVM elements {Mk} make up an IC-POVM is to
say that they span the space of operators and thus there
exist operators {Nk} such that ρ =

∑

kNkTr[Mkρ] for
any density operator ρ. Applying this identity to the
joint state gives

ρAB =
∑

k

NkTrA[MkρAB] =
∑

k,j

λkjpkNk⊗|j〉 〈j| . (5)

Hence, ρAB has the form (2), with ρj =
∑

k λkjpkNk.

Physically, what the proof says is that for a state of
zero discord from B to A, the measurement of the POVM
{Mk ⊗ |j 〉 〈j |} extracts all information about the state
ρAB. From the perspective of the original definition of
discord [3], one imagines extracting this information by
first measuring B in the basis {|j〉} and then measuring
an IC-POVM on A. Our criterion for zero discord works
from the opposite perspective by reversing the order of
the measurements on A and B.
In order to test whether an unknown quantum state

has nonzero discord experimentally, based on this theo-
rem, one needs to measure an IC-POVM on subsystem
A and determine, by state tomography for each outcome,
the corresponding states of the subsystem B. This pro-
cedure continues until one of the commutation relations
between conditional states of subsystem B is nonzero.
If subsystem A has a d-dimensional Hilbert space, one
can always find an IC-POVM that has d2 POVM ele-
ments [24, 27]. Hence, there are d2 conditional states
of subsystem B and d2(d2 − 1)/2 commutation relations
between all pairwise states. However, as the conditional
states are Hermitian operators, the most efficient way
to check commutativity is to calculate the commutation
relations between one of the states with no degeneracy
and all other states. In this case, there are at most
d2 − 1 commutation relations to be checked. Also, if
some prior knowledge about the state in question is avail-
able, as is often the case in practice, quantum discord
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can be tested by considering only a few IC-POVM el-
ements. Consider, for example, the maximally entan-

gled state, |ψ〉 =
∑d

j=1
|j 〉 |j 〉 /

√
d. Any two rank-one

outcomes, |n〉 and |η〉, on one of the subsystems, pro-
vided 0 < | 〈n|η〉 | < 1 (these could be outcomes from two
distinct, nonorthogonal projective measurements), yield
conditional states of the other subsystem that do not
commute. Also, as we show below, for Gaussian states
only two different heterodyne outcomes are sufficient to
verify quantum discord.

III. CONTINUOUS-VARIABLE SYSTEMS

An interesting feature of this method is that it can be
readily applied to continuous-variable systems, as com-
plete sets of IC-POVMs are available from heterodyne
or homodyne detection. Two sets of measurements are
required, one on each of the subsystems. In general, one
needs to do state tomography to construct the quasiprob-
ability distributions of subsystem B for all the states
conditioned to outcomes of the measurement performed
on subsystem A. Then the commutativity of the states
ρB|k, which are represented in terms of quasiprobabili-
ties, must be checked in order to verify discord. This can
be efficiently done by finding one nondegenerate state
and calculating the commutation relations between that
state and all other states using an appropriate relation
in terms of the reconstructed quasiprobabilities. For in-
stance, if the Wigner functions WB|k(α) of conditioned
states of subsystem B are available, the commutation re-
lations between corresponding density operators can be
calculated by using the Moyal Bracket [28]:

Wkk′ (α) =
1

2π

∫

d2β d2β′WB|k

(

α+ 1

2
β
)

WB|k′

(

α+ 1

2
β′
)

× sin

(

i
ββ′∗ − β′β∗

2

)

. (6)

Here Wkk′ (α) is the Wigner-like function for the opera-
tor −i[ρB|k, ρB|k′ ]. If the states commute with each other
then Wkk′ (α) = 0 for all α. Alternatively, the commuta-
tion relations can be calculated using characteristic func-
tions,

χkk′ (ξ) =
2

π

∫

d2ζ χB|k

(

1

2
ξ + ζ

)

χB|k′

(

1

2
ξ − ζ

)

× sin

(

i
ξζ∗ − ξ∗ζ

2

)

, (7)

or in terms of any other quasiprobability distribu-
tions [29].
For states with zero discord, the eigenstates of the

conditional density operator of B do not change while
A is being fully determined from measurements of an
IC-POVM. For continuous-variable systems, defined on
an infinite-dimensional Hilbert space, the IC-POVM will
have an infinite number of outcomes. In practice, only a

finite number of measurement outcomes can be explored.
For instance, in homodyne detection only a finite number
of phases are considered, and the phase space is subdi-
vided into a finite number of bins. This introduces er-
rors in the state estimation and uncertainties for the re-
constructed quasiprobabilities of the conditional states,
which propagate to the distributions representing the op-
erators −i[ρB|k, ρB|k′ ]. If one of these commutator dis-
tributions takes on a nonzero value at some point, which
is larger than its associated uncertainty, then quantum
discord is necessarily nonzero; otherwise, it is not clear
whether the discord is nonzero. However, by having some
prior knowledge about the state, such as being Gaussian,
the error can be estimated, and it can be made arbitrarily
small using a sufficiently large number of measurements.

IV. GAUSSIAN STATES

A special class of continuous-variable states consists of
the Gaussian states, i.e., those states whose Wigner func-
tion is a Gaussian function. Such states are uniquely
characterized by the means and covariance matrix of
their quadrature components, x and p. For two sys-
tems, with modal annihilation operators â = x1 + ip1
and b̂ = x2 + ip2, we define quadrature vectors for each
system, x1 = (x1, p1) and x2 = (x2, p2), and we define an
overall quadrature vector x = (x1,x2) = (x1, p1, x2, p2).
The means of the quadrature components can be set

to zero by locally displacing the two systems. Then the
state is specified by its covariance matrix [30]

σ = 〈xT
x〉 =

(

A C

C
T

B

)

. (8)

Using local unitary operations that preserve the Gaus-
sian form of the states, the covariance matrix of a bipar-
tite Gaussian state can be brought to a standard form in
which A = diag(a, a), B = diag(b, b), and C = diag(c, d),
where a ≥ 0 and b ≥ 0. This can be accomplishing
by first applying local unitary rotations that diagonal-
ize A and B, then using local squeezing operations to
transform these diagonal blocks to A = diag(a, a) and
B = diag(b, b), and finally applying further local unitary
rotations to diagonalize C. Notice that positivity of the
density operator imposes the uncertainty-principle con-
straint [31],

σ +
i

4
Ω ≥ 0 , Ω =

(

J 0

0 J

)

, J =

(

0 1
−1 0

)

. (9)

For a covariance matrix in standard form, this implies
that a2 ≥ 1/16, b2 ≥ 1/16, ab ≥ c2, and ab ≥ d2, plus
cubic and quartic constraints on a, b, c, and d.
It has been shown that Gaussian discord for a two-

mode Gaussian state is zero if and only if C = 0 [8,
9]. Here we show this condition is also necessary and
sufficient for having zero discord.



4

A zero-mean Gaussian state with the standard form of
the covariance matrix has characteristic function χ(k) =

〈eikxT 〉 = e−xσx
T /2 and Wigner function

W (x1,x2) =W (x)

=
1

4π2
√
detσ

exp

(

−xσ
−1

x

2

)

=
1

4π2
√

(ab− c2)(ab − d2)

× exp

(

−bx
2

1
+ ax2

2
− 2cx1x2

2(ab− c2)
− bp2

1
+ ap2

2
− 2dp1p2

2(ab− d2)

)

.

(10)

Suppose Alice makes a heterodyne measurement on
subsystem A; i.e., she uses the IC-POVM whose POVM
elements are the coherent states |β〉〈β|. Let β = x′

1
+ ip′

1

specify the outcomes of here measurement. Then the
state ρB|x′

1
, conditioned on these outcomes, has Wigner

function

WB|x′

1
(x2) =

1

N

∫

d2x1W (x1,x2)Wx′

1
(x1) , (11)

where Wx′

1
(x1) = 2 exp[−2(x1 − x′

1
)2 − 2(p1 − p′

1
)2]/π is

the Wigner function of coherent state |β〉 = |x′
1
+ ip′

1
〉

and N is a normalization factor. Integration yields

WB|x′

1
(x2) =

1

N ′
exp

(

−1

2
x22f(a, b, c) + x2x

′
1g(a, b, c)

)

× exp

(

−1

2
p2
2
f(a, b, d) + p2p

′
1
g(a, b, d)

)

,

(12)

where

f(a, b, z) =
1

ab− z2

(

a− z2

b+ 4(ab− z2)

)

,

g(a, b, z) =
4z

b+ 4(ab− z2)
,

and N ′ is a normalization factor.
The peak of system B’s conditional Wigner func-

tion (12), located at

γ =
g(a, b, c)

f(a, b, c)
x′1 + i

g(a, b, d)

f(a, b, d)
p′1 , (13)

depends on the outcomes of the measurement on A, x′
1

and p′1, unless c = 0 and d = 0. Consequently, the eigen-
vectors of the conditional state ρB|x′

1
, which are generally

displaced, squeezed number states, {D(γ)S(ζ) |n〉}, dis-
placed to the Wigner-function peak γ, change based on
the outcomes of the heterodyne measurement performed
on subsystem A. This indicates nonzero discord, since
the eigenvectors do not commute. Therefore, without
explicitly calculating any commutation relations, we can
see that the bipartite Gaussian state has nonvanishing
discord unless c = 0 and d = 0. Transforming back from

the standard form to the general convariance matrix (8),
one can say that a bipartite Gaussian state has zero dis-
cord if and only if C = 0, i.e., if and only if the state is a
product state. This also implies that states with Gaus-
sian discord (C 6= 0) have nonzero quantum discord.

These results show that quantum discord of Gaussian
states can be verified using only two different heterodyne
outcomes on one subsystem and finding (by tomography)
the points in the phase space at which the correspond-
ing conditional Wigner functions attain their maximum
values. If those points do not coincide, the quantum dis-
cord is nonzero, since having different peaks guarantees
that the corresponding eigenstates, which are displaced,
squeezed number states, do not commute. This argument
can also be applied to nonGaussian states: if there are
two conditional Wigner functions with the same shape,
but located at different points in phase space, they corre-
spond to states ρ and D(ν)ρD†(ν), which have two differ-
ent sets of eigenvectors {|ψi〉} and {D(ν) |ψi〉}, which is
sufficient evidence that the quantum discord is nonzero.
Note that discord exists even if only one of c and d is
nonzero, so to uncover discord of Gaussian states with
only two heterodyne outcomes, one should choose the
outcomes to be different for both quadratures.

V. CONCLUSION

We have introduced a method for verifying quantum
discord of any bipartite quantum system. The method is
based on the fact that all the information in states with
zero discord from subsystem B to subsystem A can be
fully extracted by measurements that are diagonal in a
single basis of B. In order to verify discord, one needs to
perform an IC-POVM on subsystem A and check whether
the conditional density operators of the subsystem B
commute, i.e., whether they share the same eigenstates.

It is worth mentioning that, in practice, one would
check commutativity of the conditional states as an IC-
POVM is being performed on A. This can be efficiently
done by finding a nondegenerate conditional state and
calculate the commutation relations between that state
and other states. In this case, the maximum number
of commutation relations to be checked scales linearly
with the number of IC-POVM elements. Once one of
these commutators is found to be nonzero, that confirms
nonzero discord. This method can be simply applied on
continuous-variable systems by using homodyne or het-
erodyne detection and calculating the commutation re-
lations in terms of quasiprobability distributions. We
have shown that a bipartite Gaussian state has nonzero
quantum discord if and only if it is not a product state,
which is the same as the condition for having nonzero
Gaussian discord. Moreover, we show that with only two
heterodyne outcomes and without calculating any com-
mutation relations, quantum discord of Gaussian states
can be verified.
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(2010).
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