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We study the collective excitations of polarized single-component quasi-two-dimensional dipolar fermions
in an isotropic harmonic trap by solving the collisional Boltzmann-Vlasov (CBV) equation via the method of
moments. We study the response to monopole and quadrupole perturbations of the trap potential and investigate
the dynamical character of excitations in each case. Simple analytic formulas are found using the linearized
scaling ansatz approximation and accurate numerical results are obtained by satisfying the first eight moments
of the CBV equation. Except for the lowest lying monopole mode that is weakly affected by collisions, the
quadrupole and the higher order monopole modes undergo a transition from the collisionless regime to a dissi-
pative crossover regime and finally approach the hydrodynamic regime upon increasing the dipolar interaction
strength. For strong transverse confinement (2D limit), we predict the existence of a temperature window within
which the characteristics of the collective modes become temperature independent. This plateau, which is a
direct consequence of dipole-dipole scatterings, persists as long as the scattering energies remain in the near-
threshold regime. The predictions of this work are expected to be observable in the current experiments.

I. INTRODUCTION

Dipolar quantum gases have been the subject of much inter-
est and significant experimental and theoretical investigations
in the recent years. The long-range anisotropic dipole-dipole
interactions gives rise to novel phenomena and applications in
these systems (see Ref. [1] and the references therein). Dipo-
lar Bose-Einstein condensates (BECs) with magnetic dipole-
dipole interactions have been exhaustively studied both theo-
retically and experimentally [2]. The most recent experimen-
tal achievements along this line are the realization of BEC of
rare earth atoms such as 164Dy [3] and 168Er [4] with large
magnetic dipole moments of 10µB and 7µB respectively.
The many-body effects of dipolar interactions are much easier
to observe in dipolar BECs compared to dipolar Fermi gases.
Pauli exclusion sets a large energy scale set for fermions and
stronger dipolar interactions are required for the interaction
effects to become appreciable.

Since electric dipole-dipole interactions are typically
stronger than magnetic ones, much of the recent experimen-
tal efforts have been focused on the realization of ultracold
heternucleus bi-alkali molecules which have large permanent
electric dipole moments. An important experimental achieve-
ment in this direction was the realization of a nearly quan-
tum degenerate gas of fermionic KRb molecules at JILA [5].
Unfortunately, complexities arising from ultracold chemistry
results in significant molecule loss and have also hampered
further evaporative cooling to quantum degeneracy. The ex-
periments with other bi-alkali fermionic polar molecules such
as LiCs [6, 7] are also making significant progress.

More recently, the group at Stanford have realized a quan-
tum degenerate gas of fermionic 161Dy through sympathetic
cooling with the bosonic species 162Dy [8]. Having a large
permanent magnetic dipole moment of 10µB and being free
of the complication of ultracold chemistry, these species have
brought a new hope toward the experimental observation of
many-body dipolar physics.

An important experimental probe for the many-body

physics of ultracold gases is the measurement of collective
oscillations of trapped gases in response to perturbations of
the trap potential. These oscillations constitute the low-lying
collective excitations of these systems. The measurement of
the frequency and damping of these oscillations can be uti-
lized to understand the properties of the ground state and to
extract important information such as the character of self-
energy corrections, the equilibrium equation of state, and the
kinetic coefficients. Moreover, the possibility of carrying
out extremely precise measurements of these quantities al-
lows us to put our theoretical understanding of the system
to the test. For instance, by measuring the frequency of the
radial breathing mode for a two-component Fermi gas near
the BEC-BCS crossover with a 10−3 accuracy level, the Inns-
bruck group could clearly verify the Quantum Monte-Carlo
result for the unitary gas and invalidate the predictions of the
BCS theory [9]. Another remarkable example is the recent
measurement of the universal quantum viscosity of the uni-
tary gas [10] that confirmed the theoretical T 3/2 scaling and
also provided evidence for a conjecture on the lower bound for
the viscosity/entropy ratio obtained using string theory meth-
ods [11]. At the moment, the collective oscillations of trapped
BECs [12] and two-component atomic gases with s-wave in-
teractions in three dimensions [13] are both understood fairly
well. Recently, the experimental and theoretical studies of
the 2D Fermi gas interacting via s-wave Feshbach resonances
have also shown a remarkable progress [14–18].

In this paper, we study the collective modes of quasi-two-
dimensional (quasi-2D) dipolar fermionic gases prepared
in a single hyperfine state and loaded into an isotropic
harmonic trap. Experimentally, this configuration may be
realized using a highly anisotropic optical dipole trap such
that ωz � ωx = ωy , where ωi is the trap frequency along
ith axis. Stronger transverse confinements (larger ωz) can be
achieved using an optical lattice to slice the trapped gas into
thin “pancakes” [5]. In that case, we confine our attention
to a single pancake here. We assume that the dipoles are
aligned perpendicular to the confining plane (see Fig. 2). In
this setting, the effective dipole-dipole interactions have a
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repulsive long-range character and give rise to a normal Fermi
liquid state. This particular configuration is also necessary
in order to suppress inelastic dipolar collisions and also to
reduce the rate of chemical reactions in experiments with
reactive bi-alkali polar molecules.

In highly quantum degenerate Fermi liquids (T � TF ,
where TF is the Fermi temperature), the elastic collisions are
suppressed due to Pauli exclusion and collisional effects may
be ignored as a first approximation in the study of collective
excitations. In this so called collisionless (CL) limit, the
collective modes are undamped and no energy dissipation
occurs. As the temperature is increased, the collision rate
rapidly grows and the collisional effects may no longer be
ignored. In this regime, the dynamics is dissipative and the
collective modes are damped. However, if the collision rate
surpasses than the typical frequency of collective oscillations
(whose scale is set by the trap frequency), the gas will remain
“locally” in a thermal equilibrium and a hydrodynamical
(HD) description emerges [19]. This ideal HD limit is
again dissipationless and the quasi-equilibrium dynamics is
simply described by differential conservation laws of mass,
momentum and energy currents [19, 20]. A realistic system,
however, typically lies in the dissipative “crossover” regime
between these two ideal limits [21]. An important aspect of
understanding a many-body system is to determine where
it lies within the CL-HD spectrum, both qualitatively and
quantitatively.

The theoretical investigation of collective modes of trapped
dipolar fermions has started more than a decade ago. Góral et
al. have studied the stability condition [22] and hydrodynamic
excitations in traps with different degrees of of anisotropy [23]
at zero temperature. Lima et al. have studied the same prob-
lems in more detail [24, 25], while Sogo et al. have studied
the the collisionless limit [26]. More recently, Abad et al.
have compared the predictions of collisionless and hydrody-
namic formulations at zero temperature for vertically aligned
and tilted dipoles [27].

In light of the recent experimental progress with dipolar
fermions and the possibility of carrying out precise measure-
ment of the collective modes, it is worthwhile to carry out a
more detailed and quantitatively reliable theoretical treatment
of this problem. The issue of finite temperature has not been
addressed in any of the above works and once the thermal ef-
fects are taken into account, all of the previously used formu-
lations become unreliable. The applicability of ideal hydrody-
namic formulation at zero temperature is questionable since
collisions are absent. Also, the collisionless approximation
is only relevant to extremely quantum degenerate conditions
which is not within the reach of the experiments yet. Most
importantly, the crossover regime, which is most relevant to
current experiments, has not been studied so far.

Here, we make no prior assumption about where the sys-
tem lies in the CL-HD spectrum. We use the framework
of quantum kinetic equations (in particular, the collisional
Boltzmann-Vlasov limit) which in principle allows us to study
the dynamics in the whole spectrum in a unified way. The CL
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FIG. 1. (Color online) Qualitative comparison between the dynam-
ical regimes of quadrupole oscillations of 2D s-wave and dipolar
fermions in harmonic traps. (a1) and (b1) show the temperature de-
pendence of the collision rates of s-wave and dipolar fermions re-
spectively. (a2) and (b2) show the resulting dynamical regimes as a
function of interaction strength and temperature. The asymptotics of
νs−wave
c is due to [15]. kF is the trap Fermi momentum, a2 is the 2D

scattering length and Tb = ~2/(mkBa22). See Eqs. 13 and 25 for the
definition of the parameters appearing in (b1) and (b2). Please refer
to the main text for details.

and HD limits emergence naturally when the right physical
conditions are met. We evaluate the linear response of the gas
to monopole and quadrupole perturbations of the trap poten-
tial and study the oscillation frequency and damping of the
generated excitations. We restrict our analysis to situations
where collisions lie well within the near-threshold scattering
regime so that Born approximation is applicable [28, 29]. This
condition is satisfied well in the current experiments.

We carry out the calculations in two stages. First, we
neglect the self-energy corrections to quasiparticle disper-
sions (the Boltzmann limit) and utilize the widely used
linearized scaling ansatz approximation [30] to obtain a
simple semi-analytic picture. In the second stage, we include
the self-energy corrections to quasiparticle dispersions and
also extend the scaling ansatz by including higher order
moments (up to the eighth order). We find that both of these
refinements result in significant quantitative corrections.
Furthermore, inclusion of higher moments allows us to
study higher order modes in addition to the nodeless modes
described by the scaling ansatz.

Before delving into the formalism and details, we find it
useful to briefly summarize our main results, some of which
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are novel features of dipolar fermions in 2D. Without self-
energy corrections, the scaling ansatz analysis predicts the
well-known undamped monopole oscillations at a fixed fre-
quency of 2ω0, independent of the interaction strength and
temperature [31, 32]. Here, ω0 ≡ ωx = ωy is the in-
plane trap frequency. Taking self-energy corrections into ac-
count, we find that the oscillation frequency of the nodeless
monopole mode increase from 2ω0 due to the repulsive in-
teractions while it also assumes a small damping (see Fig. 6).
While collisions have a small influence on the dynamics of the
scaling mode, we find that higher order monopole modes are
strongly influenced by collisions: they go through a dissipa-
tive crossover regime as the interaction strength is increased
and finally approach the HD regime (see Fig. 1).

The quadrupole modes, including the lowest lying node-
less mode, exhibit the same CL to HD transition. In particu-
lar, the oscillation frequency of the nodeless quadrupole mode
approaches

√
2ω0 in the collision dominated regime, which is

the universal frequency of the quadrupole “surface” mode [33]
(see Fig. 9). The appearance of surface modes is an indication
for the emergence of hydrodynamics.

We find simple analytic results in the Boltzmann limit us-
ing the linearized scaling ansatz approximation. In particular,
we find that the frequency and damping of the quadrupole os-
cillations are controlled by a single parameter, the quadrupole
collision rate νc (Ref. to Sec. V 2). Small and large values
of νc correspond to collisionless and hydrodynamic behav-
ior respectively. For small T/TF , we obtain νc ∼ T 2 which
is due to Pauli blocking. For large T/TF , the behavior of
νc depends on the degree of quasi-two-dimensinality (quan-
tified by η, see Eq. 13). In the strictly 2D limit, we show
that νc reaches a plateau for T & TF . The existence of this
plateau is a unique feature of 2D dipolar fermions and results
from the balance between rarefaction of the gas at higher tem-
peratures and the growth of the dipolar scattering cross sec-
tion. The high temperature cut-off for this plateau behavior
is Tdip ≡ ~2/(ma2

dkB), where ad ≡ mD2/~2 is the “dipo-
lar length”. Here, m and D denote the mass and the dipole
moment of a single particle. For T & Tdip, the scattering
energies become semi-classical and we find νc ∼ T−3/4.

Fig. 1 shows a qualitative comparison between the behav-
ior of quadrupole oscillations in 2D two-component fermions
interacting via a s-wave Feshbach resonance (simply, s-wave
fermions) and 2D dipolar fermions. The top and bottom pan-
els show the temperature dependence of νc and the resulting
dynamical regimes of quadrupole oscillations as a function of
interaction parameter and temperature. The discussed regimes
of νc for 2D dipolar fermions can be seen in panel (b1). It is
worthy of mention that the temperature window in which νc
is appreciably large is “universal” for 2D s-wave fermions.
For 2D dipolar fermions, however, this window is amenable
to experimental tuning (Ref. to Sec. VIII).

We look into the effect of mean-field correction to quasi-
particle dispersions and show that it has a significant effect
in the quantum degenerate regime. This is again in contrast
to the case of s-wave fermions where self-energy correction
is found to have a small effect on the frequency of collective
modes [34]. Finally, going beyond the scaling ansatz by

FIG. 2. (Color online) A schematic picture of quasi-2D dipolar
fermions in an isotropic in-plane trap. A strong dc field aligns
the dipoles along the vertical axis (z). The quasi-2D limit is
achieved when az ≡ [~/(mωz)]1/2 is much smaller than both
the inter-particle separation n

−1/2
2D and the thermal de Broglie

wavelength λT ≡ h/(2πmkBT )1/2 (equivalently, when ωz �
max{εF , kBT}).

satisfying higher order moments of the CBV equation, we
show that the simple scaling ansatz overestimates the collision
rates in agreement with the findings of Ref. [35]. We also
show that refinements to the predictions for the lowest lying
monopole and quadrupole modes become negligible beyond
forth order moments. Finally, we discuss the observability
of our predictions in the experiments with 40K87Rb and
161Dy and show that although the HD regime is not currently
achievable, a significant collisional damping and the plateau
in the collision rates are both expected to be observable.

This paper is organized as follows: In Sec. II, we describe
the model in detail and define the response functions. A brief
overview of the quantum kinetic equations, the approxima-
tions leading to the CBV equation, and their validity condi-
tions are given in Sec. II C. We discuss the equilibrium state
of the trapped gas in Sec. III. The linear response theory of
the CBV equation is described in Sec. IV and the variational
calculation of the response functions using the method of mo-
ments is discussed. The linearized scaling ansatz analysis in
given in Sec. V, followed by the its extension to higher order
moments and inclusion of self-energy corrections in Sec. VI.
Finally, we discuss the experimental outlook of this work in
Sec. VII and conclude the paper with further discussions in
Sec. VIII. Most of the technical details and tedious calcula-
tions are left to the Appendices.

II. THE FORMALISM

A. The Hamiltonian

The Hamiltonian for trapped dipolar fermions prepared in
a single hyperfine state and placed in a strong polarizing dc
field (electric for polar molecules, magnetic for atoms with
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permanent magnetic dipoles) can be written as:

H3D =

∫
d3rψ†(r)

(
−∇

2

2m
+ U3D

trap(r)

)
ψ(r)

+

∫
d3r d3r′ V3D

dip(r− r′)ψ†(r)ψ†(r′)ψ(r′)ψ(r), (1)

where:

U3D
trap(r) =

1

2
mω2

zz
2 +

1

2
mω2

0(x2 + y2), (2)

is the axially symmetric trap potential and:

V3D
dip(r) =

D2

|r|5
(
|r|2 − 3z2

)
. (3)

Here, D is the dipole moment. We set ~ = 1 throughout this
paper unless it appears explicitly. A schematic picture of the
system is shown in Fig. 2. We have assumed that the dipoles
are fully aligned along the z-axis. Here, ψ(†)(r) is the fermion
annihilation (creation) operator in 3D space. In the limit ωz �
ω0, εF , kBT (where εF and T denote the Fermi energy and the
temperature), the particles occupy only the lowest transverse
subband and we can reduce the above 3D Hamiltonian to an
effective 2D model:

H2D =

∫
d2rψ†0(r)

(
−∇

2

2m
+ U2D

trap(r)

)
ψ0(r)

+

∫
d2r d2r′ V2D

dip(r− r′)ψ†0(r)ψ†0(r′)ψ0(r′)ψ0(r). (4)

Here, r = (x, y) denote the in-plane 2D coordinates and
ψ

(†)
0 (r) denotes the fermion annihilation (creation) in the low-

est subband. We have neglected the constant zero point energy
~ωz/2. U2D

trap(r) = mω2
0(x2 + y2)/2 is the in-plane part of

the original trap potential and V2D
dip(r) is the effective dipole-

dipole interaction in the lowest subband:

V2D
dip(r) =

∫
dz dz′ |φ0(z)|2 |φ0(z′)|2 V3D

dip(r, z − z′), (5)

where φ0(z) = e−z
2/(2a2z)/(

√
π az)

1
2 is the transverse

wavefunction of particles in the lowest subband and az ≡
(mωz)

−1/2 is the transverse oscillator length. The above in-
tegral can be calculated analytically and we find:

V2D
dip(r) =

1√
2π

D2

2a3
z

er
2/(4a2z)

[(
2 +

r2

a2
z

)
K0

(
r2

4a2
z

)
− r2

a2
z

K1

(
r2

4a2
z

)]
, (6)

where {Kn(x)} denote the modified Bessel functions of the
second kind. In the momentum space, we get:

Ṽ2D
dip(q) =

2πD2

az

[√
2

π
− qazeq

2a2z/2Erfc

(
qaz√

2

)]
. (7)

The effective interaction is purely repulsive regardless of
the choice for az , however, its strength decreases as az is

increased. We denote V2D
dip ≡ V , Ṽ2D

dip ≡ Ṽ and U2D
dip ≡ U in

the remainder of this paper for brevity.

It is worthwhile to study the behavior of the effective 2D
interaction in various limits. For qaz � 1, we find:

Ṽ(q) ' 4
√

2πD2

3az
− 2πD2q +O(q2), (8)

whereas for qaz � 1, we get:

Ṽ(q) ' −2D2
√

2π

3az

(
1− 3

q2a2
z

+O(q−4a−4
z )

)
. (9)

Apart from the constant term in Eq. (8), which only con-
tributes to interactions in the s-wave channel and is immaterial
here, we find a linear dependence on q. This linear behavior
eventually reaches a plateau once q ∼ 1/az . We shall see
later that this linear dependence has interesting consequences
on the temperature dependence of low lying collective excita-
tions.

In real space, for small r/az , we find a behavior similar to
the 2D Coulomb gas:

V(r) ≈ D2

√
2πa3

z

{
−2− γ − ln[r2/(8a2

z)] +O(r2 ln r)
}
,

(10)
where γ is the Euler’s constant. For large r/az , the r−3

dipole-dipole interaction is recovered:

V(r) ≈ D2/r3 +O(a2
z/r

5). (11)

It is useful to define a “dipolar length”:

ad ≡
mD2

~2
, (12)

which is a quantum length scale associated to dipolar inter-
actions. We also define the following useful dimensionless
parameters:

λd ≡
mD2

~2

(mω0

~

) 1
2

(2N)
1
4 ≡

(
ad
a0

)
(2N)

1
4 ,

η ≡ (2N)
1
4

(
ω0

ωz

) 1
2

, (13)

where a0 ≡ [~/(mω0)]
1
2 is the in-plane oscillator length and

N is the number of trapped particles. λd is a measure of
dipolar interaction strength and is of the order of the typi-
cal value of interaction energy over the kinetic energy in the
quantum degenerate regime. η is a measure of “quasi-two-
dimensionality” and is of the order of the transverse oscillator
length az divided by the inter-particle separation. The strict
2D limit ωz →∞ corresponds to η = 0.

B. Linear response theory

A typical experiment for measuring the collective excita-
tions of trapped particles is the following: the gas is pre-
pared in a thermal equilibrium state at t < 0−. For t >
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0−, the system is subjected to a perturbation such as a
kick or modulation of the trap potential and a certain ob-
servable is monitored. If the frequency and amplitude of
the perturbing potential is small compared to the macro-
scopic scales, such an experiment can be theoretically in-
vestigated within the linear response theory. Let us denote
the perturbing potential and the observable as δU(r, t) and
O(r) respectively, and their corresponding second quantized
operators are δÛ ≡

∫
d2rψ†0(r) δU(r, t)ψ0(r) and Ô ≡∫

d2rψ†0(r)O(r)ψ0(r). The usual linear response theory
then yields:

〈Ô〉t =

∫ t

0−
dt′
∫

d2r d2r′ χRdd(r, r′; t− t′)O(r) δU(r′, t′),

(14)
where χRdd(r, r′; t−t′) is the retarded density-density response
function:

χRdd(r, r′; t− t′) ≡ −iθ(t− t′)Tr{ρ̂0[ρ̂(r, t), ρ̂(r′, t)]}, (15)

where ρ̂(r, t) = ψ†0(r, t)ψ0(r, t) is the density operator
and ρ̂0 is the initial density matrix. At this stage, one may
choose a proper many-body approximation scheme and
attempt to evaluate the response function using the diagram
technique. However, the lack of translational symmetry due
to the presence of the trap potential makes this approach
complicated. In practice, one will have to make assumptions
about separation of microscopic and macroscopic time and
length scales in order to make the calculations tractable. It
is, however, much more transparent to acknowledge the exis-
tence of such a separation of scales from the outset and reduce
the complicated evolution equations of the non-equilibrium
Green’s functions to quantum kinetic equations. One may
then evaluate the linear response functions directly using
the quantum kinetic equations. We describe this method in
the next section, where we also briefly review the quantum
kinetic equations approach.

We conclude this section by defining the response func-
tions relevant to monopole and quadrupole oscillation experi-
ments. The monopole oscillations can be excited by choosing
δU(r, t) ≡ δUm(r, t) ≡ A(t)mω2

0r
2, where A(t) is the tem-

poral shape of the perturbation (e.g. a δ-function, a finite pulse
or a periodic modulation). We chooseA(t) ≡ A0 ω

−1
0 δ(t) for

concreteness. The linear response to any other pulse shape can
be determined from the impulse response. Note that we have
“defined” the monopole oscillations as the response of the
trapped gas to ∼ r2 perturbation. One may choose any other
isotropic trap perturbation (such as r4, etc). Such choices,
however, excite higher order modes to a greater degree which
may not be desirable. Here, the observable is the variation in
the size of the cloud, r̂2 − 〈r̂2〉0. We define the “monopole
response function” as:

χr2(t) = A−1
0 mω0 θ(t)

(
〈r̂2〉t − 〈r̂2〉0

)
. (16)

Likewise, we define the quadrupole oscillations as the re-
sponse of the trapped gas to δU(r, t) ≡ δUq(r, t) ≡

A(t)mω2
0(x2−y2) and define the “quadrupole response func-

tion” as:

χx2−y2(t) = A−1
0 mω0 θ(t) 〈x̂2 − ŷ2〉t. (17)

Note that 〈x̂2 − ŷ2〉0 = 0 due to the isotropy of the trap.

C. From quantum kinetic equations to the collsional
Boltzmann-Vlasov equation

Quite generally, the dynamics of confined quantum gases
can be formulated and studied using the formalism of
non-equilibrium Green’s functions, i.e. either by solving
Kadanoff-Baym equations within a relevant conserving ap-
proximation [19] or by using the Keldysh-Schwinger diagram
technique. Such formulations in their fullest generality, how-
ever, are only necessary when the spatial and temporal scales
of inhomogeneities (the trap and its perturbation) is compara-
ble to the microscopic scales. In experiments dealing with a
large number of particles N in shallow traps, there is a natu-
ral separation of temporal and spatial scales between the mi-
croscopic (single particle) and macroscopic (collective) dy-
namics. Exploiting this fact, one can reduce the complicated
Kadanoff-Baym equations to the intuitive picture of quantum
kinetic equations using the well-known procedure of gradi-
ent expansion [19, 36]. There exist several decent treatments
of this subject in the literature and we refer the reader to the
excellent pioneering monograph by Kadanoff and Baym [19]
and Ref. [36] for details. For the purpose self-containedness
and in order to clarify the nature of approximations, however,
we provide a brief overview of the basic elements of the ki-
netic theory. Our starting point is the general quantum ki-
netic equation for a system composed of a single species of
fermions (i.e. a gas prepared in a single hyperfine state):

[Re(G−1)+, iG≷]−[iΣ≷,ReG+] = G<Σ>−G>Σ<, (18)

where G+(p, ω; r, t) ≡ (ω − p2/(2m) − U(r, t) − Σ+)−1

and G≷(p, ω; r, t) are the retarded and greater/lesser non-
equilibrium Green’s functions in the mixed Wigner coordi-
nates [36]. Here, U(r, t) is the external potential (i.e. the trap
potential and its perturbation) and is assumed to vary on a
scale much larger than the microscopic scales. Σ+(p, ω; r, t)
and Σ≷(p, ω; r, t) are the retarded and greater/lesser self-
energies. In the mixed Wigner coordinates, (p, ω) and (r, t)
denote to the Fourier transformed fast microscopic coordi-
nates and the slow macroscopic coordinates, respectively.
[A,B] is the generalized Poisson’s bracket:

[A,B] = ∂ωA∂tB − ∂tA∂ωB
−∇pA · ∇rB +∇rA · ∇pB. (19)

It is generally understood that G+ encodes the spectral prop-
erties of the system (single particle states) while G< and G>

contains the information about the statistics of particles and
holes, respectively. Likewise, the real and imaginary parts of
Σ+ describe the renormalization of the single-particle disper-
sion and the spectral broadening respectively, while Σ< and
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Σ> describe the scattering -in and -out rates. In analogy to the
equilibrium case, it is fruitful to introduce the local spectral
function A(p, ω; r, t), Wigner’s function f(p, ω; r, t) and
spectral broadening Γ(p, ω; r, t) (hereafter, we drop the com-
mon arguments of the functions unless it is necessary), such
that G< ≡ iAf , A ≡ i(G> − G<) ≡ −2 Im(G+)
and Γ ≡ i(Σ> − Σ<) ≡ −2 Im(Σ+). The ki-
netic equations can be partially integrated to yield
(G+)−1 = ω − p2/(2m) − Re(Σ+) + iΓ/2. This par-
tial integration, along with one’s choice of a many-body
approximation that gives the self-energies as a functional of
G< and G> and finally the kinetic equation (Eq. 18) consti-
tute a closed set of partial integro-differential equations for
f and A whose solution describes the slow non-equilibrium
dynamics of the system. For the case of self-consistent many-
body approximations, the kinetic equation obeys differential
conservation laws for mass, momentum and energy currents.
The existence and satisfaction of such conservation laws
are necessary for formation and propagation of collective
modes [19].

Although the formalism of quantum kinetic equations is
much simpler than a full non-equilibrium treatment, it is still
extremely difficult to solve such equations in practice without
resorting to further approximations. One useful approxima-
tion relevant for weakly interacting systems is the quasiparti-
cle approximation. The idea is that in the quantum degener-
ate regime, only the particle-hole excitations near the Fermi
surface are responsible for the slow dynamics. The lifetime
of such excitations, Γ−1(pF , εF ), is proportional to T 2

F /T
2

which can be very large. Thus, one may neglect the spectral
broadening of the Green’s functions appearing in the Poisson
brackets as a reasonable approximation, and approximate the
spectral function as A ≈ 2πδ(ω− p2/(2m)−U −Σ+). This
approximation yields an ansatz for the greater/lesser Green’s
functions:

G<qp(p, ω; r, T ) = 2πiZp δ(ω − Ep)n(p; r, t),

G>qp(p, ω; r, T ) = −2πiZp δ(ω − Ep) [1− n(p; r, t)],

(20)

where Ep is the (local) quasiparticle dispersion and is implic-
itly given by ω − p2/(2m) − U(r, t) − Σ+(p, Ep; r, t) = 0,
and Zp = [1−∂ωΣ+(p, ω = Ep; r, t)]−1 is the (local) quasi-
particle residue. n(p; r, t) ≡ f(p, Ep; r, t) is the quasiparti-
cle occupation number. Plugging this ansatz into the kinetic
equation, we obtain the collisional Boltzman-Vlasov (CBV)
equation:(

∂

∂t
+

p

m
· ∇r +∇pΣ+[n] · ∇r −∇rΣ

+[n] · ∇p

−∇rU(r, t) · ∇p

)
n(p; r, t) = Ic[n]. (21)

Ic[n] is called the collision integral operator and is given by:

Ic[n] ≡ −iZp

[
(1− n) Σ< + nΣ>

]
. (22)

The CBV equation can be thought as a generalization of the
usual Boltzmann transport equation of classical gases by (1)

including Pauli exclusion in the collision integral, and (2)
using dressed quasiparticle. A crucial observation made by
Kadanoff and Baym is that the one may use different con-
serving many-body approximations for left hand (known as
convective or dynamical) and the right hand (collisional) sides
of the kinetic equation without breaking the conservation
laws. Intuitively, the dynamical and collisional contributions
describe different physics and as long as each respect the
conservation laws, the conserving property of the kinetic
equation is preserved as a whole.

The main goal of this work is to study the effect of dipolar
interactions to the leading order in the interaction strength on
both collisionless quasiparticle transport and elastic quasipar-
ticle collisions. We use the self-consistent Hartree-Fock (HF)
approximation on the dynamical side and the Born approxi-
mation to describe collisions. The retarded self-energy in the
HF approximation is instantaneous and is given by:

Σ+[n](p; r, t) =

∫
d2r′

d2p′

(2π)2

[
V(r− r′)

− δ2(r− r′)Ṽ(p− p′)
]
n(p′; r′, t), (23)

where V(r) and Ṽ(p) are the two-body interactions in the real
and momentum space. Dealing with long-range interactions,
we have included non-local contributions in the Hatree term.
Such contributions are beyond the first order gradient approxi-
mation but their inclusion may be necessary for long-range in-
teractions. It is exactly the inclusion of such non-local contri-
butions in the Boltzmann-Vlasov equation for electron liquids
that yields plasmon modes and Landau damping. However,
we will shortly show that non-local direct interactions are neg-
ligible in the case of dipole-dipole interactions. Also, note
that since Σ+ has no ω-dependence, the quasiparticle residue
is 1. The collision integral in the Born approximation is given
by [36]:

Ic[n] =

∫
d2p1

(2π)2

d2p′

(2π)2

d2p′1
(2π)2

(2π)2δ2(∆P)(2π)δ(∆E)

× 1

2
|M|2

[
(1− n)(1− n1)n′n′1 − nn1(1− n′)(1− n′1)

]
,

(24)

where M = Ṽ(p − p′) − Ṽ(p − p′1) is the Born
scattering amplitude, ∆P = p + p1 − p′ − p′1
and ∆E = Ep + Ep1

− Ep′ − Ep′1
. Note that

Ep = p2/(2m) + U(r, t) + Σ+[n](p; r, t). We have
also used the shorthand n ≡ n(p; r, t), n1 ≡ n(p1; r, t), etc.
in the above equation.

We conclude this section by discussing the validity of the
approximations adopted so far. Since we have described the
interactions using the lowest order processes, the predictions
are quantitatively reliable only as long as the system is in the
weakly interacting regime, i.e. λd � 1 (see Eq. 13). For
dipolar interactions, this condition is equivalent to diluteness√
ρad � 1, where ρ is the 2D density and ad is the dipolar
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length defined earlier (Eq. 12). Since the Fermi liquid state is
expected to be stable for a wide range of interaction strengths
(up to the crystallization point), we do not expect the higher
order many-body corrections to lead to qualitatively differ-
ent physics. Therefore, although our approximations are only
controlled in the dilute limit, we allow ourselves to extend our
analysis to λd ∼ O(1) as well.

Apart from the many-body physics, the validity of Born ap-
proximation in describing two-body scatterings and the neg-
ligence of multiple scatterings must also be assessed. The
Born approximation is valid when ~v � Va, where v is the
typical velocity of the scattering pairs in the center of mass
frame and a is range of interactions. Identifying a with ad
and v ∼ [mmax(kBT, kBTF )]

1
2 , this condition implies:

max(kBT, kBTF )� kBTdip ≡
~2

ma2
d

, (25)

where we have defined a “dipolar temperature” Tdip. This
is precisely the condition for near-threshold scatterings. The
dipolar scatterings in 2D is studied in detail in Ref. [28] and
it is shown that the Born approximation is quantitatively reli-
able provided that mvad/~ . 0.1. Inclusion of multiple scat-
terings, however, results in significant quantitative corrections
as one approaches the semi-classical regime and the Born ap-
proximation consistently found to over-estimate the cross sec-
tion. In this paper, we confine our analysis to near-threshold
scatterings. Therefore, the quantitative validity of our results
crucially relies on Eq. (25). Here, we assume that the follow-
ing scale separation:

TF � Tdip ⇔ a0

ad
� N

1
4 , (26)

so that we can allow ourselves to investigate both the quan-
tum degenerate regime (T/TF � 1) and the thermal regime
(T/TF � 1) up to T ∼ Tdip. We note that this condition
is satisfied well in the current experiments with both polar
molecules and rare earth atoms (see Sec. VII).

III. THE EQUILIBRIUM STATE

The first step in the linear response analysis using the ki-
netic equations is to determine the equilibrium distribution
about which the perturbation analysis is carried out. We as-
sume that the system has reached a thermal equilibrium state
in the external potential U(r) = mω2

0r
2/2 before the pertur-

bation is introduced. It is easily shown that the CBV equation
has a unique equilibrium solution given by:

n0(p; r) ={
exp

[
β

(
p2

2m
+ Σ0(p; r) +

1

2
mω2

0r
2 − µ

)]
+ 1

}−1

,

(27)

where we have introduced the shorthand Σ0 ≡ Σ+[n0]. The
above equation has to be solved self-consistenty along with

the expression for the self-energy, Eq. (23). It is easily ver-
ified that the above solution satisfies Ic[n0] = 0 and at the
same time, it solves the left hand side of the CBV equation.
The global chemical potential µ has to be found such that the
equilibrium distribution function yields the correct number of
trapped particles: ∫

dΓn0(p; r) = N, (28)

where we have defined the phase-space volume differential as
dΓ ≡ d2r d2p/(2π)2. In the case of harmonic traps, it is
useful to define the following scaled coordinates:

r̄ ≡ r

r0
, r0 ≡ [2N/(mω0)2]1/4,

p̄ ≡ p

p0
, p0 ≡ [2N(mω0)2]1/4. (29)

In the scaled coordinates, the equation for the particle num-
ber is

∫
dΓ̄n0(p̄; r̄) = 1/2, where dΓ̄ ≡ d2r̄ d2p̄/(2π)2 =

dΓ/(2N). The equilibrium distribution function also reads as:

n0(p̄; r̄) ={
exp

[
β̄

(
p̄2 + r̄2

2
+ Σ̄0(r̄; p̄)− µ̄

)]
+ 1

}−1

, (30)

where β̄ = TF /T and:

TF = (2N)
1
2
~ω0

kB
, (31)

is the (in-trap) Fermi temperature, µ̄ = µ/(kBTF ) is the di-
mensionless chemical potential and:

Σ̄+[n](p̄; r̄, t) = ω−1
0

∫
dΓ̄′
[√

2N V[r0(r̄− r̄′)]

−mω0δ
2(r̄− r̄′)Ṽ[p0(p̄− p̄′)]

]
n(p̄′; r̄′, t). (32)

is the dimensionless self-energy functional. Also, Σ̄0 ≡
Σ̄+[n0]. The motivation for using scaled coordinates be-
comes clear upon investigating the equilibrium state of the
non-interacting problem. In this case, the (dimensionless)
equilibrium density ρ̄(0)

0 (r̄) can be found analytically:

ρ̄
(0)
0 (r̄) ≡

∫
d2p̄

(2π)2
n̄0(p̄; r̄) = log

[
1 + eβ̄(µ̄−r̄2/2)

]
/(2πβ̄),

(33)
using which we obtain an equation for the chemical potential
of the non-interacting trapped gas:

µ̄2 +
π2

3
T̄ 2 + 2 T̄ 2 Li2[− exp(−µ̄/T̄ )] = 1, (34)

where T̄ = T/TF . At low temperatures, the above equation
admits the solution µ̄ = 1 − π2T̄ 2/6 + O(β̄−2e−β̄).
The zero-temperature Thomas-Fermi radius of the
cloud is easily obtained from Eq. (33), yielding
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R
(0)
TF = [2

√
2N/(mω0)]1/2 ≡

√
2 r0. Also, the

Fermi momentum at the center of the trap is given by
p

(0)
F = [2

√
2N(mω0)]1/2 ≡

√
2 p0. We note that N does

not appear explicitly in the expressions written in terms of
the scaled coordinates. Moreover, at low temperatures, the
equilibrium distribution function is only appreciably larger
than zero in a region of size O(1) in the scaled phase-space
coordinates.

Once the interactions are taken into account, analytical so-
lutions can no longer be obtained and the equilibrium distribu-
tion function has to found numerically. It is, however, useful
to investigate the effect of non-local Hartree self-energy term
first: the forthcoming calculations will be significantly sim-
plified if the non-local effects can be neglected. Carrying out
the trivial momentum integration in the first term of Eq. (32),
the Hartree self-energy can be expressed as a linear functional
of just the density:

Σ̄+
H [ρ̄](r̄, t) = ω−1

0

∫
d2r̄′
√

2N V(r0r̄
′) ρ̄(r̄− r̄′, t). (35)

Observing that the density is only appreciable in a region of
size O(1) in the scaled coordinates and the appearance of
r0 ∼ N1/4 in the argument of interaction potential, the above
integral is expected to only depend of the values of the density
within a small region of size∼ N−1/4 about r̄. Assuming that
the density variation is smooth, we may expand ρ̄ to quadratic
order about r̄ to get:

Σ̄+
H [ρ̄](r̄, t) ≈ ω−1

0

∫
d2r̄′
√

2N V(r0r̄
′)
[
ρ̄(r̄, t)

− r̄′ · ∇ρ̄(r̄, t) + r̄′αr̄
′
β∂α∂β ρ̄(r̄, t)/2

]
. (36)

The first contribution is the usual local density approximation
(LDA):

Σ̄+
H,LDA[ρ̄](r̄, t) ≡

√
2Nω−1

0 ρ̄(r̄, t)

∫
d2r̄′ V(r0r̄

′)

= m Ṽ(0) ρ̄(r̄, t). (37)

The gradient term vanishes due to the isotropy of V(r). The
quadratic term is dominated by the long-range behavior of
V(r) assuming that the short-range part of V(r) is integrable
(which is the case for dipolar interactions, see Eq. 10). Ob-
serving that the Hessian matrix of the density is also O(1) in
the scaled coordinates, we easily find that the quadratic term
yields a correction that scales like N1/2−α/4 for a potential
with power-law tail V(r) ∼ r−α. For dipolar interactions,
α = 3 and we find that the leading corrections to LDA scale
like N−1/4 and can be neglected for large N . Note that if we
were dealing with an electron gas (α = 1), such corrections
would grow larger with N and the non-local Hartree func-
tional had to be kept untouched. A direct result of this simple
analysis is that the Landau damping, which is driven by non-
local direct interactions, is expected to be absent in a dipolar
fermi gas in the thermodynamic limit. In the remainder of this
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FIG. 3. (Color online) Equilibrium quasiparticle distribution func-
tion of quasi-2D dipolar fermions for different temperatures and
interactions strengths (ωz = 2π × 23 kHz, ω0 = 2π × 36 Hz,
N = 2200 in all cases). (a) T/TF = 0.1, λd = 0, (b) T/TF = 0.1,
λd = 1, (c) T/TF = 0.5, λd = 0, (d) T/TF = 0.5, λd = 1.
Red and blue regions (near to and far from the origin, respectively)
correspond to occupied and empty states.

paper, we treat the Hartree potential in the LDA approxima-
tion and use the following local self-energy functional:

Σ̄+
LDA[n](p̄; r̄, t) = m

∫
d2p̄′

(2π)2

[
Ṽ(0)− Ṽ[p0(p̄− p̄′)]

]
× n(p̄′; r̄′, t)

= λd

∫
d2p̄′

(2π)2
u(|p̄− p̄′|, η)n(p̄′; r̄′, t),

(38)

where we have used Eq. (7) in the second line and have de-
fined:

u(x, η) = 2πxErfcx

(
xη√

2

)
, (39)

where Erfcx(x) ≡ ex
2

Erfc(x). The dimensionless parame-
ters λd and η were defined earlier (Eq. 13) Note that the de-
pendence on N enters the equations only through these two
dimensionless parameters.

We obtain the equilibrium distribution function using a
simple iterative method. At the initial step, we set Σ̄0 = 0
and define the function n0(µ̄) ≡ n[Σ̄0, µ̄], i.e. the distribution
function obtained using the self-energy Σ̄0 = 0 and chemical
potential µ̄. We find µ0 such that

∫
dΓ̄n0(µ0) = 1/2. To pro-

ceed from i’th step to (i+ 1)’th step, we set Σ̄i+1 = Σ̄+[ni],
define ni+1(µ̄) ≡ n[Σ̄i+1, µ̄] and find µ̄i+1 such that
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FIG. 4. (Color online) Equilibrium density of a quasi-2D dipolar
Fermi gas as a function of the distance from the center of the trap
(ωz = 2π × 23 kHz, ω0 = 2π × 36 Hz). (a) dashed and solid lines
correspond to the non-interacting (λd = 0) and interacting (λd = 1),
blue (top) and red (bottom) lines correspond to T/TF = 0.1 and 0.5
respectively. In all cases, N = 2200. (b) A comparison between the
equilibrium densities obtained from LDA (solid lines) and non-local
(dashed lines) Hartree self-energy functionals. From bottom to top,
N = 500, 1000, 2200, and 5000. λd = 1 and T/TF = 0.1 in all
cases. The non-local corrections are clearly negligible and become
smaller as N is increased.

∫
dΓ′ ni+1(µ̄i+1) = 1/2. At the end of this step, we set

ni+1 → (1 − δ)ni + δ ni+1, where 0 < δ < 1. The last step
is to stabilize the iterative procedure and to damp possible
oscillations that prevent convergence. With an arbitrary
choice δ = 0.75, we found the this iterative procedure
converges to a fixed point in less than ten steps within a
relative error tolerance of 10−8. It is trivial to show that the
fixed point is indeed the solution.

Fig. 3 shows the equilibrium quasiparticle distribution func-
tion as a function of p̄ and r̄ for several values of T̄ and λd.
As one expects, the presence of interactions results in the ex-
pansion of the gas in the trap (compare panels a and b) and
thermal fluctuations smear the Fermi surface (compare panels
a and c).

The equilibrium density is shown in Fig. 4a. The nearly
Gaussian distribution around the edge of the trap at finite
temperatures, and the reduction of the density at the center of
the trap at low temperatures due to repulsive interactions can
be clearly seen. We also compare the LDA and full non-local
Hartree self-energy functionals in Fig. 4b for various number
of particles in the trap. The relative correction to the LDA
predictions is of the order of 10−3 for realistic number of
trapped particles and as argued earlier, becomes smaller for
larger system sizes.

Having found the equilibrium state, we can move on to the
investigation of the low lying collective excitations. To this
end, we discuss the linear response theory of the CBV equa-
tion in the next section as a first step.

IV. ANALYSIS OF THE COLLECTIVE MODES:
LINEAR RESPONSE THEORY OF THE COLLISIONAL

BOLTZMANN-VLASOV EQUATION

The linear response can be conveniently evaluated using ki-
netic equations by introducing a perturbation to the external
potential, linearizing the resulting equation about deviations
from the global equilibrium state, δn(p̄; r̄, t) ≡ n(p̄; r̄, t) −
n0(p̄; r̄) and solving the resulting linear integro-differential
equation. The benefit of this fomulation compared to the di-
agram technique is the possibility of obtaining approximate
solutions using well-known variational methods.

Since we are mostly concerned with low temperatures here,
it is beneficial to introduce the following ansatz for δn:

δn(p̄; r̄, t) ≡ θ(t) ∆0(p̄; r̄) Φ(p̄; r̄, t), (40)

where ∆0 ≡ ∂n0/∂µ̄ = β̄n0(1−n0). The above ansatz is not
restrictive for T > 0 since ∆0 > 0 everywhere on the phase-
space. The only exception is T = 0 where ∆0 restricts the
deviations to the local Fermi surface. This is in fact a favor-
able feature since the low lying collective modes are formed
from the particle-hole excitations about the Fermi surface at
T = 0. Also, at finite T , ∆0 is sharply peaked about the
local Fermi surface and allows the solution of the linearized
CBV equation to be representable with a smooth choice of
Φ [20]. As we shall see, this feature allows us to construct de-
cent approximate solutions by choosing a linear combination
of smooth functions as a variational ansatz for Φ.

Plugging this ansatz into the CBV equation, expanding to
first order in Φ and taking a Fourier transform in time, we
obtain the following linear integral equation for Φ(p̄; r̄, ω):

− i ω̄∆0Φ + D [Φ]−I [Φ] =

− (2N)−
1
2 {n0, δU(r0r̄, ω)}, (41)

where {φ, ψ} ≡ ∇r̄φ·∇p̄ψ−∇p̄φ·∇r̄ψ is the Poisson bracket
with respect to the scaled phase-space coordinates, and ω̄ ≡
ω/ω0. D [Φ] describes the collisionless self-consistent mean-
field dynamics of quasiparticles:

D [Φ] = ∆0{Φ, H̄0}+ {n0, Σ̄[∆0Φ]}
= ∆0{Φ + Σ̄[∆0Φ], H̄0}, (42)

where H̄0 = (p̄2 + r̄2)/2 + Σ̄0. To get the second line, we
have used the identity {n0,A} ≡ −∆0{H̄0,A} which can be
easily proved by direct calculation and is valid for arbitraryA.

The first term in the first line of Eq. (42) describes the
evolution of quasiparticles in the equilibrium mean-field
whereas the second term describes their dynamics in the self-
consistently generated residual mean-field Σ̄[∆0Φ]. I [Φ] de-
scribes the collisional dynamics and can be written as:

I [Φ] = − β̄(2N)
1
2

2

∫
d2p̄1

(2π)2

d2p̄′

(2π)2

d2p̄′1
(2π)2

(2π)2δ2(∆P̄)

× (2π)δ(∆Ē) |M̄|2 S{Φ}n0n0,1(1− n′0)(1− n′0,1), (43)

where ∆Ē ≡ H̄0(p̄, r̄)+H̄0(p̄1, r̄)−H̄0(p̄′, r̄)−H̄0(p̄′1, r̄),
∆P̄ ≡ p̄+ p̄1− p̄′− p̄′1, M̄ = m(Ṽ[p0(p̄− p̄′)]−Ṽ[p0(p̄−
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p̄′1)]), and S[Φ] ≡ Φ(p̄; r̄, ω) + Φ(p̄1; r̄, ω) − Φ(p̄′; r̄, ω) −
Φ(p̄′1; r̄, ω). Note that the dressed quasiparticle dispersions
have been used in the collision integrals. Specializing to the
case of dipole-dipole interactions, we get:

|M̄|2 = λ2
d [u(|p̄− p̄′|, η)− u(|p̄− p̄′1|, η)]

2
. (44)

Formally, the solution of Eq. (41) can be written as:

Φ = − (−i ω̄∆0 + D −I )
−1 {n0, δU(r0r̄, ω)}

(2N)
1
2

, (45)

and the linear response can be determined using Eq. (40):

〈O〉t =

∫
dΓ

∫
dω

2π
e−iωt∆0(p̄; r̄) Φ(p̄; r̄, ω+)O(p; r).

(46)
The difficulty is in inverting the operator appearing in the
parenthesis in Eq. (45). Decent approximate solutions, how-
ever, can be found using a variational technique known as the
method of moments. To this end, we restrict the solution space
of Eq. (41) to a subspace spanned by a set of basis functions
of the phase-space variables {φα(p̄; r̄)} (the “moments”) and
expand Φ and δU in this basis:

Φ(p̄; r̄, ω) =
∑
α

Φα(ω)φα(p̄; r̄),

(2N)−
1
2 δU(r0r̄, ω) =

∑
α

δUα(ω)φα(p̄; r̄). (47)

Plugging this ansatz into Eq. (41) and evaluating the moments
of the resulting equation with respect to each of the basis func-
tions, i.e. multiplying the sides of the CBV equation by each
of the basis functions and integrating over the phase-space
variables, we find a closed set of linear equations for the coef-
ficients {Φα}:

− iω̄〈〈φβφα〉〉Φα(ω) + 〈〈φβ{φα, H̄0}〉〉 [δUα(ω) + Φα(ω)]

+ 〈〈φβ{Σ̄[∆0φα], H̄0}〉〉Φα(ω)−IβαΦα(ω) = 0, (48)

where we have defined the “∆0-average” as:

〈〈A(p̄; r̄)〉〉 ≡
∫

dΓ̄ ∆0(p̄; r̄)A(p̄; r̄). (49)

Summation over repeated indices is implied in Eq. (48).
The matrix elements of the collision integral, Iαβ ≡∫

dΓ̄φαI [φβ ] can be put in the following symmetric form
using the symmetry properties of the collision integral kernel:

Iαβ = − β̄(2N)
1
2

8

∫
d2r̄

∫
d2p̄

(2π)2

d2p̄1

(2π)2

d2p̄′

(2π)2

d2p̄′1
(2π)2

× (2π)δ(∆Ē) (2π)2δ2(∆P̄) |M̄|2 S[φα] S[φβ ]

× n0n0,1(1− n′0)(1− n′0,1). (50)

The first term on the second line of Eq. (48) can be put in
a more useful form using the identity φβ{Σ̄[∆0φα], H̄0} =
{φβΣ̄[∆0φα], H̄0} − Σ̄[∆0φα]{φβ , H̄0}. Taking the ∆0-
average of both sides on this identity, the first term on the

left hand side vanishes. To see this, note that 〈〈{ψ, H̄0}〉〉 =∫
dΓ̄ ∆0{ψ, H̄0} =

∫
dΓ̄ {∆0ψ, H̄0} for arbitrary ψ. The

last equality holds since {∆0, H̄0} = 0. Since ∆0 → 0 ex-
ponentially fast for large r̄ or p̄, the Stokes’ theorem implies
that the last integral vanishes as long as ψ is exponentially
bounded. Here, ψ = φβΣ̄[∆0φα] which is in fact exponen-
tially bounded. Finally, Eq. (48) can be put in the following
matrix form:

(−iω̄M + H0 − Σ− Ic)Φ(ω) = −H0 δU(ω), (51)

where:

(M)αβ = 〈〈φαφβ〉〉,
(H0)αβ = 〈〈φα{φβ , H̄0}〉〉,
(Σ)αβ = 〈〈Σ̄[∆0φβ ]{φα, H̄0}〉〉,
(Ic)αβ = Iαβ , (52)

and Φ(ω) and δU(ω) are the vectors with entries Φα(ω)
and δUα(ω) respectively. If the observable O(p̄; r̄) is also
expressible in terms of the basis functions, O(p̄; r̄) =∑
αOαφα(p̄; r̄), then the linear response can be conveniently

written as:

〈O〉ω =

∫
dΓ̄Oβφβ ∆0Φα(ω+)φα

= OTM Φ(ω+). (53)

Eqs. (51)-(53) are similar to the analysis of Ref. [35]. Here,
however, we have an additional matrix Σ that accounts for the
residual mean-field due to self-consistency.

It is useful to define an “evolution matrix” and express it in
its diagonal basis:

E ≡ M−1(H0 − Σ− Ic) = iVΩV−1, (54)

where Ω is the diagonal matrix of eigenvalues and V is the
matrix of eigenvectors. Note that in general, E is a not a Her-
mitian matrix and may have complex eigenvalues. Moreover,
it is a non-normal matrix and therefore, its eigenvectors are
not orthogonal [37]. Using diagonal form of the evolution
matrix, Eq. (51) can be expressed as:

Φ(ω) = −iV 1

ω − Ω
V−1M−1H0 δU(ω). (55)

The real and imaginary parts of Ω determine the oscillation
frequency and damping of the eigenmodes. Clearly, not all
of the eigenmodes are expected to contribute to the linear re-
sponse to a given perturbation. This becomes particularly im-
portant when one is dealing with a large variational basis set.
In such cases, as we will see later, the evolution matrix will
have poles which are very close to each other on the com-
plex frequency plane and it is not a priori clear which one(s)
and in what proportion contribute to the response of the sys-
tem. Using the linear response formalism described here,
however, this question does not need to be dealt separately.
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Using Eqs. (53) and (55), we get:

〈O〉ω =
∑
α

rα(ω)

ω − Ωα
,

rα(ω) = −i[VTMO]α[V−1M−1H0 δU(ω)]α, (56)

i.e. the residues rα can be expressed in terms of the known
matrices. Note that in case of Dirac delta perturbations,
δU(ω) is independent of ω and so are the residues.

Before we attempt to obtain accurate solutions obtained us-
ing large variational basis sets, we find it useful to make sim-
ple analytical predictions using a small basis set as the first
step. We use the scaling ansatz approach to find such a basis
set and neglect self-energy corrections to simplify the calcula-
tions at first. We extend the basis set and include self-energy
corrections later and discuss the nature and importance of the
corrections that follow.

V. LINEARIZED SCALING ANSATZ ANALYSIS

The scaling ansatz provides a simple and intuitive picture
of the collective excitations of confined gases. This method
has been applied to various systems in both isotropic and
anisotropic traps, including Bose gases below and above
the critical temperature, s-wave and dipolar fermions in the
collisionless and hydrodynamics regimes [22–27, 30]. Here,
we apply the method to the CBV equation which as we shall
see, allows us to study both CL and HD limits as well as
transition from one regime to the other.

In this method, one assumes that the non-equilibrium quasi-
particle distribution function can be approximately described
as a scaled copy of the equilibrium distribution:

nSA(p̄; r̄, t) ≡ 1∏
i(biφi)

n0

[
φ−1
i (p̄i − ḃir̄i/bi); r̄i/bi

]
,

(57)

where bi and φi (i = x, y) are time-dependent scale factors of
positions and momenta. The pre-factor is to ensure conserva-
tion of particle number. The equilibrium solution corresponds
to the choice bx = by = φx = φy = 1. Introducing the
following reparametrization of the scaling variables:

bx(t) = 1 + λ̄(t) + λ(t), by(t) = 1 + λ̄(t)− λ(t),

φx(t) = 1 + ν̄(t) + ν(t), φy(t) = 1 + ν̄(t)− ν(t), (58)

and expanding Eq. (57) to first order in λ, λ̄, ν and ν̄, we get:

δnSA ≈ −2(λ̄+ ν̄)n0 + ∆0

[ ˙̄λ r̄ · p̄ + ν̄ p̄2 + λ̄ r̄2
]

+ ∆0

[
λ̇ (x̄p̄x − ȳp̄y) + ν (p̄2

x − p̄2
y) + λ (x̄2 − ȳ2)

]
, (59)

where δnSA ≡ nSA − n0. We have neglected self-energy
corrections to simplify the analysis and explicitly used the
non-interacting equilibrium solution. Also, ∆0 = ∂n0/∂µ̄ =
β̄n0(1 − n0) as before. Here, (λ̄, ν̄) and (λ, ν) control the

isotropic (monopole) and anisotropic (quadrupole) scalings.
Comparing the last equation to Eq. (40), we can recognize
the first and second set of terms in the brackets as Φmon and
Φquad, i.e. the variational basis set that the scaling ansatz pro-
vides for monopole and quadrupole modes respectively.

The first term in Eq. (59), which is a consequence of the
normalization prefactor of the scaling ansatz requires further
discussion. First of all, we note that this term may only be
non-vanishing in the monopole case. Since quadrupole oscil-
lations are purely anisotropic, none of the terms appearing in
Φquad violate the conservation of mass in the linear regime
and therefore no normalization is necessary. The monopole
oscillations as described by Φmon, however, may violate the
conservation of mass and the ansatz must be fixed with a
counter term. The scaling ansatz fixes this defect with a uni-
form scaling of the distribution, leading to the first term in
Eq. (59). Unless one restricts the ansatz by setting φ−1

i = bi
(so that λ̄ + ν̄ = 0), the ansatz may lead to unphysical con-
clusions once collisions are taken into account. It is generally
understood that the non-equilibrium dynamics of degenerate
Fermi gases are governed by excitations near the Fermi sur-
face while the fermions deep inside the Fermi sea remain in
place due to their large excitation energy gap. A global rescal-
ing of the quasiparticle distribution, i.e. a uniform rescaling
of quasiparticle occupations irrespective of their energy gap
implies mobilization of all particles with the same likelihood,
including those which are deep inside the Fermi sea. This is
clearly an unphysical picture and may lead to unrealistically
large collision rates.

To address this issue, we remove the global normalization
factor and allow the chemical potential to vary instead. This
amounts to adding a term ∼ δµ̄(t) ∂n0/∂µ̄ = ∆0 δµ(t) to
the ansatz, i.e. adding φ = 1 to the monopole basis set. The
phase-space moment equation that os associated to this trivial
moment function is exactly the statement of conservation of
mass. In summary, we obtain:

Φmon = δµ(t) + c1(t) r̄ · p̄ + c2(t) r̄2 + c3(t) p̄2, (60)

and:

Φquad = d1(t) (x̄p̄x−ȳp̄y)+d2(t)(x̄2−ȳ2)+d3(t)(p̄2
x−p̄2

y),
(61)

where δµ(t), ci(t) and di(t) are time-dependent functions to
be determined.

The determination of these unknown functions is usually
done by plugging the ansatz into the kinetic equation, mul-
tiplying the resulting equation by each of the basis func-
tions and integrating over the phase-space variables to ob-
tain a close set of differential equations. This is equivalent
to the formalism described in Sec. IV and we prefer to do
it in our matrix notation as a warm-up for the later sections
where we extend the basis set and include self-energy correc-
tions. We remark that the role of various terms appearing in
Eqs. (60) and (61) can be understood intuitively. In particu-
lar, r̄ · p̄ and x̄p̄x − ȳp̄y in Φmon and Φquad correspond to
isotropic and anisotropic scaling velocity fields, vmon ∝ r̄
and vquad ∝ x̄ex − ȳey .
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1. Monopole oscillations from the scaling ansatz

Neglecting self-energy corrections, we get Σ = 0, and
H̄0 = (r̄2 + p̄2)/2 using which we can easily calculate M and
H0. The collision matrix elements identically vanish due to
conservation of energy and momentum (see Eq. 50, and notice
that S[1] = S[r̄2] = 0, S[p̄2] = 2∆Ē and S[r̄ · p̄] = r̄ ·∆P̄).
While it is possible to find analytic expressions for the ∆0-
averages appearing in M and H0, we find that they all factor
out from the evolution matrix using the relations 〈〈r̄2〉〉 = 〈〈p̄2〉〉
and 〈〈r̄4〉〉 = 〈〈p̄4〉〉 we have here. The evolution matrix evalu-
ates to the following simple form:

Emon
SA =


0 0 0 0

0 0 2 −2

0 −1 0 0

0 1 0 0

 , (62)

and is independent of temperature. In the above equation, the
matrix elements appear in the same order as the basis func-
tions in Eq. (60). The monopole excitation operator is r2,
which gives the “excitation vector” δU = (0, 0, 1, 0)T in the
scaling ansatz basis (see the definition of δU after Eq. 52).
Using Eq. (55), we finally find:

Φmon(p̄; r̄, ω) =
[
−2iω̄(r̄ · p̄) + 2r̄2 − 2p̄2

]
/(ω̄2 − 4).

(63)
The frequency of oscillations is given by the poles of the
denominator, ω̄mon = ±2, which is a well-known result [32].
We state it without proof that extending the monopole basis
has no effect on this result as long as self-energy corrections
are neglected. In fact, it is a well-known fact that the
full nonlinear Boltzmann equation (including collisions)
admits an exact monopole solution with frequency 2ω0 [32],
corresponding to a nodeless scaling velocity field ∝ r. The
existence of this undamped solution is deeply related to

the fact that the trap potential is harmonic and the particles
are assumed to have quadratic dispersions. Using dressed
quasiparticle dispersions or adding an anharmoniticity to the
trap potential both lead to the violation of this exact result.

We remark that besides the ω̄ = ±2, the above evolution
matrix admits two zero eigenvalues that correspond to eigen-
vector Φ ∼ 1 and Φ ∼ r̄2 + p̄2. Both of these eigenvectors
correspond to unphysical excitations since they violate con-
servation of mass. However, it is easy to see that both lie in
the null space of Hmon

0,SA. Therefore, using of Eq. (55), we see
that these unphysical modes will never be excited regardless
of one’s choice of excitation vector δU. The number of such
unphysical modes increases as one extends the variational ba-
sis set.

2. Quadrupole oscillations from the scaling ansatz

We find the following forms for M and H0 in the quadrupole
basis:

Mquad
SA =

1

2


〈〈r̄2p̄2〉〉 0 0

0 〈〈r̄4〉〉 0

0 0 〈〈p̄4〉〉

 , (64)

and:

Hquad
0,SA =

1

2


0 2〈〈r̄2p̄2〉〉 −2〈〈r̄2p̄2〉〉

−〈〈r̄4〉〉 0 0

−〈〈p̄4〉〉 0 0

 . (65)

The order of basis functions is the same as it appears in
Eq. (61). The only non-zero collision matrix element is I33,
the rest of which vanish again due to conservation laws (see
Eq. 50, and note that S[x̄2 − ȳ2] = 0 and S[x̄p̄x − ȳp̄y] =
(x̄ex− ȳey) ·∆P̄). The collision integral can be expressed as
follows using the results of Appendices C 4 and D 4 (in par-
ticular, see Eq. C20):

I quad
33 =− 64π(2N)

1
2λ2

d T̄
5

∫ ∞
0

ρ5 dρ

∫ 2π

0

dφ

2π

∫ 2π

0

dφ′

2π

∫ π
2

0

dξ sin7 ξ cos ξ

∫ π
2

0

dν sin5 ν cos ν

× sin2(φ− φ′)
[
χ1 Erfcx

(
2ηχ1

√
T̄ ρ

)
− χ2 Erfcx

(
2ηχ2

√
T̄ ρ

)]2

×
[

1

cosh(ρ− µ̄/T̄ ) + cosh(ρ sin2 ξ sin 2ν cosφ)

1

cosh(ρ− µ̄/T̄ ) + cosh(ρ sin2 ξ sin 2ν cosφ′)

]
, (66)

where χ1 = sin ξ sin ν | sin[(φ − φ′)/2]| and χ2 =
sin ξ sin ν | cos[(φ − φ′)/2]|. The above integration can not
be carried out analytically in general and requires a numerical
treatment. The analytical low T and high T asymptotic results
are given in Appendix B. Note that the (dimensionless) non-

interacting chemical potential µ̄ is given implicitly by Eq. (34)
and only depends on the dimensionless temperature T̄ . There-
fore, except for the pre-factor, the above integral is a universal
function of T̄ and η. We define the dimensionless “quadrupole
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FIG. 5. (Color online) Frequency and damping of quadrupole oscillations of quasi-2D dipolar fermions in isotropic harmonic traps from the
scaling ansatz analysis. (a) and (b): the frequency and damping of oscillations vs. νc respectively. (c) the damping rate of the overdamped
component vs. νc. (d) the evolution of the damped oscillatory pole on the complex plane upon increasing νc in the range [0, 15]. (e)
Q(T/TF , η) as a function of T/TF for different values of η ≡ (2N)

1
4 (ω0/ωz)

1
2 . Q is related to the quadrupole collision rate as νc =

N(ad/a0)2Q(T/TF , η). The low temperature and high temperature asymptotes in the 2D limit are shown as blue and red (horizontal) dashed
lines respectively.

collision rate” νc as:

νc ≡ −2I quad
33

〈〈p̄4〉〉
≡ N

(
ad
a0

)2

Q(T̄ , η). (67)

The last equation also serves as the definition of the universal
function Q(T̄ , η). The quadrupole excitation operator is x2 −
y2 which yields δU = (0, 1, 0)T in this basis and finally, a
simple calculation similar to the monopole case yields:

Φquad(p̄; r̄, ω) =
[
2ω̄(νc − iω̄)(x̄p̄x − ȳp̄y) + 2i(νc − iω̄)

× (x̄2 − ȳ2) + 2ω̄(p̄2
x − p̄2

y)
]
/Dquad(ω̄, νc), (68)

where Dquad(ω̄, νc) is the quadrupole characteristic equation
and is given by:

Dquad(ω̄, νc) = ω̄(ω̄2 − 4) + iνc(ω̄
2 − 2). (69)

The roots of Dquad(ω̄, νc) determine the frequency and damp-
ing of quadrupole oscillations. We note that Eq. (68), along
with the characteristic equation given above, are “generic” re-
sults in the sense that one obtains the same expression for
quadrupole oscillations independent of the specific form of
interactions. For instance, Refs. [31] and [38] obtain the same
characteristic equation for s-wave fermions and a classical gas
respectively. The model-specific details are encoded in the
collision rate νc. Therefore, it is worthwhile to review the
generic features of the quadrupole oscillations from Eq. (68)
in terms of νc as a first step. We return to the analysis of νc
afterwards.

Two important limits can be recognized for quadrupole os-
cillations. The collisionless limit is achieved for νc → 0:

lim
νc→0

Φquad(p̄; r̄, ω) ≡ ΦCL
quad(p̄; r̄, ω) =[

− 2iω̄(x̄p̄x− ȳp̄y) + 2(x̄2− ȳ2)− 2(p̄2
x− p̄2

y)
]
/(ω̄2− 4).

(70)

Notice the formal similarity to the monopole case. In this
limit, we obtain undamped oscillations at ωCL

quad = 2ω0 which
correspond to the free motion of particles in the trap. In the
limit of very fast collisions, νc →∞, we find:

lim
νc→∞

Φquad(p̄; r̄, ω) ≡ ΦHD
quad(p̄; r̄, ω)

=
[
− 2iω̄(x̄p̄x − ȳp̄y) + 2(x̄2 − ȳ2)

]
/(ω̄2 − 2), (71)

which describes undamped oscillations at a frequency
ωHD

quad =
√

2ω0. This is the well-known quadrupole “surface”
mode which is also obtained by solving ideal hydrodynamics
equations for harmonically trapped gases [33]. Although
we have neglected self-energy corrections here, it can be
shown that the frequencies of these hydrodynamical modes
are universal since they do not change the density in the bulk,
are confined to the surface, and are entirely driven by the
trap restoring force [33]. We will observe this universality
in later sections, where we include self-energy corrections
and still obtain the same oscillation frequency in the HD limit.

Except for the two ideal limits discussed so far, quadrupole
oscillations are otherwise damped for any finite value of νc.
For large nuc (near HD), this is due to the fact that the col-
lisions are not fast enough to maintain the local equilibrium
and thus lead to dissipation. For small νc (near CL), colli-
sions result in a friction between the otherwise freely moving
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particles and again lead to dissipation. In general, the oscil-
lation frequency and damping rate can be found by analyzing
the roots Dquad(ω̄, νc). Fig. 5a-c show the real and imaginary
parts of the poles as a function of νc. In the limit νc � 1, the
three poles are approximately located at:

±
(

2− 5ν2
c

64

)
− iνc

4
+O(ν5

c ), − iνc
2

+ iO(ν3
c ). (72)

The first two poles describe a damped oscillatory mode at
a frequency slightly lower than 2ω0 and a damping rate of
∼ νcω0/2. The third pole corresponds to an over-damped
component. In the other limit νc � 1, we get:

±
(√

2 +
3

2
√

2ν2
c

)
− i

νc
+O(ν−3

c ), −iνc + iO(ν−1
c ).

(73)
Again, the first two poles describe a damped oscillatory mode
at a frequency slightly higher than

√
2ω0 and a damping rate

of ∼ ν−1
c ω0, accompanied by a (highly) over-damped com-

ponent with a damping rate of ω0νc. Studying the residues of
the over-damped poles, we find that the contribution of the
this component is ∝ ν2

c and ∝ ν−2
c to leading order in the CL

and HD limits respectively and has its maximum contribution
in the CL-HD crossover regime. We associate the presence
of such an over-damped component to the initial high energy
excitations. Fig. 5d shows the evolution of the first pole on
the complex frequency plane upon increasing νc: it starts off
on 2ω0, moves to the lower half plane and finally returns to
the real axis at the hydrodynamic frequency

√
2ω0.

We finally turn to the analysis of Q(T̄ , η), the universal
function that controls the quadrupole collision rate νc for
dipole-dipole interactions (Eq. 67). νc can be identified with
different quantities in different regimes. In the collision dom-
inated regime (i.e. νc � 1) where a viscous hydrodynamic
description is admissible, the shear viscosity sum rule yields
νc as ω0〈P/ηs〉trap, where P , ηs and ω0 are the local pres-
sure, shear viscosity and the trap frequency respectively [15].
By 〈. . .〉trap, we imply averaging over the trap. In the classical
regime (T � TF ), one finds νc ∼ τ−1

c where τc is the typi-
cal time between two single-particle collisions [31]. This can
be established by replacing the Fermi-Dirac with Boltzmann-
Maxwell distribution and evaluating the collision integral in
the saddle-point approximation.

We have calculated Q for several values of η as a func-
tion of T̄ by evaluating the five dimensional integral appear-
ing in Eq. (66) numerically. The results are shown in Fig. 5e.
The asymptotic behavior of Q can be found analytically in
the low and high temperature regimes and is given in Ap-
pendix B in the 2D limit (η = 0). They appear on the same
figure as red and blue dashed lines. We find that Q ∼ T̄ 2

for small T while it saturates to a constant value for large
T̄ . The low temperature T 2 scaling is related to Pauli block-
ing, however, it is different from the case of 2D s-wave
fermions (and 2D paramagnetic electron gas), where one finds
νc ∼ T 2 log(T/TF )−2 [15, 39]. This difference can be traced
back to the fact that the system investigated here is spin polar-
ized and the s-wave scattering channel is blocked. The loga-
rithmic enhancement of the shear viscosity (i.e. attenuation of

νc) originates from the logarithmic divergence of the s-wave
scattering length in the near-threshold regime in 2D. We re-
mark that the near-threshold cross section of all other scat-
tering channels remains bounded [29], leading to a bounded
Born cross section.

The high temperature plateau is a unique feature of near-
threshold dipole-dipole scatterings in the 2D limit and its ex-
istence can be understood in terms of the interplay between
the temperature dependence of the scattering cross section
and rarefaction of the gas. Provided that TF � T � Tdip,
we can estimate the relaxation rate using the aforementioned
identification νc ∼ τ−1

c . The Born 2D scattering cross
section scales like σB ∼ q−1|Ṽ(q)|2 ∼ qa2

d Erfcx2(qaz),
where q is the typical momentum of scattering particles and is
∼ (mkBT )1/2 in the high temperature regime. The collision
frequency is τ−1

c ∼ ~ql−1
mfp ≡ ~qnσ, where lmfp = (nσ)−1

is the mean free path. The density at the center of the trap is
n0 = mω2

0N/(2πT ) and decreases as 1/T . Combining these
results, the collision rate amounts to:

νc ∼ N
(
ad
a0

)2

Erfcx2

[(
kBT

~ωz

) 1
2
]
, (TF � T � Tdip)

(74)
In the 2D limit, ωz → ∞ and we find νc = const (note that
Erfcx(0) = 1). In other words, the growth of scattering cross
section counteracts rarefaction of the gas to yield a constant
collision rate. For finite ωz , the scattering cross section starts
to decrease once kBT & ~ωz and consequently, νc decays like
∼ 1/T (note that Erfcx(x) ∼ 1/x for large x). We remark
that the single subband picture adopted here is no longer valid
in the quasi-2D regime for kBT & ~ωz and one must take
into account the higher subbands as well. We have shown in
a previous paper [40] that all inter-subband interaction matrix
elements have the same long wavelength behavior and there-
fore, we expect this scaling result to remain unaffected.

The plateau reached in the 2D limit relies crucially on
the applicability of Born approximation. As mentioned ear-
lier, the scatterings enter the semi-classical regime for T &
Tdip (see Eq. 25) and Born approximation breaks down. In
this regime, the total scattering cross section can be esti-
mated using the Eikonal approximation [28] and one finds
σSC ∼ (ad/q)

1/2. Repeating the same analysis with the semi-
classical cross section, we find:

νc ∼ N
(
ad
a0

) 1
2
(

~ω0

kBT

) 3
4

, (T & Tdip). (75)

The qualitative behavior of νc for the full range of tempera-
tures was shown earlier in Fig. 1b1.

So far, we have neglected self-energy corrections in the de-
scription of the collective modes. We have also restricted our
analysis to a variational calculation within a small basis set.
In the next section, we extend our analysis to address both of
these shortcomings.

VI. EXTENDED BASIS ANALYSIS:
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THE EFFECT OF HIGHER ORDER MOMENTS AND
SELF-ENERGY CORRECTIONS

The general formalism described in Sec. IV allows one to
include self-energy corrections and to obtain a more accurate
calculation of the response functions by extending the varia-
tional basis set in a controlled way. Using simple symmetry
considerations, we introduce extensible polynomial-like
variational basis sets relevant for describing monopole and
quadrupole dynamics. Finite truncations of these basis sets
allows one to satisfy all phase-space moments of the CBV
equation up to the truncation order. Since we are dealing
with large basis sets and self-energy corrections at finite
temperatures, resorting to numerical methods is inevitable at
this stage and no simple analytic results are expected to be
found.

Our goal here is to evaluate the linear responses accurately
within the approximations made so far. In practice, the reli-
ability of the approximate linear response functions obtained
using the method of moments depends on one’s choice of the
basis functions. This choice can be motivated by the sym-
metries of the perturbing potential and the equilibrium state.
Here, the trap potential is assumed to be isotropic and it is easy
to see that [D , Lz] = [I , Lz] = 0, where Lz ≡ L

(r)
z + L

(p)
z ,

and L(r)
z = i(x∂y−y∂x) and L(p)

z = i(px∂py−py∂px) are the
rotation operators in the coordinate and momentum space re-
spectively. Therefore, if δU lies in a certain eigenspace of Lz ,
so will the solution of the linearized equation Φ and one may
choose the basis functions from the same eigenspace. An-
other symmetry which is preserved by the CBV equation is
the reflection symmetry. Defining the x-reflection operator as
Rxφ(px, py;x, y) = φ(−px, py;−x, y), it is easy to show that
the linearized evolution operator commutes with Rx as well.
We will utilize these observations to define appropriate (and
extensible) basis sets for monopole and quadrupole dynamics
in the next two sections.

A. Variational basis set for monopole oscillations

The generator of monopole oscillations, δUm ∼ r2, belong
to the zero angular momentum representation of Lz . An arbi-
trary function of such type can be expressed as f(p, r)[(x +
iy)(px − ipy)]n for n ∈ Z and arbitrary f(p, r). Any smooth
function of this type can be written as a power series expan-
sion in r2, p2, r · p and ξ ≡ ypx − xpy . Observing that
ξ2 = r2p2 − (r · p)2, the most general basis for such func-
tions can be constructed from the following two classes:

φ+
α ≡ φ(mα,nα,kα) = r2mα p2nα(r · p)kα ,

φ−α ≡ φ(mα,nα,kα) = ξ r2mα p2nα(r · p)kα . (76)

Observing that Rxφ±α = ±φ±α and the fact that the equilib-
rium state and the perturbations are reflection symmetric, we
discard {φ−α }. We define {φ+

α} as the “extended monopole
basis” and drop the + superscript for brevity. To truncate the
basis set, we keep all basis functions satisfying m+ n+ k ≤

M , where M is a positive integer which we call the order of
the basis set. A first order basis set contains four elements,
{1, r · p, p2, r2} and is equivalent to the linearized scaling
ansatz discussed earlier. In general, a basis set of order M
has (M +1)(M +2)(M +3)/6 elements. Expressions useful
for numerical evaluation of the matrix elements of M, H0, Σ
and Ic in the monopole basis are given in Appendix C.

B. Variational basis set for quadrupole oscillations

By definition, a quadrupole (d-wave) function in two
dimensions changes sign upon a simultaneous π/2 rota-
tion of both r and p. Such functions belong to the
mz = ±2 representation of Lz which can be expressed as
f(p, r) eiMφr eiNφp , where M and N are two integers such
that M − N = ±2, φr and φp are the angles r and p make
with a fixed axis (we arbitrarily choose the x-axis) and f(p, r)
is an arbitrary scalar function of p and r. One can identify 12
classes of functions with such symmetry. Apart from the ar-
bitrary scalar function f(p, r), the accompanying multipliers
can be:

ξ+
1 ≡ x2 − y2, ξ+

2 ≡ p2
x − p2

y, ξ+
3 ≡ xpx − ypy,

η+
1 ≡ xy(ypx − xpy), η+

2 ≡ pxpy(ypx − xpy),
η+

3 ≡ (ypx + xpy)(ypx − xpy),

and:

ξ−1 ≡ xy, ξ−2 ≡ pxpy, ξ−3 ≡ ypx + xpy,
η−1 ≡ (ypx− xpy)(x2− y2), η−2 ≡ (ypx− xpy)(p2

x− p2
y),

η−3 ≡ (ypx − xpy)(xpx − ypy).

The functions with + and − superscript are even and odd
eigenfunctions of the reflection operator Rx, respectively.
Like before, we drop the second class. Also, we find the fol-
lowing relations between these pre-factors:

2η+
1 = r2ξ+

3 − (r · p) ξ+
1 ,

2η+
2 = (r · p) ξ+

2 − p2 ξ+
3 ,

2η+
3 = r2 ξ+

2 − p2 ξ+
1 , (77)

using which we can drop the class of functions f(p, r) η+
i

from the basis set. Since f(p, r) is assumed to be a smooth
scalar function of p and r, in can be expanded in the monopole
basis. Thus, in summary, we find that any smooth reflection
symmetric quadrupolar function can be expanded in terms of
{ξ+
i φ

+
α} for i = 1, 2, 3 and α = (m,n, k), where m, n

and k are non-negative integers and φ+
α are the previously

introduced monopole basis functions. We denote this basis
set as the “extended quadrupole basis”. We also remark that
this basis set can be reduced further in light of the relation
2(r · p) ξ+

2 = p2ξ+
1 + r2ξ+

3 , so that the basis functions of the
type ξ+

2 r2mp2n(r ·p)k+1 can be written as a linear combina-
tion of ξ+

1 r2mp2n+2(r · p)k and ξ+
3 r2m+2p2n(r · p)k. Like

before, we drop the + superscript for brevity in the remainder
of the paper. An order-M truncation of the quadrupole basis
set is the finite set that comprises all quadrupole basis func-
tions satisfying k+m+ n ≤M − 1. The first order basis set
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contains three elements, {x2 − y2, p2
x − p2

y, xpx − ypy} and
is equivalent to the linearized scaling ansatz discussed ear-
lier. In general, a quadrupole basis set of order M contains
M(M + 1)(2M + 7)/6 elements. Again, expressions useful
for numerical calculation of the matrix elements of M, H0, Σ
and Ic in the quadrupole basis are given in Appendix D.

C. Numerical results

In this section, we present the numerical results obtained by
calculating the linear responses to monopole and quadrupole
perturbations using the extended basis set approach. We var-
ied λd and T/TF in the range (0, 2) at fixed N = 2200. We
studied the 2D limit ωz = ∞ as well as a quasi-2D case
corresponding to the current experiments with KRb (ω0 =
2π × 36 Hz, ωz = 2π × 23 kHz [5]). This choice of parame-
ters yields η ' 0.322 in the quasi-2D case.

For each configuration, we performed the calculations
within a forth order basis set comprising 35 and 50 basis func-
tions for the monopole and quadrupole cases respectively, and
satisfying all phase-space moments of the CBV equation up
to the eighth order. The matrix elements of M, H0 and Σ
can be calculated with little computational effort using the
expressions provided in Appendices C and D and the previ-
ously obtained equilibrium solutions. The most computation-
ally demanding part is the evaluation of the collision matrix
elements. Although a considerable number of them vanish
either due to symmetries or conservation laws, a forth order
basis set still requires calculation of 118 (monopole) and 307
(quadrupole) unique collision matrix elements, each of which
is a five-dimensional integral that has to be evaluated for each
choice of λd, η and T/TF . Such a task clearly requires con-
siderably more computational effort compared to the simple
scaling ansatz analysis we presented earlier, where only a sin-
gle collision matrix element had to be dealt with.

We calculated the collision matrix elements using the
Monte-Carlo integration method with 5 × 108 integration
points yielding a relative statistical error of less than 10−3.
We incorporated the dressed quasiparticle dispersions into the
collision integral within a local effective mass approximation
(see Appendix C 4) which we found to be an excellent
approximation in all cases. However, in order to assess the
accuracy of this approximation and the consistency of the
obtained results, we (1) we performed exact calculation of
the collision integrals for a few representative cases using an
extrapolation technique (see Appendix E), and (2) checked
the satisfaction of conservation laws. We will discuss both of
these consistency checks later.

For the monopole case, we calculated the dimensionless
spectral function Ar2(ω) defined as:

Ar2(ω) ≡ −(2N)−
1
2 Im[χr2(ω)], (78)

This quantity can be found using Eqs. (53) and (55) by choos-
ing the excitation and observation vectors as δUα = Oα =
δmα, where m is the index that corresponds to the basis func-

tion φ = r2. For the quadrupole case, we calculated the spec-
tral function Ax2−y2(ω) defined as:

Ax2−y2(ω) ≡ −(2N)−
1
2 Im[χx2−y2(ω)]. (79)

Likewise, this quantity can be evaluated by choosing the
excitation and observation vectors as δUα = Oα = δqα,
where q is the index that corresponds to the basis function
φ = ξ1 = x2 − y2. These spectral functions can be directly
measured in the experiments in different ways (Ref. to
Sec. VII).

Although the evolution matrix has a large number of eigen-
modes, some of which are isolated in the complex plane and
some may belong to branch lines, only a few of them get ex-
cited and contribute to the response. Many of the modes lie
inside the null space of H0, are unphysical and do not get ex-
cited (see the discussion at the end of Sec. V 1). In all cases,
we found that the spectral functions can be reproduced accu-
rately by a fit function with two simple poles in the lower half
plane:

Afit(ω) = Im

[
A

ω − Ω− iΓ
− A∗

ω + Ω− iΓ
+

iB
ω − iΓ′

]
,

(80)
corresponding to damped oscillations with a frequency and
damping rate of Ω and Γ respectively, and a possibly over-
damped component with a decay rate of Γ′. The overdamped
component is only present in the quadrupole response. The
above model extracts the most important features of the nu-
merically obtained spectral functions and also allows us to
present the obtained results in a concise way.

Although we kept up to eight moments (and in some cases,
up to twelve moments) of the CBV equation, we found the in-
clusion of sixth order moments (and above) to result in relative
refinements to the frequency of the first and second excited
modes which are smaller than 10−3 and 10−2 respectively in
all cases.

1. Monopole oscillations

As mentioned earlier in Sec. V 1, without self-energy cor-
rections, the CBV equation for harmonically trapped gases ad-
mits an exact solution corresponding to a scaling velocity field
v ∼ r which has a fixed oscillation frequency of 2ω0 with no
damping, independent of the interaction strength and temper-
ature. This is due to fact that the Boltzmann equation admits
a rigorously closed set of equations for the phase-space aver-
ages of r2, p2 and r · p, all of which are unaffected by col-
lisions due to conservation laws. Taking self-energy correc-
tions into account, the quasiparticle dispersions no longer re-
main quadratic and one finds that this simple chain of moment
equations can not be closed anymore. In particular, contribu-
tions from higher order moments, many of which are strongly
influenced by the collisions, become important. Therefore,
we expect the monopole oscillations to be damped to a certain
degree.
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FIG. 6. (Color online) The oscillation frequency and the damp-
ing (inset) of the monopole excitations extracted from the numer-
ically obtained spectral functions using a forth order basis set (in-
cluding self-energy corrections). The colored and grayscale (upper
and lower) graphs correspond to an ideal 2D system (η = 0) and a
quasi-2D system (η ' 0.322) respectively. Blue and red line colors
correspond to low and high temperatures respectively. In all cases,
N = 2200. The inset plot shows the damping rate in the 2D case
(η = 0).
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FIG. 7. (Color online) (left) A typical picture of the poles of the
evolution matrix (T/TF = 0.45, λd = 2, N = 2200 and η = 0).
(right) the mass currents associated to the indicated poles. Yellow
(bright) and green (dark) background colors indicate large and small
current magnitudes, respectively. The three indicated poles (a, b, and
c) have the largest residues in the monopole response function and
are also the lowest lying modes that survive in the collision domi-
nated regime.
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FIG. 8. The evolution of the two lowest lying monopole modes upon
increasing T at fixed λd = 1 and N = 2200. The temperature is
uniformly increased from T/TF = 0.05 to 2 with 0.05 increments.
ω(n) and γ(n) denote the real and imaginary parts of the complex
eigenvalue. The arrows indicates the direction of increasing T . (a)
and (b) correspond to the n = 0 and n = 1 modes respectively for
a 2D system (η = 0). (c) and (d) show the same quantities for a
sample quasi-2D system (η ≈ 0.322). While the 2D system reaches
a plateau for T � TF (indicated by P), the quasi-2D system even-
tually becomes collisionless, i.e. γ(i)

mon → 0, ω(n)
mon → 2(n + 1)ω0.

The dashed lines show this expected behavior qualitatively.

Fig. 6 shows the frequency and damping of the monopole
oscillations extracted from the numerically obtained spectral
functions. The colored and grayscale (top and bottom) plots
correspond to the 2D limit (η = 0) and a quasi-2D sample
(η ' 0.322). The repulsive dipole-dipole interactions clearly
result in a significant increase in the oscillation frequency.
Also, as one expects, finite transverse confinement leads to
a weaker effective repulsive effective interaction and thus, a
smaller increase in the frequency of collective modes.

Fig. 7 shows a typical plot of the poles of the evolution ma-
trix as well as the mass currents associated to the three lowest
lying modes that get excited by the monopole perturbation.
The lowest lying mode (indicated by “a” and having a node-
less mass current) makes the most contribution. In fact, the
relative spectral weight of all other modes are generally found
to be less than ∼ 10−3 in all cases. We label the monopole
modes according to the number of nodes in their mass current,
i.e. (a), (b) and (c) correspond to n = 0, 1 and 2 respectively.

The most intriguing finding is that the nodeless mode ex-
hibits a negligible damping in all of the studied cases despite
the presence of remarkably large self-energy corrections
(Γmon < 10−3ω0, see the inset plot of Fig. 6). This is, how-
ever, not the case for the higher order modes. Fig. 8 shows
the evolution of n = 0 and n = 1 modes upon increasing
T at fixed λd for a 2D (a and b) and a quasi-2D system (c
and d). The behavior of the n = 0 mode is similar in 2D
and quasi-2D: the rise in temperature reduces the self-energy
effects and the frequency approaches its non-interacting value
of 2ω0. The damping remains small ∼ 10−4ω0 and exhibits
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FIG. 9. (Color online) Evolution of the quadrupole oscillations from collisionless (CL) to hydrodynamic (HD) regime upon increasing the
interaction strength (left to right). In all cases, T/TF = 0.45 and η = 0 (ωz = ∞). The top row shows the quadrupole spectral function and
the bottom row shows the location of the poles of the evolution matrix on the complex plane. The pole shown as red is the pole that makes the
dominant contribution to the response. (a1) and (a2): λd = 0.1, (b1) and (b2): λd = 0.4, (c1) and (c2): λd = 2. See Fig. 10 for a plot of
the mass currents associated to the encircled poles. Refer to Sec. VII for a discussion on the experimental methods of measuring the spectral
functions.

a peak around T ∼ TF . While the mode eventually becomes
collisionless in quasi-2D (for T � ~ωz), on the contrary,
it reaches a plateau in 2D. The difference between 2D and
quasi-2D systems is more striking for n = 1 and higher order
modes: upon increasing T , while the frequency of oscillations
monotonically decreases in 2D until it reaches the plateau,
it has a non-monotonic behavior in quasi-2D. Initially, it
decreases due to enhanced collisions and reduced self-energy
effects. Once T ∼ ~ωz , the collision rate starts to decrease
and the mode eventually becomes collisionless. A qualitative
account of this behavior was given in Sec. V 2. Finally, we
note that the character of the plateau in 2D is determined by
λd and N , and the modes in the plateau may lie anywhere in
the CL-HD spectrum.

In summary, we find that the monopole response is gov-
erned predominantly by the lowest lying (nodeless) mode,
with the higher order modes capturing a relative spectral
weight of less than 10−3. The collisional effects play a lit-
tle role in defining the character of this dominant mode. In
contrast, the higher order modes are found to be significantly
affected by collisions. They undergo a transition from the col-
lisionless to the hydrodynamic regime.

2. Quadrupole oscillations

In the previous section, we found that the nodeless
monopole mode is essentially immune to collisions. This is
not the case for the nodeless quadrupole mode. The scaling
ansatz analysis presented earlier already shows that this mode
is in fact strongly affected by collisions.

Similar to the monopole case, we find that quadrupole per-
turbations of the trap potential primarily excite the lowest ly-
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FIG. 10. (Color online) The mass current associated to the three
modes marked in Fig. 9c2. Yellow (bright) and green (dark) shades
indicate large and small current magnitudes, respectively. (a) is the
lowest lying mode, known as the surface mode, characterized by the
velocity field v ∼ xex − yey . (b) and (c) are the next two modes.
The nodal structure of the mass current is clearly noticeable.

ing quadrupole mode and the relative spectral weight of higher
order modes are generally less than 10−3. In this case, how-
ever, we find a small but significant contribution from a few
overdamped modes, specially in the crossover regime. This is
in agreement with the scaling ansatz analysis.

A typical scenario for the quadrupole response is shown in
Fig. 9. The top and bottom rows show the quadrupole spec-
tral function and the location of the poles on the complex fre-
quency plane respectively. For weak interactions (λd � 1,
Fig. 9a1-2), the spectral function is sharply peak around 2ω0

and the poles of the evolution matrix lie very close to the real
axis about their collisionless frequencies. Upon increasing
the interactions, the poles spread to the lower half complex
frequency plane, indicating entrance to the dissipative CL-
HD crossover regime. The spectral function is significantly
broadened (see Fig. 9b1) in this regime. For stronger interac-
tions, the local equilibrium picture starts to emerge, indicated
by a reduction in damping. Fig. 9c2 clearly shows a sharply
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FIG. 11. The evolution of the two lowest lying quadrupole modes
upon increasing T for fixed λd = 1 and N = 2200. See the caption
of Fig. 8 for the description of various panels. The blue line in (a)
denotes

√
2ω0, the frequency of quadrupole surface mode.
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FIG. 12. (Color online) Frequency and damping (top and bot-
tom graphs respectively) of quadrupole oscillations in a 2D system
(η = 0) with N = 2200 particles. The solid colored lines are the
numerical results obtained using a forth order basis set, including
self-energy corrections. The red and blue line colors denote high and
low temperatures respectively. The dashed black lines correspond to
the analytic scaling ansatz analysis presented earlier (Sec. V 2).

peaked spectral function near
√

2ω0 in the strongly interacting
regime. This is exactly the universal frequency of the hydro-
dynamic quadrupole surface mode discussed earlier.
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FIG. 13. (Color online) Frequency and damping of quadrupole oscil-
lations for a quasi-2D system corresponding to η ' 0.322 (refer to
the caption of Fig. 12 for details)

Fig. 10 shows the mass currents associated to the three
lowest lying modes marked in Fig. 9c2. The axially aver-
aged mass currents have n = 0, 1 and 2 nodes respectively.
Fig. 11 shows the evolution of the first two upon increasing
the temperature for a 2D and a quasi-2D case. Both modes
are strongly influenced by collisions and their qualitative be-
havior is similar to the n = 1 monopole mode discussed in
the previous section. While these modes eventually become
collisionless in quasi-2D for T � ~ωz , they reach a plateau
for T � TF in 2D [marked with P in (a) and (b)].

Figs. 12 and 13 show the frequency and damping rate of the
quadrupole oscillations obtained from the fit to the quadrupole
spectral function, in 2D and quasi-2D respectively. The re-
sult from the previous scaling ansatz analysis without self-
energy corrections is also shown as dashed black lines for ref-
erence. Since the quadrupole spectral function is virtually ex-
hausted by the nodeless mode, these plots essentially show
the interaction- and temperature-dependence of the nodeless
mode.

The refinements arising from inclusion of both self-energy
corrections and higher order moments are significant. In the
low temperature regime, self-energy corrections are dominant
and yield a ∝ λd shift of the frequencies (see the rightmost
plot on the top panel of Fig. 12). The collisional corrections
are only ∝ λ4

d in the weakly interacting regime (see Eq. 72
and note that νc ∝ λ2

d). The corrections resulting from the
inclusion of higher order moments can also be seen in the
high temperature curves appearing in the same figure. For
T > TF , self-energy corrections become negligible and the
refinement is predominantly due to inclusion of higher order
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moments.

In summary, we find that all quadrupole modes are strongly
influenced by collisions and exhibit the transition from the CL
to HD regime. There is a notably large mean-field shift in
the oscillation frequency at low temperatures. Similar to the
monopole case, the quadrupole spectral function is essentially
exhausted by the lowest lying (nodeless) mode, with a small
contribution from overdamped modes in the crossover regime.
Upon increasing the temperature, the frequency and damping
of all modes reach a plateau for a strictly 2D system. A qual-
itative account of this behavior was given in Sec. V 2. In a
quasi-2D system, however, the CL regime appears again for
T & ~ωz .

VII. EXPERIMENTAL OUTLOOK

The collective modes can be probed experimentally in var-
ious ways. As described earlier, one common method is to
perturb the trap potential with a short pulse and monitor the
evolution of the cloud using either in-situ or absorption imag-
ing techniques (for example, see Ref. [9]). The relevant ob-
servables are the radius and anisotropy of the cloud in case
of monopole and quadrupole perturbations respectively. The
frequency and damping of the collective modes are found by
fitting the measured time evolution of the observable Oexp(t)
to a function of the form Ofit(t) = Ae−γt sin(ωt + φ0) +
Be−γODt, where ω is the frequency of oscillations, and γ and
γOD are damping rate of the oscillatory and overdamped com-
ponents. If required, the spectral function can be subsequently
found by taking a Fourier transform of the measured impulse
response signal Oexp(t). Another approach which may yield
more accurate results is the direct measurement of spectral
functions via trap modulation spectroscopy. In this method,
one introduces a low-amplitude periodic modulation at a fixed
frequency Ω to the trap potential for a duration τ � ω−1

0 ,Ω−1

and measures the absorbed energy. For a finite trap modula-
tion pulse such as δU ∼ e−|t|/τ cos(Ωt) v(r), a simple linear
response analysis yields [43]:

∆Eabs ∼ −τ Ω Im[χv(r)(Ω + i/τ)], (81)

where ∆Eabs is the absorbed energy, v(r) is the shape of the
trap perturbation (i.e. x2 + y2 and x2 − y2 for monopole and
quadrupole modes respectively), and χv(r) is the retarded re-
sponse function of v(r). Eq. (81) implies that the absorbed
energy in a modulation experiment provides a direct measure-
ment of the spectral function. The absorbed energy can be
measured in various ways. One method is to let the system
rethermalize after the modulation pulse, followed by mapping
it to a non-interacting system by switching off the interac-
tions adiabatically and finally measuring the temperature rise
of the non-interacting gas through a time of flight expansion
experiment. The location of the peak in the measured spec-
tral function and its width yield the frequency and damping
of the collective mode. According to the results presented in
the previous section, quadratic perturbations in the trap poten-
tial predominantly excite the lowest lying mode. If required,

the spectral weight of higher order modes can be increased
using quartic perturbations, e.g. (x2 + y2)2 and x4 − y4 for
monopole and quadrupole symmetries.

At the time this paper is written, the dipolar interaction
strengths in the experiments are not strong enough to drive
the system to the HD regime. In the experiments with
fermionic 40K87Rb at JILA [5], the transverse and in-plane
trap frequencies are ωz = (2π)×23 kHz and ω0 = (2π)×36
Hz respectively. The central layer has 2200 molecules, the
temperature is T = 500 nK and dipole moment is D = 0.158
Debye, using which we find T/TF ≈ 4.36, η ≈ 0.322 and
λd ≈ 0.252. The dipolar temperature is Tdip ∼ 1.8 µK
and TF /Tdip ≈ 6.4 × 10−2. Therefore, the near-threshold
scattering condition can be satisfied well for quantum de-
generate temperatures. However, the current temperature
is above quantum degeneracy and we find T/Tdip ≈ 0.28.
The scattering energies lie in the crossover between the
threshold and semiclassical energies and we estimate the
Born approximation to overestimate the cross section by a
factor of 3 using the results of Ref. [28]. Since the tem-
perature is high, mean-field corrections are small and the
change in the monopole oscillation frequency is negligible.
For quadrupole oscillations, we obtain Ωquad ≈ 1.9990ω0

and Γquad ≈ 0.007ω0 = 1.7 Hz. Including corrections to
the Born approximation, we estimate Γquad ≈ 0.6 Hz which
might be difficult to observe due to the presence of a two-body
loss rate of ∼ 4 Hz. We remark that the collision rates can be
dramatically increased by making the transverse confinement
stronger. For example, in the strictly 2D limit ωz → ∞, we
get Ω2D

quad ≈ 1.8ω0 and Γ2D
quad ≈ 0.3ω0 ≈ 71 Hz at the same

temperature and phase-space density.

At this time, the recent experiments with 161Dy [8] at Stan-
ford seem to be more promising candidate toward the obser-
vation of the predictions of this paper. With N = 6000 atoms
at a temperature T/TF = 0.21 and a large magnetic dipole
moment of 10µB , one is able to study both quantum degen-
erate and thermal regimes. Once the atoms are loaded into an
optical lattice, we believe it will be possible to trap at least
N = 2000 atoms at the Fermi temperature in the central pan-
cake, with ωz = (2π) × 20 kHz and ω0 = (2π) × 100 Hz.
For this configuration, we find TF /Tdip ≈ 0.04, λd ≈ 0.21
and η ≈ 0.56. The near-threshold condition is satisfied
well and we reliably obtain Ωquad ≈ 1.992ω0 and Γquad ≈
0.0085ω0 ≈ 5.3 Hz. That damping is expected to be easily
observable due to the long time stability of the gas. The mean-
field shifts of the frequencies may also be observed at lower
temperatures. With N = 1000 atoms in the central pancake
and at T/TF = 0.2 with the same trap frequencies, we ob-
tain Ωquad ≈ 1.95ω0 and Γquad ≈ 0.0065ω0 ≈ 4.8 Hz, and
Ωmon − 2ω0 = 0.015ω0 ≈ 9.3 Hz, all of which are expected
to be observable. Another intriguing possibility is the obser-
vation of the predicted plateau of the collision rate, which is
also a direct consequence of universal near-threshold dipolar
scatterings. This can be simply done by heating the gas and
probing the collective modes at temperatures above TF .
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VIII. DISCUSSIONS

Most of the relevant discussions were already given in the
main text. Here, we give a brief summary of the main results
along with several complementary comments.

We started our analysis by investigating the equilibrium
state of quasi-2D dipolar fermions in isotropic traps. In order
to study the collective modes of the system, we solved the col-
lisional Boltzmann-Vlasov equation for small perturbations
of the trap potential with monopole and quadrupole symme-
tries. The self-energy corrections to quasiparticle dispersions
and collisions were taken into account via the self-consistent
Hartree-Fock and Born approximations respectively. The
validity of these approximations were assessed at the end
of Sec. II C. In particular, the usage of Born approximation
restricts the validity domain of our results to near-threshold
scattering energies (see Eq. 25). We confined our attention
to the regime where TF � Tdip, so that the scatterings
remain in the near-threshold regime even in the thermal
regime T � TF . We showed that this condition is satisfied
well in the current experiments. We emphasize that once
the conditions for the applicability of our approximations
are met, the formalism of collisional Boltzmann-Vlasov
equation is universally applicable to both collisionless and
collision-dominated (hydrodynamical) regimes, as well as the
crossover between the two.

We carried out the analysis of collective modes in two
stages: as a first approximation, we studied the problem in the
Boltzmann limit by only keeping the collisional effects and
using bare dispersions. We calculated the response functions
using the simple picture of scaling ansatz. This analysis
implied the generic result that monopole oscillations occur at
a fixed frequency of 2ω0, are undamped, and are independent
of temperature and interaction strength. In case of quadrupole
oscillations, however, we found a transition from the CL limit
to the HD limit. We calculated the quadrupole collision rate,
νc, for various temperatures and transverse trap frequencies.
We found that in the 2D limit (η = 0), νc is a monotonically
increasing function of temperature and reaches a plateau for
large T/TF . This plateau persists up to T ' Tdip beyond
which the scattering energies enter the semiclassical regime
and the cross section starts to decrease upon increasing the
temperature further. The existence of this plateau, which
is a novel feature arising from universal dipolar scatterings
implies that (1) the character of trap excitations of a polarized
2D dipolar gas becomes essentially temperature-independent
in the regime TF . T . Tdip, and (2) collisional effects per-
sists in the thermal regime despite the fact that gas becomes
very dilute. This behavior differentiates 2D dipolar fermionic
gases from s-wave fermions where rarefaction of the gas at
high temperatures carries the system back to the collisionless
regime for T & TF . Also, the temperature window for
collisional behavior is universal for s-wave fermions and
is not amenable to tuning, whereas for quasi-2D dipolar
fermions, one can expand this window by (1) making the
transverse confinement stronger to approach the 2D limit, and

(2) either increase Tdip by using weaker dipoles or decrease
TF by decreasing the density.

The existence of the plateau is guaranteed as long as the
scale separation TF � Tdip is met. Combining Eqs. (25)
and (67), one can find the condition for the plateau to lie in
the collision dominated (hydrodynamic) regime as well:

N
1
4 � a0

ad
� N

1
2 . (HD plateau) (82)

The left and right hand sides of this inequality are equivalent
to TF � Tdip and N(ad/a0)2 � 1 respectively, where
the latter condition implies νc � 1. The above inequality
may be used as a simple experimental guideline to observe
hydrodynamical behavior with dipolar fermions.

In the second stage of calculations, we extended the analy-
sis by (1) including self-energy corrections and (2) going be-
yond the scaling ansatz by satisfying higher moments of the
CBV equation. Chiacchiera et al. [35] and Pantel et al. [41]
have carried out a similar extended moments analysis of the
Boltzmann equation for s-wave fermions and have shown that
corrections of this type significantly improves the matching
between the theory and the experiments.

We evaluated all of the matrix elements of the CBV
equation numerically exactly with the exception of the
collision integral matrix elements where we incorporated the
dressed quasiparticle dispersions via a local effective mass
approximation (LEMA) for practical reasons. Nevertheless,
we found this scheme to be an excellent approximation. We
will show later in this section that the conservation laws are
satisfied well. Moreover, we evaluated the exact collision ma-
trix elements in a few cases using an extrapolation technique
(albeit at the costs of a significantly increased computation
time; see Appendix. E) and found the corrections beyond
LEMA to be negligible indeed.

The extension of the scaling ansatz analysis allowed us
to (1) study the effects of self-energy corrections on the fre-
quency and damping of various modes, and (2) investigate the
higher order (nodal) monopole and quadrupole modes which
are beyond the scope of the scaling ansatz, and (3) study the
speculated damping of the nodeless monopole mode, which
is a direct consequence of self-energy corrections. We found
that despite the fact that inclusion of higher order moments
results in the appearance of numerous new normal modes,
the responses to the monopole and quadrupole perturbations
(∼ r2 and x2 − y2 respectively) are predominantly governed
by the lowest lying (nodeless) mode. We remark that the
frequency and damping of the mode, however, is significantly
modified by both self-energy corrections and inclusion of
higher order moments.

We argued that the self-energy corrections are expected to
result in the damping of the nodeless monopole mode, a fea-
ture which is absent in the simple Boltzmann equation. We
found that although this expectation is met, the damping re-
mains very small (< 10−3ω0) even in the strongly interact-
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ing regime. The frequency of oscillations, however, is signif-
icantly increased from its non-interacting value of 2ω0. This
mean-field frequency shift was found to be most significant at
low temperatures where self-energy effects are large.

By investigating the velocity field of nodeless monopole
mode, we found that it retains its scaling character to an good
approximation (i.e. v ∼ r), as well as its isothermal charac-
ter. It is known from the hydrodynamic theory of non-ideal
fluids that for a true isotropic and isothermal scaling flow, no
dissipation results from shear viscosity or thermal conduction
and the only source of dissipation is the bulk viscosity (for
instance, see Ref. [42], §49). In this situation, one finds
dS/dt =

∫
d2rn−1

0 T−1ζ(∇ · v)2 where S is the total en-
tropy and ζ is the bulk viscosity. Note that the dissipation rate
is second order in v and is therefore small.

At this point, we can not rule out the possibility that a
more accurate description of the strongly correlated regime
would change this finding. In particular, going beyond the
quasiparticle ansatz in the kinetic equation and taking the
collisional broadening of the single particle spectrum into
account may yield a larger damping of the nodeless monopole
mode. We will investigate this possibility in the future works.

The analysis of higher order monopole modes (n ≥ 1) and
all quadrupole modes yields the same qualitative picture that
the scaling ansatz analysis of the nodeless quadrupole mode
provides, i.e. existence of a plateau in 2D upon increasing the
temperature and reappearance of the CL regime in quasi-2D.
We find, however, significant quantitative corrections. At low
temperatures, self-energy corrections result in a shift of the
frequencies proportional to λd. We also found that the scaling
ansatz overestimates the collision rates in general. This defect
is mostly noticeable in the high temperature regime where
the gas is extended in the trap and higher order moments are
required to accurately account for the density variations.

We included up to eight moments in the extended analysis
(and up to twelve moments in pilot studies). We generally
found that the most important corrections to the scaling
ansatz stems from the forth order moments, beyond which
the corrections become increasingly smaller. In practice, a
second order basis set is sufficient to obtain the frequencies
of the nodeless modes within a 0.1% tolerance of the exact
solution. The accurate description of higher order modes
naturally require inclusion of higher order moments.

Finally, we investigate the satisfaction of conservation laws
as a consistency check for our numerical calculations. The
CBV equation conserves the particle number, momentum and
energy, both in the differential form and the integral form (see
Appendix A). The quadrupole oscillations trivially satisfy
these conservation laws due to the axial symmetry of the
equilibrium state. This is not trivial for monopole oscillations
as they have same symmetry as the equilibrium state. Fig. 14
shows the maximum relative deviations of the particle number
and energy in monopole oscillations as a function of moment
satisfaction order for a sample case. We find that the particle
number is conserved within a relative error of ∼ 10−6 even

1 2 3 4
10−5

10−4

10−3

10−2

1 2 3 4
5.8

6.2

6.6

x 10−6

FIG. 14. Maximum relative deviations of the particle number (left)
and energy (right) for monopole oscillations in a sample configura-
tion (T/TF = 0.1, λd = 0.5, η = 0 and N = 2200). M is the
truncation order of the basis set.

in a first order basis set (this is because one of the moment
equations is in fact a statement of mass conservation). On
the other hand, we find that conservation of energy improves
substantially upon extending the basis set. For the forth order
basis set, the relative error in the conservation of energy is
∼ 10−5.

Some of the possible extensions of this work are (1) going
beyond the Born approximation and including multiple scat-
terings in order to rigorously extend this study to semiclassical
scattering energies (T > Tdip), (2) going beyond the quasi-
particle approximation and taking into account the collisional
broadening of the single-particle spectrum toward quantita-
tively reliable predictions in the strongly interacting regime,
and (3) inclusion of higher transverse subbands to account for
T & ~ωz in quasi-2D systems.
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Appendix A: Conservation laws of the linearized collisional
Boltzmann-Vlasov equation

The CBV equation admits local conservation laws for mass
density, mass current and energy, which can be simply es-
tablished by multiplying the sides of CBV equation by 1, p
and energy density E respectively and integrating over p [20].
Here, E is the energy density. The collision integrals vanish
identically in all three cases due to the existence of the same
conservation laws in the level of 2-body scatterings. We state
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these conservation laws in their integral form here and uti-
lize them later as a consistency check for our numerical cal-
culations. The conservation of mass (or equivalently, particle
number) is:

d

dt

∫
dΓn(p; r, t) = 0. (A1)

The linearized equation using the parametrization given by
Eq. (40) yields:

d

dt

∫
dΓ ∆0Φ(p; r, t) = 0. (A2)

In the same parametrization, the conservation of momentum
reads as:

d

dt

∫
dΓ p ∆0Φ(p; r, t) = 0. (A3)

The energy density is given by EHF = p2/(2m)+mω2
0r

2/2+
Σ+[n]/2 in the Hartree-Fock approximation using which we
get the following linearized form of conservation of energy:

d

dt

∫
dΓ (δE n0 + E0∆0Φ(p; r, t)) = 0, (A4)

where E0 ≡ H0 is the equilibrium energy density and δE =
Σ+[δn]/2 = Σ+[∆0Φ]/2. Using the properties of Hartree-
Fock self-energy functional, it is easy to show

∫
dΓδE n0 =

(1/2)
∫

dΓΣ+[∆0Φ]n0 ≡ (1/2)
∫

dΓΣ+[n0] ∆0Φ, using
which the two terms in Eq. (A4) can be combined to yield:

d

dt

∫
dΓH0∆0Φ(p; r, t) = 0. (A5)

Appendix B: Asymptotic analysis of Q(T̄ , η = 0)

In the 2D limit (η = 0), the asymptotic behavior ofQ(T̄ , η)
can be studied analytically. Setting η = 0, the Erfcx func-
tions appearing in the collision integral (see Eq. 66) evaluate
to unity and the expression in the brackets in the second line
simply becomes [χ1−χ2]2 = sin2 ξ sin2 ν [1−| sin(φ−φ′)|].
This will result in significant simplifications.

1. Low temperature expansion

In the low temperature regime, µ̄/T̄ →∞, we may use the
following identity:

lim
µ̄/T̄→∞

(µ̄/T̄ )−3

∫ ∞
0

ρ5 dρ

[
1

cosh(ρ− µ̄/T̄ ) + cosh(b1ρ)

× 1

cosh(ρ− µ̄/T̄ ) + cosh(b2ρ)

]
=

4π2

3
δ(b1) δ(b2). (B1)

The above identity can be established by observing that for
large β̄µ̄ the integrand is exponentially small unless ρ ∼ β̄µ̄
and b1, b2 ∼ (β̄µ̄)−1. In the limit β̄µ̄ → ∞, the right hand

side becomes proportional to δ(b1) δ(b2). The proportionality
constant can be found by integrating the left hand side over b1
and b2, which gives the 4π2/3 pre-factor. Identifying b1 and
b2 as sin2 ξ sin 2ν cosφ and sin2 ξ sin 2ν cosφ′ respectively,
we can carry out the ξ and ν integrations using the δ-functions
and we finally get:

Q(T̄ → 0, η = 0) ≈ C (µ̄/T̄ )3

〈〈p̄4〉〉
, (B2)

where C is given by:

C =
32

9

∫ 2π

0

dφ

∫ 2π

0

dφ′
[1− | sin(φ− φ′)|] sin(φ− φ′)2

cos2 φ+ cos2 φ′
,

(B3)
and is equal to 19.176999 to six digits. 〈〈p̄4〉〉 can be found
analytically with little effort and we get:

〈〈p̄4〉〉 = −8T̄ 3 Li3(−eµ̄/T̄ ). (B4)

Using the asymptotic expansion of Li3(−x) for large x and
the low temperature expansion of µ̄ mentioned after Eq. (34),
the following low temperature expansion follows:

−Li3(−eµ̄/T̄ ) = 1/(6T̄ 3) + π2/(12T̄ ) +O(T̄ ). (B5)

Combining the last four equations, we finally get:

Q(T̄ → 0, η = 0) ≈ 2

3
C T̄ 2 ≈ 12.784666 T̄ 2, (B6)

to leading order. This asymptotic limit is shown in Fig. 5e as
a blue dashed line and agrees well with the numerical result.

2. High temperature expansion

The analysis of the classical limit (β̄µ̄ → 0) is simpler.
First, we rewrite the hyperbolic functions in the denominator
as cosh(ρ−ln z) ≡ eρ/(2z)+(z/2)e−ρ. Here, z ≡ exp(µ̄/T̄ )
is the fugacity and goes to zero in the high temperature limit.
Thus, cosh(ρ − ln z) ≈ eρ/(2z) to leading order. The de-
nominator of Eq. (66) is dominated by the first cosh term.
Neglecting the second cosh terms, the integrations become el-
ementary and we get:

Q(T̄ → 0, η = 0) ≈ 8(8− 3π)z2T̄ 5

〈〈p̄4〉〉
. (B7)

The fugacity in the classical limit can be found using Eq. (34)
and we get z = 1/(2T̄ 2) + O(T̄−4). Using the asymptotic
expansion −Li3(−z) = z +O(z2), we finally find:

Q(T̄ →∞, η = 0) ≈ 1

2
(3π − 8) ≈ 0.712389. (B8)

This asymptotic limit is shown in Fig. 5e as a red dashed line
and is in agreement with the numerical result.
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Appendix C: Matrix elements of the evolution matrix in the
monopole basis

The linear response analysis of the CBV equation using
extended variational basis sets requires calculation of a large
number of matrix elements. This task, however, can be sim-
plified since the angular integrations appearing in expression
for the matrix elements of M, Σ and H0 can be carried out an-
alytically using the symmetries of the basis functions and the
equilibrium state. The problem reduces to the evaluation of a
two-dimensional integral over p̄ and r̄ for each matrix element
which can be done numerically accurately and efficiently.

In this appendix, we provide readily computable formulas
for the matrix elements in the monopole basis. We define the
shorthands Rα ≡ 2mα + kα, Pα ≡ 2nα + kα for given basis
function φα. Rα and Pα count the powers of r and p appear-
ing in φα respectively.

1. Matrix elements of M

By definition, we have:

Mαβ =

∫
dΓ̄ ∆0(p̄, r̄)φαφβ

=

∫
(2π) r̄ dr̄

1

(2π)2
p̄ dp̄∆0(p̄, r̄) r̄Rα+Rβ

× p̄Pα+Pβ

∫ 2π

0

(cosψ)kα+kβ dψ

=
E(kα + kβ)(kα + kβ)!

2kα+kβ

[(
kα+kβ

2

)
!
]2
[∫

r̄Rα+Rβ+1

× p̄Pα+Pβ+1 ∆0(p̄, r̄) dr̄ dp̄

]
, (C1)

where E(n) = 1 for even n and E(n) = 0 for odd n. For
future reference, we define:

h(n) =
E(n)n!

2n [(n/2)!]
2 , (C2)

and:

Imn [A(p̄, r̄)] =

∫
A(p̄, r̄) r̄m+1 p̄n+1 dr̄ dp̄, (C3)

using which we can write Mαβ = h(kα + kβ) I
(Rα+Rβ)

(Pα+Pβ) [∆0].

2. Matrix elements of H0

First, we evaluate the Poisson bracket {φβ , H̄0}:

{φβ , H̄0} = ∇r̄φβ · ∇p̄H̄0 −∇p̄φβ · ∇r̄H̄0

= γp (p̄ · ∇r̄)φβ − γr (r̄ · ∇p̄)φβ

= γp
[
2mβ φ(mβ−1,nβ ,kβ+1)

+ kβ φ(mβ ,nβ+1,kβ−1)

]
− γr

[
2nβ φ(mβ ,nβ−1,kβ+1)

− kβ φ(mβ+1,nβ ,kβ−1)

]
, (C4)

where:

γr ≡ r̄−2r̄ · ∇r̄H̄0 = 1 + r̄−2r̄ · ∇r̄Σ̄0,

γp ≡ p̄−2p̄ · ∇p̄H̄0 = 1 + p̄−2p̄ · ∇p̄Σ̄0. (C5)

Plugging Eq. (C4) into the definition of (H0)αβ , we get:

(H0)αβ =

∫
dΓ̄ ∆0 φα{φβ ,H0}

= [2mβ h(kα + kβ + 1) + kβ h(kα + kβ − 1)]

× I(Rα+Rβ−1)

(Pα+Pβ+1) [γp∆0]

− [2nβ h(kα + kβ + 1) + kβ h(kα + kβ − 1)]

× I(Rα+Rβ+1)

(Pα+Pβ−1) [γr∆0]. (C6)

3. Matrix elements of Σ

By definition,

Σ̄[∆0φβ ] = λd

∫
d2p̄′

(2π)2
u(|p̄− p̄′|, η) ∆0(p̄′, r̄)φβ(p̄′, r̄).

(C7)
It is easy to verify that a simultaneous rotation of r̄ and p̄
leaves Σ̄[∆0φβ ] invariant, so that Σ̄[∆0φβ ] may only depend
on r̄, p̄ and φ, the angle between r̄ and p̄. Let cosψ = (p̄ ·
p̄′)/(p̄p̄′) and cosφ = (r̄·p̄)/(r̄p̄), so that r̄·p̄′ = r̄p̄′ cos(φ+
ψ). Expanding u(|p̄− p̄′|, η) in a cosine series,

u(|p̄− p̄′|, η) =

∞∑
n=0

u(n)(p̄, p̄′; η) cos(nψ), (C8)

where:

u(n)(p̄, p̄′) =
1

π(δn,0 + 1)

×
∫ 2π

0

dψ u
(√

p̄2 + p̄′2 − 2p̄p̄′ cosψ, η
)

cosnψ, (C9)

and plugging into Eq. (C7), we get:

Σ̄[∆0φβ ](p̄, r̄, φ) = λd

∫
p̄′ dp̄′

2π
∆0(p̄′, r̄) p̄′Pβ r̄Rβ

×
∞∑
n=0

u(p̄, p̄′; η)

∫ 2π

0

dψ

2π
cos(nψ) cos(φ+ ψ)kβ . (C10)
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The angular integration can be evaluated using contour inte-
gral techniques:

∫ 2π

0

dψ

2π
cos(nψ) cos(φ+ ψ)k

=

[
k!

2k
θ(k − n)E(k + n)[(
k−n

2

)
!
] [(

k+n
2

)
!
]] cos(nφ), (C11)

where θ(n) = 1 if n ≥ 0 and θ(n) = 0 otherwise. We denote
the numerical prefactor in the brackets of the above equation
by g(n, k). Plugging this into Eq. (C10), we get:

Σ̄[∆0φβ ](p̄, r̄, φ) = λd

kβ∑
n=0

Q
(n)
β (p̄, r̄) cos(nφ), (C12)

where:

Q
(n)
β (p̄, r̄) = −g(n, kβ) r̄Rβ

∫
dp̄′

2π
∆0(p̄′, r̄) p̄′(Pβ+1)

× u(n)(p̄, p̄′; η). (C13)

The last integral can be easily evaluated numerically. Also,
note that we only need u(n) up to n = kβ in order to evaluate
Σ̄[∆0φβ ] exactly. This is due to the fact that g(n, kβ) vanishes
for n > kβ . Having evaluated Σ̄[∆0φβ ], Σαβ can be evaluated
readily by appealing to its definition:

Σαβ = λd

kβ∑
n=0

(
[2mα g(n, kα + 1) + kα g(n, kα − 1)]

× I(Rα−1)
(Pα+1) [Q

(n)
β ∆0γp]− [2nα g(n, kα + 1) (C14)

+ kα g(n, kα − 1)] I
(Rα+1)
(Pα−1) [Q

(n)
β ∆0γr]

)
. (C15)

4. Matrix elements of Ic

The evaluation of the matrix elements of the linearized col-
lision integral operator is the most computationally expensive
part of the calculation. Once Hartree-Fock self-energy correc-
tions are taken into account, deviation of quasiparticle disper-
sion from the bare quadratic dispersion makes the calculations
even more challenging. The collision integrals are commonly
evaluated with bare quadratic dispersions. This is justified in
the Boltzmann equation limit, where mean-field corrections
are neglected altogether. Here, since we have included mean-
field effects on the dynamics, we must also use the dressed
quasiparticles dispersion in order to satisfy conservation of
energy. In order to do this in a numerically tractable way,

we have found that the quasiparticle dispersions can be ap-
proximated well using a local effective mass approximation
(LEMA) within an error of less than 2 percents. To this end,
we approximate the dressed quasiparticle energies as:

H̄0(p̄, r̄) ≈ ε0(r̄) +
p̄2

2m∗(r)
+
r̄2

2
, (C16)

where:

ε0(r̄) = Σ̄0(r̄; 0),

m∗(r̄) =

[
1 + ∂2

p̄ Σ̄0(r̄; p̄)
∣∣∣
p̄=0

]−1

. (C17)

As we will see shortly, this approximation allows us to put
the collision integral into a simple form suitable for numerical
treatments. As a first step, we go to the center of mass frame
of the colliding particles and define:

p̄ =
P̄

2
+ q̄, p̄1 =

P̄

2
− q̄,

p̄′ =
P̄′

2
+ q̄′, p̄′1 =

P̄′

2
− q̄′, (C18)

using which we get:

d2r̄
d2p̄

(2π)2

d2p̄1

(2π)2

d2p̄′

(2π)2

d2p̄′1
(2π)2

(2π)δ(∆Ē) (2π)2δ(∆P̄)

→ m∗(r̄)

2
r̄ dr̄ dψ

P̄ dP̄

2π

q̄ dq̄

2π

dφ

2π

dφ′

2π
, (C19)

where φ, φ′ and ψ are defined as cosφ = q̄ · P̄/(q̄P̄ ),
cosφ′ = q̄′ · P̄/(q̄′P̄ ), and cosψ = r̄ · P̄/(r̄P̄ ). Note that
P̄ ≡ P̄′ and q̄ ≡ q̄′ in the rest of the integrand due to con-
servation of momentum and energy. The scattering amplitude
M̄ = λd[u(|p̄−p̄′|, η)−u(|p̄−p̄′1|, η)]→ λd[u(2q̄| sin[(φ−
φ′)/2]|, η) − u(2q̄| cos[(φ − φ′)/2]|, η)]. The product of the
equilibrium distribution functions, n0 n0,1(1− n′0)(1− n′0,1)
can be conveniently written as:

n0 n0,1(1− n′0)(1− n′0,1)

→ 1

4

1

coshE + cosh γ

1

coshE + cosh γ′
,

where E = β̄(P̄ 2/4 + q̄2)/[2m∗(r̄)] + β̄r̄2/2 − β̄µ̄, γ =
β̄P̄ q̄ cosφ/[2m∗(r̄)], γ′ = β̄P̄ q̄ cosφ′/[2m∗(r̄)]. The an-
gle ψ is only present in S[φα]S[φα]. Therefore, the in-
tegration over ψ is immediate and elementary, which we
evaluate using Mathematica and define Sαβ(r̄, P̄ , q̄, φ, φ′) ≡∫

dψ S[φα]S [φβ ]. The integral can be put in a more
useful form using a spherical change of variables, P̄ =
(8ρ/β̄)1/2 sin ξ cos ν, q̄ = (2ρ/β̄)1/2 sin ξ sin ν and r̄ =
(2ρ/β)1/2 cos ξ, where ρ ∈ [0,∞), ν ∈ [0, π/2] and ξ ∈
[0, π/2]. The final expression is:
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Iαβ =− (2N)
1
2λ2

d

8(2π)2 β̄Nα+Nβ+3

∫ ∞
0

ρ2 dρ

∫ 2π

0

dφ

2π

∫ 2π

0

dφ′

2π

∫ π
2

0

dξ sin3 ξ cos ξ

∫ π
2

0

dν sin 2ν

× Sαβ(
√

2ρ cos ξ,
√

8ρ sin ξ cos ν,
√

2ρ sin ξ sin ν, φ, φ′)m∗(r̄)

×
[√

β̄ u

(
2
√

2ρ/β̄ sin ξ sin ν | sin[(φ− φ′)/2]|, η
)
−
√
β̄ u

(
2
√

2ρ/β̄ sin ξ sin ν | cos[(φ− φ′)/2]|, η
)]2

×
{[

cosh
(
ρ sin2 ξ/m∗(r̄) + ρ cos2 ξ + β̄ε0(r̄)− β̄µ̄

)
+ cosh

(
ρ sin2 ξ sin 2ν cosφ/m∗(r̄)

)]
× (φ↔ φ′)

}−1
,

(C20)

where Na(b) = ma(b) + na(b) + ka(b) and r̄ ≡
√

2ρ/β̄ cos ξ
in m∗(r̄) and ε(r̄). We evaluate the above 5-dimensional in-
tegral for all pairwise combination of basis functions using a
numerical Monte-Carlo integration with 5× 108 points which
we found to yield a relative statistical error of less than 10−3

in all cases.

Appendix D: Matrix elements of the evolution matrix in the
quadrupole basis

In this appendix, we provide readily computable expres-
sions for various matrix elements in the quadrupole basis
by carrying out the angular integrations analytically. For a
given quadrupole basis function ξiφα, we define the short-
hand (µi, νi) as the number of powers of r and p present in
ξi respectively, i.e. (µ1, ν1) = (2, 0), (µ2, ν2) = (1, 1), and
(µ3, ν3) = (0, 2).

1. Matrix elements of M

The angular integrations in M can be easily carried out us-
ing the parametrization cosφ = r̂ · x̂ and cosψ = r̄ · p̄/(r̄p̄).
In this variables, we get ξi = r̄µi p̄νi cos(2φ + νjψ). The
angular integration are elementary and we find:

Mij
αβ =

∫
dΓ̄ ∆0 ξi ξj φαφβ

=
1

2
g(|νi − νj |, kα + kβ) I

(Rα+Rβ+µi+µj)

(Pα+Pβ+νi+νj)
[∆0].

(D1)

2. Matrix elements of H

As a first step, we evaluate the Poisson bracket
{ξjφβ , H̄0} = ξj{φβ , H̄0}+φβ{ξj , H̄0}. The expression for
{φβ , H̄0} is known from the previous appendix (Eq. C4). We
can write {ξj , H̄0} = Xjk(p̄, r̄) ξk (sum over k is implied),

where:

Xjk =


0 2γp 0

−γr 0 γp

0 −2γr 0

 . (D2)

Therefore, we get:

(H0)
ij
αβ =

∫
dΓ̄ ∆0 ξi φα{ξjφβ , H̄0}

=

∫
dΓ̄ ∆0 φα{φβ , H̄0} ξiξj︸ ︷︷ ︸

(H0)ijαβ,1

+

∫
dΓ̄ ∆0 φαφβ Xjk ξi ξk︸ ︷︷ ︸

(H0)ijαβ,2

.

(D3)

The angular integrations in (H0)ijαβ,1 can be most easily eval-
uated using the parametrization defined earlier, cosφ = r̂ · x̂
and cosψ = r̄ · p̄/(r̄p̄). The final result is:

(H0)ijαβ,1 =
1

2

[
2mβ g(|νi − νj |, kα + kβ + 1)

+ kβ g(|νi − νj |, kα + kβ − 1)
]
I

(Rα+Rβ+µi+µj−1)

(Pα+Pβ+νi+νj+1) [∆0 γp]

− 1

2

[
2nβ g(|νi − νj |, kα + kβ + 1)

+kβ g(|νi−νj |, kα+kβ−1)
]
I

(Rα+Rβ+µi+µj+1)

(Pα+Pβ+νi+νj−1) [∆0 γr].

The angular integrations in (H0)ijαβ,2 are similar to those in
(M)ijαβ and the result is:

(H0)ijαβ,2 =
1

2
g(|νi − νk|, kα + kβ)

× I
(Rα+Rβ+µi+µk)

(Pα+Pβ+νi+νk) [∆0Xjk]. (D4)
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3. Matrix elements of Σ

Similar to the monopole case, the first step is evaluating
Σ̄[∆0ξjφβ ]:

Σ̄[∆0ξjφβ ] =

λd

∫
p̄′dp̄′

2π

∞∑
n=0

u(n)(p̄, p̄′; η) ∆0(p̄′, r̄) r̄Rβ+µj p̄′Pβ+νj

×
∫

dψ′

2π
coskβ (ψ + ψ′) cos[2φ+ νj(ψ + ψ′)] cos(nψ′),

(D5)

where we have expressed u(|p̄ − p̄′|, η) as a cosine se-
ries like before. The ψ′ integration can be conveniently
carried out using the contour integral technique and gives
g̃(νj , n, kβ) cos(2φ) cos(nψ)− h̃(νj , n, kβ) sin(2φ) sin(nψ),
where:

g̃(0, n, k) ≡ g(n, k),

g̃(1, n, k) ≡ g(n, k + 1),

g̃(2, n, k) ≡ 2g(n, k + 2)− g(n, k),

h̃(ν, n, k) ≡ g̃(ν, n, k)− g(ν + n, k). (D6)

Plugging this back into Eq. (D5), we get:

Σ̄[∆0ξjφβ ] =

kβ+2∑
n=0

Q
(n)
β,j(p̄, r̄)

[
g̃(νj , n, kβ) cos(2φ)

× cos(nψ)− h̃(νj , n, kβ) sin(2φ) sin(nψ)
]
, (D7)

where:

Q
(n)
β,j(p̄, r̄) = λd

∫
dp̄′

2π
r̄Rβ+µj p̄′Pβ+νj+1

× u(p̄, p̄′; η) ∆0(p̄′, r̄). (D8)

The last integral can be evaluated easily numerically. The fi-
nal result can be expressed easily using using last two expres-
sions:

(
ΣF
)ij
αβ

=

kβ+2∑
n=0

[
1

2
G

(νk,n,kα)
(νj ,n,kβ) I

(Rα+µk)
(Pα+νk) [∆0Q

(n)
β,jXik]

+
1

2

(
2mαG

(νi,n,kα+1)
(νj ,n,kβ) + kαG

(νi,n,kα−1)
(νj ,n,kβ)

)
× I(Rα+µi−1)

(Pα+νi+1) [∆0Q
(n)
β,jγp]

+
1

2

(
2nαG

(νi,n,kα+1)
(νj ,n,kβ) + kαG

(νi,n,kα−1)
(νj ,n,kβ)

)
× I(Rα+µi+1)

(Pα+νi−1) [∆0Q
(n)
β,jγr]

]
, (D9)

where we have defined the shorthand notation G(ν1,n1,k1)
(ν2,n2,k2) =

g̃(ν1, n1, k1) g̃(ν2, n2, k2) + h̃(ν1, n1, k1) h̃(ν2, n2, k2).

4. Matrix elements of Ic

The matrix elements of the collision integral in the
quadrupole basis is identical in form to those of the monopole
basis (Eq. C20). The only differences are (1) Sαβ must be
replaced with:

Sijαβ(r̄, P̄ , q̄, φ, φ′) ≡
∫

dθ

2π
dψ S[ξiφα] S[ξjφβ ], (D10)

where we introduced an extra angle cos θ = ex · P̄/P̄ , and (2)
the pre-factor β̄Nα+Nβ+3 → β̄Nα+Nβ+5 in the denominator
due to the extra powers of β̄−1 introduced by ξi and ξj . The
definition of Nα(β) is the same as before.

Appendix E: Calculation of the collision integrals with exact
Hartree-Fock quasiparticle dispersions

0 1 2
10−5

10−4

10−3

10−2

10−1

0 1 2 0 1 2

(a) (b) (c)

FIG. 15. (Color online) The damping rate of the monopole oscilla-
tions in 2D and with N = 2200 particles. (a) T/TF = 0.5, (b)
T/TF = 1.0 and (c) T/TF = 1.5. The (light) solid colored lines
are the previously discussed result obtained using the local effective
mass approximation. The dashed lines denote approximate solutions
obtained by relaxing the conservation of energy (from top to bottom,
σ = 0.05, 0.02, 0.01 and 0.005). The solid black line is the extrap-
olation to σ = 0 (the exact result).

In Sec. C 4, we simplified the expression for the collision
integral matrix elements using the local effective mass ap-
proximation (LEMA). Although we found this scheme to be
a decent approximation in the weakly interacting regime (the
approximate dispersions lie within a few percents of the exact
Hartree-Fock dispersions), one may argue that an exact treat-
ment is necessary for stronger interactions. In particular, this
may have important consequences when one is looking at the
effects that crucially depend on self-energy corrections, such
as the damping of the nodeless monopole mode. In this sec-
tion, we discuss this issue and present numerical justification
for the reliability of LEMA.

The major simplification resulting from LEMA is the pos-
sibility of an analytic treatment of the δ-function in the col-
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lision integral associated to the conservation of energy (see
Eq. C19). In that case, LEMA simply yields q = q′, where
q and q′ are the magnitude of the momenta of the initial and
final scattering pairs in the center of mass frame. Without a
(local) quadratic dispersion, this simple result does not hold
anymore and in general, there is no easy way of treating the
δ-function analytically since the quasiparticle dispersions are
evaluated numerically. Here, we introduce a simple numerical
approach to overcome this difficulty. Using a limiting process
to to define the delta functions,

δ(∆Ē) = lim
σ→0

1√
2πσ

e−∆Ē2/(2σ2), (E1)

we replace the δ-function with Gaussians and calculate the
collision integrals for various values of σ. We find the σ → 0
limit by extrapolation. This approach is considerably more
computationally demanding than LEMA, however, it yields an
accurate calculation of the collision integral matrix elements.
The integrals are six dimensional in this case (the variables
being r̄, P̄ , q̄, q̄′, φ and φ′) since q and q′ may assume different
values now.

We implemented the above method for both monopole and
quadrupole oscillations within a 2nd order basis set. The ex-
trapolation is carried out using a polynomial fit. Fig. 15 shows
the damping of monopole oscillations obtained using several
choices of σ, the extrapolated result, and the LEMA result
for reference. The matching between the effective mass ap-
proximation and the exact result is excellent up to λd ∼ 1.
The LEMA result, however, deviates from the exact result for
λd & 1. Nonetheless, we find γexact

mon < 10−3ω0 and our
conclusion about the smallness of the damping of the node-
less monopole mode remains valid. Finally, we note that the
beyond-LEMA refinement to the prediction for the frequency
of monopole oscillations is much smaller (a relative correc-
tion of about 10−6). This is due to the fact that the frequency
shift essentially results from the self-energy corrections on the
dynamical side of the CBV equation which is already treated
exactly.
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