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We consider spinor Bose gas with the isotropic Rashba spin-orbit coupling in 2D. We argue that at
low density its groundstate is a composite fermion state with a Chern-Simons gauge field and filling
factor one. The chemical potential of such a state scales with the density as µ ∝ n3/2. This is a
lower energy per particle than µ ∝ n for the earlier suggested groundstate candidates: a condensate
with broken time-reversal symmetry and a spin density wave state.
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I. INTRODUCTION

Precise control over interactions of ultracold atoms
with laser fields opened an opportunity of fabricating
synthetic non-Abelian gauge fields1–3 and spin-orbit (SO)
couplings4,5 of both Rashba6 and Dresselhaus7 type. In
analogy with previously known vector condensates8–12,
an important tool for synthesizing such systems is the
controlled Raman coupling between oriented sequence of
initially degenerate hyperfine states of 87Rb. Interac-
tions of spatially varying laser field with hyperfine atomic
levels effectively produces synthetic non-Abelian gauge
fields,13–16 originating from the Berry phase, and SO
coupling4,5,17–22 of momentum to the internal isospin
degrees of freedom. Bosons with SO coupling, dis-
cussed and studied in the context of cold-atom physics
in Ref. [18], were realized very recently by Spielman’s
group at NIST4. Depending on the particular experimen-
tal scheme, i.e. the choice of atomic states and a sequence
of optically induced transitions between them, one may
in principle realize various SO Hamiltonians for the pro-
jected low-energy states. Low energy properties of such
SO bosonic systems have been discussed in Refs. [18, 23–
33].
While fermions with SO coupling were extensively

studied over the last decades, see e.g. Refs. [34–37] for
reviews, relatively little is known about SO bosons. Yet,
they offer a number of fundamental problems which, in
some respects, are more challenging than their fermionic
counterparts. Indeed, in many instances SO coupling
leads to single-particle dispersion relations which exhibit
multiple minima or even degenerate manifold of mini-
mal energy states. Fermionic many-body systems form a
unique Fermi sea state on top of such dispersion relation.
On the other hand, bosons tend to occupy the lowest en-
ergy states and thus face macroscopic degeneracy of their
non-interacting groundstate. It is entirely the effect of
collisions (i.e. boson-boson interactions) which lifts this
degeneracy and selects a true many-body groundstate.
In this respect the problem is somewhat similar to frac-

tional quantum Hall effect (FQHE). There the fermionic
kinetic energy is degenerate due to Landau quantiza-
tion and the nature of the groundstate is determined by

the interactions. One of the most remarkable concepts,
which emerged in FQHE studies, is that of composite
particles38–43. For example, FQHE states with filling
fractions ν = p/(2p+ 1), where p = 1, 2 . . ., were under-
stood as integer ν = p quantum Hall states of composite
fermion particles. The latter are obtained by binding the
original fermions with flux tubes carrying exactly two flux
quanta. Technically such a binding is achieved by assign-
ing Chern-Simons (CS) phase factor to the many-body
wavefunction of composite particles.

The goal of this paper is to show that a very similar
transformation plays a major role in understanding of the
groundstate of 2D bosons with Rashba SO coupling. We
argue here that their groundstate wavefunction may be
approximated by that of the Fermi gas at integer filling
factor ν = 1, dressed by the Chern-Simons phase with
one flux quantum attached to every fermion. Such phase
factor transforms the integer quantum Hall fermionic

wavefunction into a bosonic one. Fermionization of the
bosonic system allows the latter to minimize its interac-
tion energy. This is due to the fact that fermions with
the same spin can’t be at the same spatial point and thus
cannot interact through a short-range s-wave interaction.
(Consequently the amplitude for two fermions with al-
most parallel spins to be at the same point is small as
the angle between their spins.) As the result the interac-
tion energy per particle in a Fermi sea is smaller than in
a Bose-condensate of the same density. For low enough
density such reduction of the interaction energy wins over
the associate increase of the kinetic energy.

A very similar physics is behind the so-called Tonks-
Girardeau limit of spinless 1D Bose gas44–46. At a small
density (which in 1D is the same as strong interactions)
the bosonic wavefunction approaches symmetrized wave-
function of non-interacting Fermi gas. If spin degree of
freedom is present in 1D, the groundstate is known to
be fully spin-polarized47–49 again leading to the Tonks-
Girardeau construction in low density limit. We thus
notice that 2D Rashba bosons share features of both 2D
quantum Hall systems as well as 1D Bose gases. The
deep connection with the latter is due to the fact that
single-particle density of states for particles with Rashba
SO coupling behaves as ǫ−1/2 at small energy. This is
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typical for 1D systems, making particles with Rashba
SO coupling “1D-like”, irrespective of their actual spa-
tial dimensionality.

Technically blending FQHE and Tonks-Girardeau
ideas with Rashba SO coupling presents one with a num-
ber of challenges. Indeed, the standard way of intro-
ducing Chern-Simons transformation38,40 essentially re-
lies on the spinless nature of particles. Here we suggest
a way to generalize it for spinor particles with strong SO
coupling. It achieves the goal of fermionization of bosons,
but fails to eliminate completely the interactions between
the composite spinless fermions. Still the fermionic in-
teraction energy can be parametrically smaller than the
bosonic one. The crucial observation here is that the
residual fermion-fermion interactions appear to be pro-
portional to the angle between momenta of two scattering
particles. Therefore, confining the Fermi sea of compos-
ite fermions to a small fraction of the momentum space,
allows one to lower their interaction energy. Similar ideas
were recently put forward by Berg, Rudner and Kivelson
(BRK)50 in the context of Fermi gas with Rashba SO cou-
pling. They called the resulting time-reversal symmetry
broken state a nematic. Here we adopt their construction
for the composite fermions.

Here we put forward a candidate for the groundstate
wavefunction of Rashba spin-orbit coupled Bosons. Us-
ing above mentioned fermionization and treating the in-
teraction Hamiltonian within Hartree-Fock approxima-
tion, we obtain that at low densities the system finds
itself in a similar to the composite fermion phase with ne-
matic Fermi surface. It has an ellipsoidal shape aroud a
spotaneousely chosen point on the Rashba circle |k| = k0.
Transverse diameter of this ellipse is restricted to the an-
gle Θ ∝ [n/k20gs]

1/4, where n is the density and gs is the
sum of spin-independent and spin-dependent dimension-
less interaction parameters (for definitions see Eq. (8) be-
low). In particular, we show that the equation of state of
the low density system in a trap, and its real space profile,
given by Eqs. (45), are drastically different from those
observed in earlier suggested condensate states. Specifi-
cally, we derive the criterion for the number of particles
in the trap [see Eq. (46)] for observing the composite
fermion state experimentally.

The paper is organized as follows: in section II we in-
troduce Rashba SO coupling on a single-particle level.
We also discuss earlier mean-field theories for bosonic
many-body groundstates along with BRK nematic state
for many-body fermionic system. In section III we intro-
duce fermionization of spinor bosons and evaluate the en-
ergy of the resulting composite fermion state. In section
IV we discuss the results: present an emerging ground-
state phase diagram of Rashba bosons, list possible ex-
perimental consequences and generalizations of our ap-
proach. Some technical details of the calculations are
relegated to the Appendix.

II. RASHBA SPIN-ORBIT COUPLING

A. Single particle spectrum

The single-particle Hamiltonian with the Rashba spin-
orbit coupling in two dimensions takes the form

H0 = −∇
2
r

2m
+ ivẑ · [σ ×∇r] , (1)

where v is spin-orbit coupling constant having dimen-
sionality of velocity, ∇r = (∂x, ∂y) and σ = (σx, σy) is
vector of Pauli matrices acting on two component spinor
ψ(r) = (ψ(r, ↑), ψ(r, ↓)). In 2D the Rashba term in
Eq. (1) may be transformed to another form ivσ · ∇r

by π/2 rotation in the spin space.
In addition to translational and rotational symmetries

the Hamiltonian H0 commutes with the two discrete Z2

symmetry operations: time-reversal T̂ and 2D parity P̂ .
They may be defined in the following way

T̂

(

ψ(r, ↑)
ψ(r, ↓)

)

=

(

ψ̄(r, ↓)
−ψ̄(r, ↑)

)

(2)

and

P̂

(

ψ(z, ↑)
ψ(z, ↓)

)

=

(

−iψ(z̄, ↓)
iψ(z̄, ↑)

)

, (3)

where bar stands for complex conjugated and we intro-
duced the complex 2D coordinate as z = x + iy. Notice
that the parity operation in 2D is defined as y → −y
and x → x and σy multiplication. Indeed, reflection of
both coordinates x and y is equivalent to π rotation. Of
course, one could as well define parity as x reflection and
σx multiplication. It is equivalent to the P operation (3)
combined with the π rotation.
Diagonalization of the Hamiltonian (1) yields the fol-

lowing single-particle spectrum:

εk,γ =
k2

2m
+ γvk. (4)

Here index γ = ±1 labels the two brunches of the
spectrum depicted in Fig. 1. The corresponding eigen-
functions are plane waves in coordinate space multiply-
ing coordinate-independent spinor, whose form depends,
however, on the momentum k as

ψk,γ(r, s) =
1√
2V

(

−iγ e−iarg(k)

1

)

s

eikr. (5)

where arg(k) is the angle between the momentum vec-
tor k and the kx-axis, V is the system’s volume. The
spin is directed in the x − y plane and is rotated rel-
ative to the momentum direction by γπ/2. Hereafter
we consider SO energy scale ǫ0 = mv2/2 as the largest
energy in the problem. One thus expects the ground-
state of an interacting system to be confined to the
part of the Hilbert space projected on the lower branch
γ = −1. Clearly the two spin components of all such
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FIG. 1. (Color online) Dispersion relation (4) of particles with
Rashba SO coupling. The degenerate groundstate k = k0 =
mv is shown by full circle.

states are connected by the following unitary transfor-
mation ψk,−(r, ↑) = ie−i arg(k)ψk,−(r, ↓). For a generic
wavefunction belonging to the lower branch the relation
between its up and down components acquires the form

ψ(r, ↑) =
∫

dr′R(r− r
′)ψ(r′, ↓), (6)

where the spin-raising kernel

R(r− r
′) = − 1

2π

e−iarg(r−r
′)

(r− r′)2
(7)

is the Fourier transform of ie−i arg(k). Importantly, the
R-operator in real space has the unitarity property,
∫

drR̄(r− r1)R(r− r2) = δ(r1 − r2), which is the direct
consequence of the unitarity of the spin-rising transfor-
mation in the momentum space representation.

The most notable feature of the dispersion relation (4)
is that its groundstate is degenerate along the circle in
the momentum space k = k0 = mv. As a result the
many-body groundstate of N non-interacting bosons is
highly degenerate (not so for fermions, though). Indeed,
any occupation of the states along the groundstate circle
k = k0 yields exactly the same kinetic energy −Nk20/2m.
Hereafter we shall measure the energy from that value,
taking it for the origin of the energy axis. It is therefore
only the interactions, which may break the degeneracy
and select a true groundstate. The situation is similar to
a partially filled Landau level in the context of FQHE.
There too the kinetic energy is fully degenerate and the
groundstate is solely determined by the interparticle in-
teractions.

B. Bosons with Rashba dispersion

Let us considerN particles with the s-wave short-range
interactions of the form

Hint =
1

2m

N
∑

i,j

δ(ri − rj)
[

g0 + g2σ
(i)
z σ(j)

z

]

, (8)

where g0 is the spin-isotropic dimensionless interaction
constant, while g2 is the spin-anisotropic interaction con-
stant.
One can now evaluate interaction energy of certain

simple N -body Bose states. One such state is a Bose-
Einstein condensate in a single state belonging to a de-
generate manifold of the single-particle ground states, i.e.
a state with momentum k, such that k = k0 and γ = −1,

Ψ
(0)
B =

N
∏

i=1

ψk,−(ri, si) . (9)

This wavefunction is obviously symmetric with respect
to the permutation of any two pairs (ri, si) ↔ (rj , sj).
Such a state is not symmetric under time-reversal trans-
formation T̂ , Eq. (2), because of unequal population of k
and −k states. We shall call it thus time-reversal sym-
metry broken (TRSB) state. Note that this state does

not break the parity P̂ , Eq. (3). To see it most clearly
one may choose momentum k direction to be along the x-
axis. Calculating the expectation value of the interaction
energy (8) over TRSB state, one finds

E
(0)
int =

N2

2mV
g0 . (10)

Since the kinetic energy in the state (9) is zero, the in-
teraction energy (10) coincides with the total one.
One may consider now a Bose condensate built on a

coherent superposition of say two states k1 and k2 both
belonging to the degenerate manifold k = k0:

Ψ
(φ)
B =

N
∏

i=1

1√
2
[ψk1,−(ri, si) + ψk2,−(ri, si)] . (11)

The corresponding interaction (and thus total) energy is
found to be

E
(φ)
int =

N2

2mV

[

g0 +
g0
2
cos2

φ

2
+
g2
2
sin2

φ

2

]

, (12)

where φ = arg(k1) − arg(k2) is the angle between the
two states of the degenerate manifold. It is clear that,
provided the spin-isotropic interaction is repulsive g0 > 0,
the only way the state (11) may be energetically more
favorable than the state (9) is if g2 < 0. In the latter case
the most favorable choice of the two states corresponds
to φ = π, i.e. k2 = −k1, with the interaction energy

E
(π)
int = (N2/2mV ) [g0 + g2/2]. Such a state represents

a spin density wave (SDW) with a uniform total density
and the two spin components oscillating harmonically out
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of phase. It is symmetric with respect to both time-
reversal and parity symmetries, Eqs. (2), (3), but breaks
the rotational symmetry. In either of these states the
kinetic energy is zero.

It was conjectured23,24 that TRSB Ψ
(0)
B , (9), and the

SDW state Ψ
(π)
B , (11), are the many-body groundstates

of the Rasba interacting bosons for g2 > 0 and g2 < 0
correspondingly. It was later suggested27 that the tran-
sition between TRSB and SDW states is shifted towards
positive g2 due to a ceratin admixture of coherently oc-
cupied BCS-like pairs of k and −k states. We notice
that for both of these states the chemical potential scales
linearly with the density n = N/V ,

µB = ∂Eint/∂N ∝ n . (13)

It is instructive to compare this scaling of the bosonic
chemical potential with the corresponding fermionic one.

C. Fermions with Rashba dispersion

Unlike bosons, the non-interacting Fermi gas exhibits
the unique ground-state. It is given by the rotationally
symmetric Fermi sea with the Fermi surface consisting of
two concentric circles with the radii kF± = k0 ± 2πn/k0,
hereafter the small density n ≪ k20 is assumed. The
corresponding Fermi energy measured from the bottom
of the spectrum is

µ
(0)
F =

(πn)2

2mk20
. (14)

Notice the fact that µ
(0)
F ∝ n2, which is usually the

feature of 1D Fermi gas. Here it happens because the
single-particle density of states exhibits 1D-like behav-
ior ν(ǫ) ∝ ǫ−1/2 close to the bottom of the Rashba cir-
cle. The interesting observation is that at small enough
density n . g0k

2
0 the chemical potential of interacting

bosons appears to be bigger than that of the free Fermi
gas with the same dispersion relation (4). Before making
conclusions from this observation one needs to consider
the interaction energy (8) of the Fermi sea state.
Spinless (or fully spin-polarized) fermions do not in-

teract through short-range interactions. In our case the
particles have spin, which is locked to their orbital mo-
menta. As a result the symmetric Fermi sea, described
above, contains all spin directions in x-y plane with equal
weights. Since two fermions with opposite spins interact
through the short range interaction (8), one expects the
average interaction energy of the symmetric Fermi sea to
be of the same order as bosonic one ∝ g0N

2/mV and
thus µF ∝ n similarly to the bosonic condensates. It was
recently noticed by Berg, Rudner and Kivelson50 that low
density Rashba fermions may have parametrically lower
groundstate energy if they form a nematic state.
To motivate the idea, let us consider two-fermion

state as a Slater determinant built on single par-
ticle states (5) with momenta k1,2 close to the

Rashba circle ΨF = [ψk1,−(r1, s1)ψk2,−(r2, s2) −
ψk1,−(r2, s2)ψk2,−(r1, s1)]/

√
2. The interaction energy

(8) of such state is given by Eint = sin2(φ/2)(g0+g2)/2m,
where φ = arg(k1) − arg(k2). Therefore the interac-
tion energy between fermions tends to zero if arg(k1)→
arg(k2), essentially because the spins are aligned in this
limit and fermions with the same spin can not interact
through the short-range interaction potential. The BRK
nematic state takes advantage of this observation.
To describe such a state qualitatively let us imagine

that the many-body fermionic state ΨF is constructed
as a Slater determinant of states with the angular di-
rections confined to the angular segment of the momen-
tum (and spin) space of size Θ≪ 2π and momenta close

to the spin-orbit circle ||kj | − k0| < k
(Θ)
F , Fig. 2. The

corresponding Fermi momentum is found from the con-

dition 2k
(Θ)
F k0Θ = (2π)2n. As a result the correspond-

ing kinetic energy per particle Ekin/N ∝ [k
(Θ)
F ]2/m ∝

n2/(mΘ2k20). On the other hand, the interaction energy
per particle is Eint/N ∝ (g0+ g2)nΘ

2/m, with the factor
Θ2 originating from sin2(φ/2) ∼ Θ2. One can now min-
imize the sum of kinetic and interaction energy over Θ
to find Θ ∝ [n/k20(g0 + g2)]

1/4, which is indeed small as
long as

n≪ n0 = k20(g0 + g2) . (15)

With this Θ the chemical potential of short-range inter-

acting fermions with Rashba spin-orbit coupling is found
to be µF ∝ n3/2√g0 + g2/mk0, which is the result of
BRK50. In the small density limit (15) the latter is big-
ger than that of non-interacting Rashba fermions (14),
but is advantageous over bosonic TRSB and SDW states

(13): µ
(0)
F < µF < µB. Notice also the non-analytic de-

pendence of µF on the interaction strength, indicating
the non-perturbative nature of this result. We show in
Section III D that the composite fermion nematic state
may be described quantitatively within Hartree-Fock self-
consistent mean-field treatment, Fig. 2.

D. Can bosons be fermions?

We have arrived thus to the conclusion that at low
density (15) the chemical potential and groundstate en-
ergy of fermionic many-body system is smaller than the
corresponding bosonic one. The similar situation seem-

ingly happens in a 1D system of spinless particles with
short range interaction potential (g0/m)δ(xi−xj). There
too the mean-field treatment of bosons suggests that
µB ∼ g0n. On the the other hand, spinless fermions
(which are not affected by short-range interactions due to
the Pauli principle) exhibit µF ∼ n2. It thus seems that
at a small enough density the fermionic groundstate en-
ergy is smaller than the bosonic one. The actual situation
is, of course, very different46. At small density bosonic
many-body groundstate wavefunction ΨB approaches the
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FIG. 2. (Color online) Hartree-Fock Fermi surfaces of BRK
nematic states with three different densities. The absolute
value of the momenta are restricted to the vicinity of the
Rashba circle k = k0, while their angular directions are re-
stricted to the angle Θ ∝ [n/k2

0(g0 + g2)]
1/4.

symmetrized fermionic one

ΨB(x1, . . . , xN ) =

N
∏

i,j

sign(xi − xj)ΨF (x1, . . . , xN ) ,

(16)
where ΨF is the fermionic Slater determinant occupying
a finite portion of the momentum space −πn ≤ k ≤ πn.
It is important to notice that, although sign(xi − xj) is
undefined at xi = xj , the fermionic part cancels at all
such points making ΨB(x1, . . . , xN ) well-defined in the
entire space. Due to the same observation there is no in-
teraction energy cost for the short-range repulsion. The
corresponding kinetic energy per particle ∝ (πn)2/2m is
small in the low density limit. This is the so-called Tonks-
Girardeau limit44,45,48, where bosons redress themselves
as fermions. This allows them to take advantage of the
wavefunction, which is nullified at all points where any
two particles approach each other. As a result they avoid
paying short-range interaction energy cost, while corre-
sponding kinetic energy cost appears to be worth the
bargain at low density. The corresponding 1D equations
of state are depicted in Fig. 3.

It is thus tempting to speculate that our spinfull 2D
system may benefit from a similar construction. Namely,
at low density bosons may want to redress themselves
as fermions to take advantage of their lower interac-
tion energy. The blueprints of the boson-fermion cor-
respondence in 2D are provided by FQHE studies38,40,
where the correspondence is achieved by ascribing Chern-
Simons phase factor to many-body wavefunctions. Such
factor takes care of the proper symmetry of wavefunc-
tions. It comes with the price however: the gauge mag-
netic field which has a form of delta-functional flux tubes
attached to every particle. It is believed that (under
proper conditions) this magnetic field may be substi-
tuted by a uniform one, making the problem analytically

n

n~

2
~ n

0
n

FIG. 3. (Color online) Equations of state µ(n) of 1D quantum
gases with short-range interactions: spinless Fermi gas (long-
dashed); mean-field approximation for Bose gas (dashed); ex-
act result46 for bosons (full). Notice that bosonic ground-
state energy E =

∫
µdn is always smaller than the fermionic

one, although the mean-field treatment suggests otherwise for
n . n0 = g0.

tractable. In the next section we develop a similar strat-
egy for the chiral spinfull boson-fermion correspondence.

III. COMPOSITE FERMION STATE

A. Näıve fermionization attempt

Our goal is to construct a variational groundstate for
Rashba bosons based on the composite fermion idea. We
argue here that in the small density limit such a state,
inspired by the Tonks-Girardeau limit (16), is advanta-
geous over both TRSB (9) and SDW (11) bosonic states.
The two main differences with the Tonks-Girardeau case
are: (a) the 2D nature of our problem and (b) the spinfull
nature of the particles. It is still tempting to straight-
forwardly generalize Eq. (16) to the 2D spinfull case by
taking the variational ground state of the Bose gas in the
following form:

ΨB(r1, s1, · · · rN , sN ) (17)

=
∏

i<j

ei arg(ri−rj)ΨF (r1, s1, · · · rN , sN ),

where ΨF (r1, s1, · · · rN , sN ) is an N-particle fermionic
wavefunction. The Chern-Simons phase ei arg(ri−rj) =
(zi − zj)/|zi − zj |, with zj labeling complex spatial co-
ordinates, zj = xj + iyj , is antisymmetric with respect
to exchange of any two coordinates. As a result, many-
body wavefunction, ΨB(r1, s1, · · · rN , sN ), is symmetric
under permutation of pairs ri, si and rj , sj of coordi-
nates and spins, si =↑, ↓, if the fermionic wave function,
ΨF (r1, s1, · · · rN , sN ), is antisymmetric with respect to
the same permutations. One way of writing the latter is
to take it as N × N Slater determinant of e.g. single-
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particle spinor wave functions, ψkj,−(ri, si), Eq. (5),
where i, j = 1, 2, . . . , N .
While being probably the most straightforward way of

guessing a spinfull composite fermion state, Eq. (17) has
a number of fatal drawbacks. First, one might näıvely
expect that similarly to Eq. (16), this ansatz maps the in-
teracting bosonic system onto a system of non-interacting
fermions. A closer look shows that this is not the case.
Indeed, although the Slater determinant implies that the
fermionic wave function has zeros at coinciding spatial
points and spins, however for coinciding points and dif-

ferent spins the wavefunction is not nullified. As a result
the composite fermions with opposite spins still do in-
teract, despite the short-range nature of the interaction
potential.
Even more serious problem with the trial wavefunc-

tion (17) is that it is not well-defined for coinciding
points and opposite spins. This is due to the fact that
the Chern-Simons phase is singular at coinciding points,
while the fermionic part ΨF is not vanishing if spins are
opposite. This ambiguity leads to logarithmic divergent
contributions to the average kinetic energy of the state
(17). Indeed, consider the part of the kinetic energy
(2m)−1

∫

dri|∇riΨB|2, where the gradient operators act
on the Chern-Simons phases. This leads to the kinetic
energy contribution of the form

1

2m

∫

dri
∑

j,j′

(ri − rj) · (ri − rj′ )

|ri − rj |2|ri − rj′ |2
∣

∣ΨF (r1, s1, · · · rN , sN )
∣

∣

2
.

(18)
The diagonal terms j = j′ in this double sum lead to the
integrals of the form

∫

dri/|ri − rj |2, which exhibit loga-
rithmic behavior when ri ≈ rj . If particles i and j have
the same spin, ΨF = 0 at ri = rj cutting the logarithmic
divergence of the integral at small distances ∼ |ki−kj |−1

(at large distances it is cut at a typical interparticle dis-
tance n−1/2 due to the random sign of the numerator in
Eq. (18)). However for opposite spins ΨF 6= 0 at ri = rj

and the integral (18) diverges in all such points. The re-
sult is logarithmical divergent chemical potential, mak-
ing the trial wavefunction (17) essentially useless. One
should thus look for an alternative way to introduce com-
posite fermion state for spinfull Rashba particles, which
avoids logarithmic divergent terms in the kinetic energy.

B. Fermionization

The idea for an alternative scheme comes from the ob-
servation that at small density all relevant energy scales
are much smaller than SO energy ǫ0 = mv2/2. There-
fore one would like to have a many-body state which is
projected onto the Hilbert subspace of the lower spin-
orbit branch γ = −1, Eq. (4). On the single particle
level such a projection is achieved by ensuring the rela-
tion (6) between up and down components of the spinor.
One can straightforwardly generalize it for a many-body
wavefunction. To this end one should specify a fully sym-

metric in the coordinate space wavefunction of the min-
imal spin

Ψ↓...↓(r1, . . . , rN ) = Ψ(r1 ↓, . . . , rN ↓) . (19)

Then all other spin components of the fully projected
wavefunction may be uniquely determined from the min-
imal spin component by successive application of the spin
raising non-local operator R, Eq. (7), e.g.

Ψ(r1 ↑, . . . , rN ↓) =
∫

dr′1R(r1 − r
′
1)Ψ↓...↓(r

′
1, . . . , rN ) ,

Ψ(r1 ↑, . . . , rN ↑) =
∫

dr′1 . . . dr
′
NR(r1 − r

′
1) . . .R(rN − r

′
N)

Ψ↓...↓(r
′
1, . . . , r

′
N ) . (20)

It is easy to see that all the components defined this way
are symmetric with respect to simultaneous interchange
of ri, si and rj , sj .
One can now fermionize such a wavefunction by writ-

ing the spatially symmetric minimal spin component (19)
as a product of Chern-Simons phase and fully antisym-
metric spinless fermionic wavefunction. The latter will
be shown to describe the anisotropic nematic state. It is
therefore convenient to incorporate the same anisotropy
in the Chern-Simons phase too. We thus define rescaled
coordinates x̃ = αx, ỹ = y/α and r̃ = (x̃, ỹ), where the
density-dependent scaling parameter α will be specified
in Section III E. The fermionized minimal spin compo-
nent is then written as:

Ψ↓...↓(r1, . . . , rN )=
1√
2N

∏

i<j

eiλ arg(r̃i−r̃j)ΨF (r1, . . . , rN ) ,

(21)
where we have introduced chirality factor λ = ±1, which
defines the direction of the Chern-Simons flux relative
to the spin chirality. The many-body fermionic wave-
function ΨF (r1, . . . , rN ) is antisymmetric with respect to
permutation of any two of its spatial arguments. Thanks
to the Chern-Simons phase factor the left hand side of
Eq. (21) is fully symmetric both in coordinate and spin
spaces. Notice that, unlike the earlier attempt, Eq. (17),
the wavefunction (21) is everywhere well-defined. This
is the case because the Chern-Simons phase multiplies
the fully antisymmetric function of spinless fermions,
which cancels if any of its spatial arguments coincide.
This became possible by adding the Chern-Simons fac-
tor to a fully spin-symmetric minimal spin component
only. The higher spin components are then built up from
the fermionized minimal spin bosonic function (21) by a
successive application of the spin raising kernel, Eq. (20).
As a result all 2N spin components of the N -body bosonic
wavefunction (20), (21) are well-defined functions in the
entire 2N -dimensional coordinate space. This is unlike
the earlier attempt, see Eq. (15), which resulted in the
logarithmic divergences in the kinetic energy.
Of course, there is a complimentary construction

where one fermionizes the maximal spin component
Ψ↑...↑(r1, . . . , rN ) and builds the lower spin components
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by successive action of spin lowering operator. These
two states are related by the parity transformation (3)
acting on the coordinates and spins of all N particles.
Namely, acting with such parity operator on the state
(20), (21) built from the minimal spin with chirality λ,
one obtains the state built from the maximal spin compo-
nent with chirality−λ and parity transformed, yj → −yj,
fermionic wavefunction ΨF . Indeed, the parity operation
(3) interchanges spins and transforms zj → z̄j resulting

in λ→ −λ correspondence. Since the parity operator P̂
commutes with the full Hamiltonian H0+Hint, these two
states are degenerate.
Let us now discuss the average kinetic energy of the

state with the wavefunction (19), (20). Evaluating the
expectation value of the single-particle operator incorpo-
rating kinetic and spin-orbit parts (1), one finds

Ekin = 2N
∫ N
∏

j=1

drjdr
′
j Ψ̄↓...↓(r1, . . . , rN )

N
∑

j=1

K̂(rj − r
′
j)

×Ψ↓...↓(r
′
1, . . . , r

′
N ) , (22)

where the non-local operator of the kinetic energy acting
on the minimal spin component is

K̂(r− r
′) = −δr−r′∇2

r′

2m
− v

2

[

R̄(r′−r)∂−
r′
− ∂+r R(r−r′)

]

,

(23)
here we employed notations ∂±r = ∂x ± i∂y. This form
is obtained by expressing the spin-up states in terms of
the spin-down states with the help of Eq. (6) and us-
ing unitarity of the spin-raising operator. The Fourier
transformation of the kernel (23) results in the lower
branch, γ = −1, of the single particle spectrum Eq. (4)

K̂(k) = k
2/2m − v|k| = εk,−, which is, of course, ex-

pected for the projected wavefunction in the form (19),
(20). It is exactly the reason to build the higher spin
states with the help of the spin-raising operator (20) to
ensure that the kinetic energy belongs to the lower spin-
orbit branch.
The non-analytic behavior of the spectrum (4) at k = 0

translates into the non-local behavior of the kinetic en-
ergy kernel (23) in the coordinate representation. This
non-locality complicates the way the kinetic energy oper-
ator acts on the Chern-Simons phase in Eq. (21). On the
other hand, the low energy part of the Hilbert space is
located close to the Rashba circle |k| = k0, i.e. far away
from the k = 0 singularity. Below we discuss variational
choices for the many-body fermionic wavefunction ΨF ,
which explicitly include only momentum components lo-
calized around |k| = k0 circle. For those components
the non-analyticity at k = 0 and thus non-locality of
the kinetic energy in the coordinate space are not essen-
tial. Therefore the single-particle kinetic energy spec-
trum near its minimum may be approximated by an an-
alytic function of momentum (and thus local differential
operator in the coordinate representation) as, e.g.,

K(k) = −ǫ0 + (|k|2 − k20)2/(8mk20) . (24)

Its action on Chern-Simons phase results into the substi-
tution of the gradient operators by the covariant deriva-
tives with the gauge vector potential (see below).
The important observation at this stage is that there

are no logarithmical divergent contributions to the ki-
netic energy, which were fatal for the earlier fermioniza-
tion attempt (17). Indeed, the kinetic energy kernel (22)
acting on the Chern-Simons phase (21) results, among
others, in the term similar to (18). However, this time the
fermionic wavefunction ΨF does not contain spin indices
and cancels any time ri = rj . As a result, all the loga-
rithmic integrals are cut off at small distances by a scale
built into the fermionic wavefunction ΨF (r1, . . . , rN ). At
large distances they are cut off at a typical interparticle
distance. As we discuss in Section III E, these two length
scales can be made of the same order by an appropriate
choice of the rescaling parameter α in the Chern-Simons
phase (21). This makes the logarithm to be a number of
order one, showing that the localized flux-tube structure
of the Chern-Simons magnetic field (see below) does not
strongly affect the kinetic energy of the fermion state ΨF .
It suggests the mean-field substitution of the flux tubes
by a uniform magnetic field, analogous to those employed
in FQHE literature, e.g.38,40.
Next we discuss inter-particle interactions, excluding

for a while the Chern-Simons term in the wavefunction
(21). Following BRK, we employ Hartree-Fock approxi-
mation to minimize the total energy of interacting par-
ticles having spectrum (24) and find that the chemical
potential scales as µ ∼ n3/2. Finally, we include the
Chern-Simons term within the Hartree-Fock approxima-
tion for interactions. We argue that it does not affect
the parametric dependence µ(n) ∝ n3/2, although does
affect the spectrum of single-particle excitations.

C. Interactions

We focus now on the average energy of the short-
range interactions (8) in the many-body state specified
by Eqs. (21) and (20). Since the minimal spin compo-
nent (21) cancels at coinciding spatial points, it does not
contribute to the interaction energy. On the other hand,
the higher spin components, built according to Eq. (20),
do not vanish at coinciding points and thus lead to a
non-zero interaction energy. At the first glance this ob-
servation makes the interaction energy of the composite
fermion state Eqs. (21) and (20) to be of the same or-
der as that of the bosonic condensate (9) or (11), mak-
ing the entire construction useless. We show below that
this is not the case thanks to the antisymmetric nature
of ΨF (r1, . . . , rN ). The latter leads to the Hartree mi-

nus Fock structure of the two-particle interactions, which
nearly cancels the interaction energy for particles with
nearly collinear momenta (and thus spin) directions. On
the other hand, the bosonic condensate (9) admits only
the Hartree contribution, while (11) leads to Hartree plus
Fock structure, not exhibiting the cancelation.
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To derive the effective two-body interactions in the
composite fermion state it is sufficient to consider two
particles in such state built of two single-particle states,
e.g. ψkj

(r) = eikj ·r/
√
V with j = 1, 2 as

ΨF (r1, r2) =
1√
2

[

ψk1
(r1)ψk2

(r2)− ψk1
(r2)ψk2

(r1)
]

,

Ψ↓↓(r1, r2) =
1

2
eiλ arg(r̃1−r̃2) ΨF (r1, r2),

Ψ↑↓(r1, r2) =

∫

dr′1R(r1 − r
′
1)Ψ↓↓(r

′
1, r2), (25)

Ψ↓↑(r1, r2) =

∫

dr′2R(r2 − r
′
2)Ψ↓↓(r1, r

′
2),

Ψ↑↑(r1, r2) =

∫

dr′1dr
′
2R(r1−r′1)R(r2−r′2)Ψ↓↓(r

′
1, r

′
2).

The average interaction energy according to Eq. (8) is
given by

Eint =
1

2m

∫

dr
[

(g0 + g2)|Ψ(λ)
↑↑ (r, r)|2 (26)

+ (g0 − g2)|Ψ(λ)
↑↓ (r, r)|2 + (g0 − g2)|Ψ(λ)

↓↑ (r, r)|2
]

and therefore one needs to evaluate the wavefunction
for higher spin components at coinciding spatial points.
They are given by:

Ψ↑↑(r, r) =
1

2V
eir(k1+k2) Fk1,k2

, (27)

Ψ↑↓(r, r) = Ψ↓↑(r, r) =
1

2V
eir(k1+k2)Gk1,k2

,

where Fk1,k2
andGk1,k2

are interaction form-factors eval-
uated in the Appendix. In the approximation where
|k1| ≈ |k2| ≈ k0 and arg(k1,2)≪ 2π we found:

Fk1,k2
= ic

(

arg(k1)− arg(k2)
)

, (28)

Gk1,k2
= d
(

arg(k1)− arg(k2)
)

.

Here c = cλ(α) and d = dλ(α) are numerical factors
weakly dependent on CS chirality λ and anisotropy α.
For example, |c+(1)| ≃ 1.22; |c−(1)| ≃ 0.85; c±(0) = 0
and d+(1) = 0; |d−(1)| ≃ 1.41; |d±(0)| ≃ 0.90. A
very important observation is that the interaction en-
ergy tends to zero if arg(k1) → arg(k2). The relative
minus sign in Eqs. (28) is entirely due to the compos-
ite fermion nature of the wavefunction (25). Indeed
the two-particle fermionic wavefunction (25) is zero if
arg(k1) = arg(k2) due to Pauli blocking. This offers
a possibility to construct a trial many-body wavefunc-
tion which takes advantage of the fact that the particles
with nearly collinear spins (and thus momenta!) inter-
act only weakly. As discussed in section II C, the similar
construction for fermions with the Rashba SO coupling
was recently employed by BRK50, who showed that the
optimal trial state is a nematic one.

D. Hartree-Fock theory

The secondary quantized interaction Hamiltonian for
projected spinless fermions takes the form

Ĥint =
1

32m

∑

k′

1
+k′

2
=k1+k2

Mk1,k2

k′

1
,k′

2

c†
k′

2

c†
k′

1

ck1
ck2

, (29)

where the interaction matrix elements

Mk1,k2

k′

1
,k′

2

= (g0+g2)F̄k′

1
,k′

2
Fk1,k2

+2(g0−g2)Ḡk′

1
,k′

2
Gk1,k2

.

(30)
depend on all four (two incoming and two outgoing) mo-
menta and therefore interactions can’t be reduced to the
density-density form. Moreover in the coordinate repre-
sentation such interactions acquire essentially non-local
|r − r

′|−2 form, which is a consequence of the projec-
tion on the lower SO branch51. In principle the projec-
tion, Eqs. (19) and (20), generates also three- and more-
particle interactions. One may check however that in the
dilute limit (15) their effect is negligibly small in com-
parison with the two-particle term kept in Eq. (29).
One can now treat the interaction term in Eq. (29)

in the Hartree-Fock approximation by pairing one cre-

ation and one annihilation fermionic operator 〈c†
k′ck〉 =

δ(k′ − k)nk′ . The Hartree and Fock ways of pairing are
illustrated in Fig. 4a,b, correspondingly. This way one
obtains the mean-field single-particle Hamiltonian

ĤHF =
∑

k

KHF(k) c
†
k
ck , (31)

where the Hartree-Fock kinetic energy is given by

KHF(k) = εk,− +
1

16m

∑

k′

[

Mk,k′

k,k′ −Mk
′,k

k,k′

]

nk′ , (32)

and the self-consistency condition is imposed by requiring
nk′ = f((K(k′) − µF )/T ) is the equilibrium occupation
number of the state k

′ determined by its total energy
K(k′) and the chemical potential µF . The latter is to be
found from particle conservation

∑

k′ nk′ = n.
In the limit of small density (15) we anticipate the

nematic state, discussed qualitatively in section II C.
Choosing its center to be along the positive x-direction,
one may approximate arg(k) ≈ ky/k0 ≪ 2π. We can now
employ the form-factors (28) as well as the lower branch
dispersion εk,− in the form of Eq. (24), to find for the
Hartree-Fock energy

KHF(k) ≈ E0 +
(kx − k0)2

2m
+

k2y
2my

, (33)

where

my = m
4k20
gn
≫ m (34)

and E0 = g
∑

k′(k′y)
2nk′/(4mk20) with the effective inter-

action constant g = (g0 + g2)|c|2 + 2(g0 − g2)|d|2. We
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FIG. 4. (Color online) (a) Two-body composite fermion inter-

action with the matrix element Mk1,k2

k′

1
,k′

2

, Eq. (30). (b) Hartree

and (c) Fock ways of pairing the operators in the interaction
Hamiltonian (29).

note here that my is essentially insensitive to the distri-
bution nk, as long as it covers a small fraction of the
Rashba circle in the momentum space. It is clear that
the Fermi surface, corresponding to the dispersion rela-
tion (33) is an ellipse elongated along the y direction and
centered around (k0, 0), Fig. 2. One can now find the
chemical potential of interacting fermions at T = 0 by
solving

∑

K(k)<µF
= n. This way we find for the chemi-

cal potential of the interacting composite fermions

µF =
5π

4

√
g
n3/2

mk0
(35)

and E0 = µF /5, in agreement with the estimate in the
end of Section III C.

E. Chern-Simons gauge field

So far we have been discussing the interaction en-
ergy of the composite fermions. The latter are related
to bosons through the Chern-Simons phase according
to Eq. (21). We need to discuss now the role of this
phase. At the Hartree-Fock level the system is effec-
tively described by non-interacting quasiparticles with
the anisotropic dispersion relation Eq. (33). In the coor-
dinate representation the momentum operators are given
by kx,y → i∂x,y. To bring it into a more familiar form
one may shift the momentum origin to (k0, 0) by the
gauge factor eik0x and rescale the variables as x̃ = αx and
ỹ = y/α, where α = (m/my)

1/4. In the rescaled coordi-
nates the Hartree-Fock Hamiltonian is isotropic with the
cyclotron massmc =

√
mmy. Upon acting on the Chern-

Simons phase the rescaled momentum operator results in
a vector potential A(r̃), which is included by replacing52

components of i∇r̃ by the corresponding components of

i∇r̃ −A(r̃),

HHF =

N
∑

j=1

1

2mc

[

(i∂x̃j
−Ax(r̃j))

2 + (i∂ỹj
−Ay(r̃j))

2
]

,

(36)
where the vector potential is given by

Aα(r̃j) =
∑

i6=j

ǫαβ
(r̃j − r̃i)β
|r̃j − r̃i|2

, (37)

while the corresponding Chern-Simons magnetic field di-
rected perpendicular to the 2D plane is given by

B(r̃j) = curlA(r̃j) = 2π
∑

i6=j

δ(r̃j − r̃i) = 2π
∑

i6=j

δ(rj −ri) .

(38)
To obtain the isotropic form of the Hamiltonian acting
in the fermionic space, it is important that the Chern-
Simons phase was defined with the rescaled coordinates
r̃, Eq. (21). We can now specify the value of the rescal-
ing parameter α = (m/my)

1/4 ∝ (n/n0)
1/4 . 1. Notice

that since my is itself weakly dependent on α (through
interaction form-factors c an d) the above definition of
α is actually a self-consistent equation. Moreover, in-
clusion of the magnetic field affects the wavefunctions of
the quasiparticles, e.g. a homogeneous field results in the
Landau quantization. That, in turn, modifies the matrix

elements of interactions Mk1,k2

k′

1
,k′

2

defining my. However,

because of the form of interaction Fk1,k2
and Gk1,k2

the
effective mass appears to depend only weakly on the spe-
cific form of the wave functions, as long as those com-
posed of plane waves with wave vectors in the vicinity of
the point (k0, 0). This appears to be the case even for a
quantizing magnetic field corresponding to a fully occu-
pied single Landau level. Therefore we use Eq. (34) for
my in the following and apply the effective description
Eq. (36) even for a quantizing magnetic field.
The importance of bringing the effective fermionic

Hamiltonian to the isotropic form (36) is to argue that
the kinetic energy does not contain large logarithms. As
explained below Eq. (18), the kinetic energy in presence
of the singular magnetic field (38) contain logarithmic
integrals. At small distance they are cut by the scale of
the correlation hole in the fermionic wavefunction ΨF ,
while at large distance they are cut by the average dis-
tance between the particles. In the isotropic fermionic
state described by the Hamiltonian (36) both of these
two length scales are given by k−1

F ∼ n−1/2. As a result,
the logarithms contain a number rather than a density-
dependent parameter. Notice that without rescaling of
CS phase such logarithms would contain log(1/α), mak-
ing the kinetic energy of the order n3/2 log(n0/n). Rescal-
ing avoids this large extra factor in the kinetic energy.
Keeping the kinetic energy to be ∝ n3/2 by the

fermionic nature of the state along with the careful
rescaling of CS phase, suggests to employ the mean-field
treatment38,40 of CS magnetic field. It substitutes the
collection of flux lines (38) by a uniform magnetic field
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with the same total flux. The latter is given by 2D den-
sity of particles (it is important that the rescaling of CS
phase is area-preserving and thus not affecting the total
flux),

B(r̃j)→ B = 2πn . (39)

The corresponding mean-field vector potential may be
chosen as Ax(r̃j) = −πnỹj and Ay(r̃j) = πnx̃j . In
this approximation the Hamiltonian (36) represents a
one-body problem of a particle with the cyclotron mass
mc =

√
mmy ∝ m

√

n0/n in a constant magnetic field
(39). The corresponding Landau spectrum is εl =
ωc(l + 1/2), where l = 0, 1, . . . and the cyclotron fre-
quency ωc = 2πn/mc. Since by construction we intro-
duced exactly one flux quantum per particle, the corre-
sponding filling factor is ν = 1. The N -body ground-
state wavefunction ΨF (r̃1, . . . , r̃N ) is thus given by the
Slater determinant built from the single-particle wave-
functions of the fully occupied lowest Landau level (LLL)
(the center of mass shift in the direction of the ne-
matic order produces an additional multiplicative factor
exp{ik0

∑

j xj}). In terms of rescaled complex coordi-

nates z̃j = x̃j + iỹj = αxj + iyj/α the corresponding
fermionic wavefunction takes the form43:

ΨF = CN

N
∏

i<j

(¯̃zi − ¯̃zj) e
−πn

N∑

j

|z̃j |
2/2

e
ik0

N∑

j

xj

, (40)

where CN is normalization factor. The Chern-Simons
phase may be also written in terms of the rescaled com-
plex coordinates as

∏

(z̃i − z̃j)/|z̃i − z̃j|. As a result
the minimal-spin component of the bosonic wavefunction
(21) takes the simple form

Ψ↓...↓ = 2−N/2CN

N
∏

i<j

|z̃i − z̃j | e
−πn

N∑

j

|z̃j|
2/2

e
ik0

N∑

j

xj

.

(41)
The higher spin components are obtained by acting with
the spin raising operators on the minimal spin compo-
nent, Eq. (20). Notice that the spin-raising operator (7)
is to be written in non-rescaled original coordinates rj to
ensure that the wavefunction is projected on the lower
SO branch. The wavefunction (41) is independent of
the CS chirality λ. It depends on the single density-
and interaction-dependent parameter α = (m/my)

1/4 ∝
(n/n0)

1/4, which specifies the anisotropy. This wavefunc-
tion describes an ellipsoidal droplet of the gas elongated
along the x direction with the ratio of x and y axes given
by α2. The average density in this droplet is n, while its
size depends on the number of particles N . The state
(41) clearly breaks rotation symmetry. It also breaks
time-reversal symmetry as well as parity. Indeed, the
parity operation transforms it into the state descendant
from the maximal spin component, which is clearly a dif-
ferent, degenerate state. The average energy per particle
for the Hamiltonian (36) in such variationalN -body state

is given by

µF = E0 + ε0 =
3π

4

√
g
n3/2

mk0
. (42)

It indeed confirms the expectation that the composite
fermion function of Eqs. (20) and (21) yields the energy
lower than TRSB and SDW bosonic states.

IV. DISCUSSION OF THE RESULTS

A. Phase Diagram

As we have seen, the composite fermion energy per
particle is µF ∼ µB

√

n/n0, where µB, Eq. (13), is the
chemical potential of bosonic TRSB and SDW states.
Therefore at small density n . n0 = gk20 the compos-
ite fermion (CF) groundstate is energetically favorable
over bosonic states. On the other hand, at larger density
n & n0 the bosonic states, discussed earlier18,23–33, have
lower energy. We expect thus to observe quantum phase
transitions as functions of the chemical potential µ as well
as anisotropy of the interactions g2. The corresponding
phase diagram is schematically depicted in Fig. 5.
To find out about the nature of the transitions we recall

that all three phases break rotational symmetry. In ad-
dition TRSB breaks time-reversal, while CF breaks both
time-reversal and parity symmetries. We expect thus the
first order transition between CF and SDW, where the
two discrete symmetries T̂ and P̂ , Eqs. (2), (3), are bro-
ken simultaneously. Also the transition between SDW
and TRSB, taking place close to g2 = 0, is to be of the
first order. Indeed, to avoid density wave modulation in
SDW phase the populations of two opposite states on the
Rashba circle must be exactly equal. Therefore the tran-
sition into TRSB phase with only single populated state
must be of the first order.
Transition from TRSB into CF phase breaks the par-

ity symmetry and could be of the first or second order.
One can investigate stability of the bosonic TRSB state
against introduction of the small CF component. To this
end one can write a variational wavefunction, which con-
tains superposition of TRSB condensate, Eq. (9), with
Nb particles and nematic CF fraction with Nf ≪ Nb

particles and Nb +Nf = N ,

Ψ(r1, . . . , rN) ∝
∑

P

Ψ
(0)
B (r1, . . . , rNb

)ΨCF(rNb+1, . . . , rN),

(43)
where P stays for a permutation of arguments between
Nb and Nf sets and we have suppressed spin indices for
brevity. It is important to realize that the bosonic con-
densate and a small nematic CF fraction prefer to be on
the opposite sides of the Rashba circle, Fig. 5. Indeed this
way the spin parts of respective wavefunctions are (al-
most) orthogonal, minimizing the exchange energy. The
residual exchange interactions, due incomplete orthogo-
nality, lead to CF effective mass my in the direction tan-
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FIG. 5. (Color online) Phase diagram of Rashba SO bosons.
The full lines are first order transitions. Insets: schematic
representation of occupation factors in momentum space (red
dots are coherent bosonic condensates, blue ellipse is CF
Fermi sea).

gential to the Rashba circle. The energy per unit volume
for the state (43) is given by

E =
3πn2

f

4mc
+

(n− nf)
2

2m
g0 +

(n− nf )nf

m
[g0 + g2] , (44)

where nf = Nf/N and the fermionic cyclotron mass

mc =
√
mmy = mk0/

√

(g0 − g2)n/2 originates from
the exchange interactions of the CF fraction with the
bosonic condensate (in the limit nf ≪ n the interactions
between composite fermions are less important). This
mean-field expression shows that for g2 > 0 TRSB state,
i.e. nf = 0, is always the energy minimum and thus it is
stable against small CF fraction. An additional energy
minimum develops at nf = n for n < 2n0/3π. Although
one should not take Eq. (44) as quantitatively accurate
beyond nf ≪ n limit, it is true that at small enough
density the CF phase costs less energy than the bosonic
condensates. Together with the local stability of the con-
densate it suggests the first order transition into the CF
phase.
For the first order transition the equation of state im-

plies the range of density where the Bose condensate
(TRSW or SDW) fraction separates from CF fraction.
This is illustrated on Fig. 6a. In the region nF < n < nB,
determined by the common tangential to EF (n) and
EB(n), it is energetically favorable to spatially separate
the Bose condensate with the fixed density nB from the
CF liquid with fixed density nF . Changing the total den-
sity within this window results in the change between the
relative fraction of the two, not changing their individual
densities. In terms of the chemical potential vs. den-
sity it means a constant critical chemical potential µc,
found from the Maxwell construction, within the window
nF < n < nB, Fig. 6b. Alternatively, it means a range of

0
n

2/3
n

n

Fn cn Bn

c

0

VE /
2/5

n
2

n

n

cp

b) 

a) 

FIG. 6. (Color online) (a) Specific energy vs. density for
CF and Bose condensate phases. The two graphs intersects
at the critical density nc. In the range nF < n < nB there
is the phase separation. (b) Chemical potential vs. density.
Maxwell construction is shown. Compare it to 1D case, Fig. 3.

a constant critical quantum pressure pc, Fig. 6a, on the
pressure vs. volume T = 0 isotherm. To minimize the
interfacial energy TRSB and CF fractions prefer to have
opposite momenta and spin. This allows avoiding paying
the exchange interaction energy thanks to orthogonality
of the spinors. One expects thus to find antiferromag-
netically ordered mixture of the TRSB Bose condensate
and CF fractions.

B. Composite fermion state in a trap

Consider an axially symmetric trap created by a har-
monic potential V (r) = mω2

0r
2. In the Thomas-Fermi

approximation the local density n(r) is found from the
condition V (r) + µ(n(r)) − µ = 0, where µ(n) repre-
sents microscopic equation of state and µ is the macro-
scopic chemical potential, found from the condition

2π
∫ R

0
rdrn(r) = N , where V (R) = µ. For CF equation
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of state µ(n) ∝ √gn3/2/mk0, this program yields:

µ ∝ ω0N
3/5

(

gω0

k20/m

)1/5

, R =

√

µ

mω2
0

∝ N3/10.

(45)
Here R represents the spatial extent of the N -particle
groundstate, while µ is the typical kinetic energy per par-
ticle measured upon trap release. These results should
be compared with those for the bosonic condensate with
the equation of state µ(n) ∝ gn. The latter yields53

µ ∝ ω0(gN)1/2 and R ∝ N1/4. The CF scaling of the
chemical potential in the harmonic trap µF ∝ N3/5 is
valid as long as it less than the corresponding bosonic
result µB ∝ N1/2. Equating the two of them, one finds
the condition for the number of particles within the trap
below which the CF groundstate prevails

N < N0 = g3
(

k20/m

ω0

)2

. (46)

This is exactly the condition of having the density in the
middle of the trap less than the critical one n(0) < nc.
The density profile acquires the shape n(r) ∝ (R2 −
r2)2/3. As opposed to the Bose condensate profile33

n(r) ∝ (R2 − r2), it exhibits infinite slop at the outer
edge r ≈ R.
In experiments of Refs. [1] and [4] synthetic gauge field

and SO coupling had been engineered with the help of
λ = 804.1nm Raman lasers, leading to the typical SO
momentum k0 = 2π/λ and energy scale k20/m ≃ 7kHz.
Taking a trap frequency ω0 ≃ 30Hz as in e.g. Ref. [55],
one obtains k20/mω0 ≃ 0.23 × 103 and N0 ∼ g3 × 105.
The effective coupling constant g in 2D gas of Rb with
as = 55Å was estimated to be56 g ≃ 0.2, leading to
N0 ≃ 103, which is achievable with modern detection
techniques. Interestingly enough, studying much smaller
particle number experimentally became feasible with the
development of single-atom detection technology57,58.

Since the CF phase has filling factor one, we expect it
to be gaped in the bulk of the trap. At the surface it
supports a chiral edge mode, which is similar to ν = 1
quantum Hall edge. In this sense CF state of Rashba SO
bosons is an interacting topological insulator.

At a larger particle number N > N0 the middle of the
trap has the density exceeding the critical one and thus
it reverts to one of the Bose states (TRSB or SDW). The
density decays towards the edges of the trap, reaching nB

at some radius. Here the phase separation, Fig. 6, takes
place and the density discontinuously drops down to nF .
The outer periphery of the trap contains “vaporized” low-
density CF phase, while its inner core is filled with the
“liquid” high-density Bose condensate phase. The overall
scaling of the chemical potential with the particle number
approaches the Bose one, µ ∼ N1/2.

C. Rotating systems

The time-reversal and parity broken CF state is chi-
ral. It is not immediately obvious from the minimal
spin component wavefunction (41), since it depends on
the absolute values |z̃i − z̃j | only. However, the spin-
raising kernel (7) is certainly chiral and so are all the
higher spin components of the many-body bosonic wave-
function (20). The degenerate state descending from the
maximal spin component (which has exactly the same
form as Eq. (41)) has the opposite chirality. The CF
groundstate spontaneously breaks the Z2 symmetry be-
tween them. Rotation of the system serves as an ex-
plicit symmetry breaking perturbation, enforcing one of
the sates vs. another. Indeed, rotation with the angu-
lar frequency Ω may be viewed as an external magnetic
field54 Brot = 2mcΩẑ, which adds up to CS magnetic
field B = ±2πnẑ. As a result the total flux is bigger or
smaller than one flux quantum per particle, depending
on whether CS magnetic filed is parallel or antiparallel
with the rotation direction. This either creates mcΩ/π
holes per unit area in LLL, or promotes the same num-
ber of particles to the next Landau level. At least from
the standpoint of the kinetic energy the former alterna-
tive requires twice less energy than the latter. One ex-
pects thus that the symmetry is broken in a way to add
constructively CS and rotational fields to create holes in
LLL. Due to presence of these holes, one expects gapless
bulk excitations in the rotating system. (Alternatively in
analogy with FQHE, excitations may have gaps substan-
tially reduced compared to the Ω = 0 case.)

D. Fractional Hall states?

We have employed Chern-Simons phase with one flux
quantum per particle to convert composite fermions into
bosons, i.e. λ = ±1 in Eq. (21). One could also attach
three flux quanta by choosing λ = ±3. This choice leads
to the effective magnetic field B = 6πn and thus to ν =
1/3 filling factor. The CF variational groundstate is then
given by the Laughlin59 state, i.e. (¯̃zi − ¯̃zj)→ (¯̃zi − ¯̃zj)

3

in Eq. (40). Upon multiplication on CS phase with λ = 3
it leads to the following expression for the minimal spin
component

Ψ↓...↓ ∝
N
∏

i<j

|z̃i − z̃j |3 e
−3πn

N∑

j

|z̃j|
2/2

e
ik0

N∑

j

xj

, (47)

notice the factor of 3πn in the exponent which ensures
the correct total density n. The kinetic energy of such
state is factor of three higher than that ascending from
Eq. (41). On the other hand, the correlation holes are
wider, which may lead to a gain in the interaction energy
(especially since the interactions due to higher spin com-
ponents are essentially non-local). While at the moment
we are not aware of a model where the fractional state is



13

advantageous, it is worth pointing out that such a model
is in principle possible.
Notice that symmetric minimal spin component may

be written with an arbitrary integer exponent p as ∝
∏N

i<j |z̃i − z̃j |pe
−pπn

N∑

j

|z̃j|
2/2

e
ik0

N∑

j

xj

. However only odd

p’s may be traced to CF construction. This seems to
indicate that states with even p’s yield larger average
energy. This is indeed the case for p = 0, which is nothing
but TRSB condensate with µB ∝ n. It is not clear at
the moment how to demonstrate this statement for p =
2, 4, . . ..

E. Conclusions

We have shown that the low-density phase of Rashba
SO bosons may be described as the composite fermion
state in the quantizing magnetic filed. Such a state is very
different from both TRSB Bose condensate and SDW
state discussed before. In particular its equation of state
µ(n) ∝ n3/2 leads to a different scaling of the kinetic
energy and atomic cloud size with the number of parti-
cles in shallow traps. It also implies different profile of
the cloud density. The excitation spectrum is predicted
to be gaped in the bulk of trap with the gapless chiral
surface mode at its edge. For deeper traps we predict
the phase separation between denser condensate phase
in the middle of the trap and dilute CF phase at its edge
with the first order density jump at the interface between
them.
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Appendix A

Here we give details of calculations for the compo-
nents of the two-particle wavefunction, Ψ↑↑(r, r) and
Ψ↑↓(r, r) = Ψ↓↑(r, r) in Eq. (26) and derive Eqs. (27),
(28) of the main text.

1. Calculation of Ψ↑↑(r, r) and the interaction

form-factor Fk1,k2

From Eq. (25) we have

Ψ↑↑(r, r) = (A1)

1

2

∫

dr′1dr
′
2R(r− r

′
1)R(r− r

′
2)e

iλ arg(r̃′
1
−r̃

′

2
)ΨF (r

′
1, r

′
2),

where the fermionic part of the wave function is given by

ΨF (r1, r2) =
1√
2V

(

eik1r1+ik2r2 − eik2r1+ik2r2

)

(A2)

and anisotropic vectors r̃
′
1 and r̃

′
2 in the Chern-Simons

factor eiλ arg(r̃′
1
−r̃

′

2
) are defined as r̃

′
j = (αx′j , y

′
j/α), j =

1, 2, where α is the anisotropy parameter.
To represent the integrand in Eq. (A1) in a convenient

form, we convert it to the momentum space. Fourier
transformation yields

eiλ arg r̃ = −2πi
∫

dk

(2π)2
eiλ arg k̃

k̃2
eikr, (A3)

with k̃ = (kx/α, αky). Fourier image of R(r) is R(k) =
ie−i arg k. Substituting now Eqs. (A2) and (A3) into (A1),
we obtain

Ψ↑↑(r, r) = −
iei(k1+k2)r

4V
√
2π

∫

dk
eiλ arg k̃

k̃2
(A4)

×
(

e−i arg(k1+k)−i arg(k2−k) − e−i arg(k2+k)−i arg(k1−k)
)

In order to evaluate Fk1k2
from (A4), it is convenient to

introduce the following notations

eiλ arg k̃ =
kx/α+ iλαky

|k̃|
=

(

z̃

|z̃|

)λ

,

e−i arg(k1+k) =
w̄1 + z̄

|w1 + z| , w1 = k1,x + ik1,y,

e−i arg(k2−k) =
w̄2 − z̄
|w2 − z|

, w2 = k2,x + ik2,y,

z = kx + iky. (A5)

The complex variable z̃ = kx/α + iαky can be conve-
niently recast as z̃ = z

2 (α + 1/α) + z̄
2 (1/α − α). Em-

ploying integration variables z and z̄ and using complex
representation of vectors k1 and k2, one obtains

Fk1k2
=

i√
2

∫

dzdz̄

4π

1

|z̃|2

(

z̃

|z̃|

)λ√
w̄1w̄2

w1w2

×





z̄2

w̄1w̄2

− 1 + z̄(w̄1−w̄2)
w̄1w̄2

√

| z̄2

w̄1w̄2

− 1 + z̄(w̄1−w̄2)
w̄1w̄2

|2
− (w1 ←→ w2)



 .(A6)

In Eq. (A6) the short hand notation (w1 ←→ w2) stands
for the same first expression in square brackets but with
interchanged variables w1 and w2.
Upon introducing new dimensionless variables

ν =
z√
w1w2

, τ =
w1 − w2√
w1w2

, (A7)

Eq. (A6) yields

Fk1k2
= − i√

2

√

w̄1w̄2

|w1w2|

∫

dνdν̄

4π
(A8)

×
(

ν̃

|ν̃|

)λ
1

|ν̃|2

(

ν̄2 − 1 + ν̄τ̄
√

|ν̄2 − 1 + ν̄ τ̄ |2
− (τ → −τ)

)

,
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FIG. 7. (Color online) Interaction coefficients |cλ(α)| and
|dλ(α)|. Full lines correspond to λ = −1 and dotted lines –
to λ = +1 chirality.

where ν̃ = ν
2 (α+1/α)+ ν̄

2 (1/α−α) and parameter τ can
be rewritten in terms of original momenta k1 and k2 as
follows

τ =

√

k1
k2
ei(arg(k1)−arg(k2))/2 −

√

k2
k1
e−i(arg(k1)−arg(k2))/2.

(A9)

The integral on the right hand side of (A8) is convergent,
therefore one can expand the integrand in τ̄ and then
perform the integration. Keeping only linear in τ̄ terms
in this expansion one finds

Fk1,k2
= ic

√

w̄1w̄2

|w1w2|
τ̄ ≃ ic

(

e−i arg(k1) − e−i arg(k2)
)

,

(A10)
where

cλ(α) =

∫

dνdν̄√
24π

(

ν̃

|ν̃|

)λ
1

|ν̃|2
(|ν|2 − 1)(ν̄2 − 1)(ν + ν̄)

|ν̄2 − 1|3 ,

(A11)
The functions |c±(α)| are plotted in Fig. 7.

2. Calculation of Ψ↑↓(r, r) and the interaction

form-factor Gk1k2

From Eq. (25) one finds

Ψ↑↓(r, r) =
1

2

∫

dr′1R(r − r
′
1)e

iλ arg(r̃′
1
−r̃)ΨF (r

′
1, r),

(A12)

where ΨF (r
′
1, r) is defined in Eq. (A2), while spin-rising

operator R is given by Eq. (7). After substituting these
expressions into (A12) we obtain

Ψ↑↓(r, r) =
ei(k1+k2)r

2V
Gk1k2

, (A13)

Gk1k2
= − 1√

2π

∫

dr′
eiλ arg(r̃−r̃

′)−i arg(r−r
′)

|r− r′|2

×
(

e−ik2(r−r
′)−e−ik1(r−r

′)
)

which shows that Gk1k2
is a difference of two functions

Gk1k2
= Ĩk1

− Ĩk2
. Introducing (r− r

′)x + i(r− r
′)y =

reiφ, and β = log(α), we will have for λ = +1 chirality

ei arg(r̃−r̃
′) =

cosh[β]eiφ + sinh[β]e−iφ

| cosh[β]eiφ + sinh[β]e−iφ| (A14)

=
cosh[β]eiφ + sinh[β]e−iφ

√

cosh[2β](1 + tanh[2β] cos[2φ])
.

Importantly, the form-factor corresponding to the λ =
−1 chirality can be obtained by interchanging cosh[β]
with sinh[β] in the numerator of Eq. (A14). Then we
obtain

Ĩk =
1

π
√

2 cosh[2β]
(A15)

×
∫

dr

r
dφ

(cosh[β] + sinh[β]e−2iφ)e−ikr cos[φ−arg(k)]

√

1 + tanh[2β] cos[2φ]
.

We note that the integral Ĩk has a logarithmical divergent
contribution coming from r→ 0, but it cancels out in the
difference Ĩk1

− Ĩk2
and therefore in Gk1k2

. In order to
find the coefficient dλ(α) in Eq. (28) we need to evaluate
integral (A15) in linear over arg(k)≪ 2π approximation.
Upon expanding integrand over arg(k) and integrating
over r we arrive to the following expression

dλ(α) =
isλ

π
√

2 cosh[2β]

∫ 2π

0

dφ
1− cos[2φ]

√

1 + tanh[2β] cos[2φ]
,

(A16)

where s+ = sinh[β] and s− = cosh[β]. The function
|d±(α)| is plotted vs lnα for both chiralities λ = ±1 in
Fig. 7.
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