
This is the accepted manuscript made available via CHORUS, the article has been
published as:

Diagnostic for phases and quantum critical regions using
deviations from the local fluctuation-dissipation theorem

E. Duchon, Y. Kato, and N. Trivedi
Phys. Rev. A 86, 063608 — Published  6 December 2012

DOI: 10.1103/PhysRevA.86.063608

http://dx.doi.org/10.1103/PhysRevA.86.063608


Diagnostic for Phases and Quantum Critical Regions using Deviations from the Local
Fluctuation-Dissipation Theorem

E. Duchon1, Y. Kato2, and N. Trivedi1
1Department of Physics, Ohio State University, Columbus, Ohio 43210, USA and

2Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA

We propose that the temperature dependence of a single quantity R = κi/δn
2
i , the ratio of the

local compressibility to the local number fluctuations, can be used to map out the finite temperature
phase diagram, diagnose the critical region around a quantum phase transition, and identify critical
points belonging to different universality classes. We test our proposal using state-of-the-art large-
scale quantum Monte Carlo simulations of the two-dimensional Bose Hubbard model. Our results
have implications for recently developed single site imaging experiments.

I. INTRODUCTION

Quantum phase transitions are dramatic events where
quantum fluctuations drive one ground state into an en-
tirely different ground state upon tuning a parameter in
the Hamiltonian. These phenomena are observed in con-
densed matter systems and ultracold atomic gases and
are even relevant to the quantum fluctuations that give
birth to galaxies. Quantum gases in optical lattices em-
ulate Fermi[1–7] and Bose[8, 9] Hubbard models and of-
fer a unique platform to study quantum phases and the
phase transitions between them since the tuning param-
eter t/U , the tunneling t of an atom from one well to
the next relative to the interaction U between atoms,
can be easily tuned by varying the laser intensity and
magnetic fields[10]. Not only are these phases with their
associated excitations interesting, but the quantum crit-
ical point (QCP) that exists at zero temperature and at
a special value of t/U leaves a definite footprint in the
thermodynamics and response functions for a large range
of finite temperatures. This quantum critical region is
dominated by large fluctuations arising from the new de-
grees of freedom that must form as the system transits
from one phase to the other[11]. Here we focus on iden-
tifying this region using fundamental thermodynamic re-
lations. Theoretical investigations around the quantum
critical point, which occurs at t/U of order unity, remain
extremely challenging because of the absence of a small
parameter.

For the Bose Hubbard model (BHM), the detection
and characterization of the superfluid and insulating
phases has been inferred from four primary classes of
experiments: (a) Momentum distribution function ob-
tained from time-of-flight observations of the expand-
ing clouds[9, 12–14]; (b) Energy gap of the Mott phase
probed by the location of resonances in the excita-
tion spectrum using a potential gradient[9] and exci-
tation spectrum of the superfluid probed using Bragg
spectroscopy[15, 16]; (c) Global number fluctuations
measured by magnetic resonance imaging techniques to
study number squeezing and suppression of spin flipping
collisions across the transition and in the Mott state[17];
(d) Time scales required for equilibration in the Mott
phase using mass transport measurements[18–21].

In principle, the temperature scales bounding the
quantum critical region could be extracted from a combi-
nation of the techniques discussed above, but in practice
the global nature of these probes makes the information
necessary to map the phase diagram from inhomogeneous
trapped gases difficult to disentangle.

A new class of experiments have the remarkable capa-
bility to probe the atomic gases in optical lattices in situ
on an atomic scale[19, 20, 22, 23]. These experiments
have tremendous potential since they provide spatially-
resolved information about each of the phases that ex-
ist within a single, inhomogeneous experimental system.
These recently developed local microscopic and spectro-
scopic techniques are ideally suited to probe the large
fluctuations across the quantum phase transition. In-
deed, several investigations into scaling local quantities
to identify the QCPs have been published [24–27].

In this article, we provide the theoretical framework for
the application of a local fluctuation-dissipation theorem
to experiments to gain fundamental insights into the na-
ture of both gapped and gapless phases, their low-lying
excitations and quantum criticality. Motivated by the
success of recent experiments to access the local density
in situ, we define a local dissipation-fluctuation (LDF)
ratio R as the ratio of the local compressibility κi to lo-
cal number fluctuations δn2

i at site i, defined by

R = κi/δn
2
i (1)

κi = ∂ni/∂µ

δn2
i = 〈n̂2

i 〉 − 〈n̂i〉2,

where ni = 〈n̂i〉 is the average density on site i.
Although other work has used the LDF ratio for ther-

mometry [26, 28, 29], we go well beyond thermometry by
exploiting its features to construct the full finite temper-
ature phase diagram from the single quantity R.

We test our proposal on the 2D BHM using large-scale
QMC simulations and show that remarkably, from the
temperature dependence of this single quantity R(T ), it
is possible to
(i) identify the onset of quantum effects T ∗,
(ii) the crossover temperature T∆ to the Mott phase,
(iii) the superfluid transition temperature Tc.

This allows us to determine the quantum critical region
bounded by the temperature scales T ∗, T∆ and Tc. The
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FIG. 1. (Color online) Identifying the Quantum Critical Region using Deviations from the Fluctuation Dissipation Theorem.
(a) and (b) show the characteristic behavior of R(T ) obtained using QMC at a MF QCP and a 3D XY QCP, respectively,
and clearly distinguishes between the two universality classes. At a MF QCP, the critical behavior of R is determined by
the slow convergence of δn2

i and approaches a constant at low temperatures while at a 3D XY QCP, R’s critical behavior is
dominated by the compressibility’s power law critical behavior, indicated by the dashed red line. The dashed black line is the
high temperature behavior. Panel (c) shows the T = 0 phase diagram of the BHM with the parameters of each figure indicated.

thermodynamic and response functions in the quantum
critical region should obey scaling based on exponents
characteristic of the universality class of the QPT.

There are two universality classes of QCPs in the BHM
at T = 0 in the chemical potential µ/U – t/U plane:
a generic mean field (MF) QCP and the particle-hole
symmetric QCP at the tip of the each Mott lobe in the 3D
XY universality class[8]. We show that the universality
class controlling the fluctuations in the quantum critical
region can be deduced from the behavior of R(T ) (see
Fig. 1). This is one of our central results.

There have been recent attempts to scale the experi-
mental data for number fluctuations near a QCP, how-
ever, the error bars on the critical exponents are still
rather large[27]. The coarse-grained analysis using R(T )
could serve as a precursor to scaling by identifying the
scalable regime of the experimental data which may im-
prove the error bars on the exponents.

This explicit demonstration of the utility of R(T )
within the BHM opens up the possibility of finding such
phase diagrams for general quantum Hamiltonians di-
rectly from experimental data. We thus provide the
crucial missing link in the grand challenge to emulate
strongly correlated materials such as the high temper-
ature superconductors using ultracold atoms in optical
lattices[30].

The quantum fluctuation-dissipation theorem and
R(T ) are discussed in section 2. In section 3, the BHM
and generic properties of R(T ), including at high temper-
atures and at the onset of quantum effects, are described.
Characteristic traces of R(T ) in the superfluid and Mott
insulator states and extraction of Tc and T∆ are described
in section 4. Using R(T ), a finite temperature phase di-
agram is constructed and the quantum critical region is
described in section 5 and finite size effects are discussed
in section 6.

II. THE FLUCTUATION-DISSIPATION
THEOREM

The quantum fluctuation-dissipation theorem (FDT)
describes the response of a system defined by the Hamil-
tonian Ĥ to a perturbation coupled to an operator Â
within the system. It relates the imaginary part of the
response function χ′′(q, ω) to the dynamic structure fac-
tor S(q, ω) at inverse temperature β = 1/T , wavevector q
and frequency ω. In the following, we derive the quantum
FDT and discuss the limiting cases of high temperature
and of [Â, Ĥ] = 0 before turning to its application to
ultracold atom systems and the LDF ratio R(T ).

Consider a quantum system of volume V defined
by Ĥ with many body states and energies Ĥ |Ψn〉 =

εn |Ψn〉 that is perturbed by a probe Ĥ ′(t). We as-
sume that the external perturbation FA(t) couples to

Â via Ĥ ′(t) = −ÂFA(t). For a spatially varying probe

Ĥ ′(t) = −
∫
drÂ(r)FA(r, t) = − 1

V

∑
q Â−qFq(t).

The response 〈B̂〉 to linear order in the perturbation is

〈B̂〉(t) =
∫∞
−∞ dt′χBA(t − t′)FA(t′) where χBA(t − t′) =

iθ(t − t′)
〈[
B̂(t), Â(t′)

]〉
. By using a spectral represen-

tation in terms of the exact eigenstates of Ĥ and the
Heisenberg representation of the time dependent opera-
tors, we obtain

χBA(q, ω) =
1

V

∑
m,n

e−βεm

Z

[
(A−q)mn(Bq)nm
ω + iη + εnm

− (Bq)mn(A−q)nm
ω + iη − εnm

]
(2)

where εnm = εn−εm and η = 0+ is a small positive num-
ber to ensure convergence as t → ∞. The well-known

identity lim
η→0+

1

x± iη
= P (

1

x
) ∓ iπδ(x) yields the imagi-

nary part of the response function,

χ′′BA(q, ω) =
π

V

∑
m,n

e−βωm

Z
[(A−q)mn(Bq)nmδ(ω − εnm)

−(Bq)mn(A−q)nmδ(ω + εnm)] . (3)
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Next we consider the corresponding correlation func-
tion defined as

SBA(r, t; r′, t′) = 〈B̂(r, t)Â(r′, t′)〉 (4)

SBA(q, t− t′) =
1

V
〈B̂q(t)Â−q(t′)〉 (5)

for a translationally invariant system. Within the spec-
tral representation we obtain

SBA(q, ω) =
2π

V

∑
m,n

e−βεm

Z
(Bq)mn(A−q)nmδ(ω − εnm).

(6)
By exchanging the indices in the second term in Eq.3,

we obtain the quantum FDT

χ′′BA(q, ω) =
π

V
(1− e−βω)∑

m,n

e−βωm

Z
(Bq)mn(A−q)nmδ(ω − ωnm)

=
1− e−βω

2
SBA(q, ω). (7)

A. Static Structure Factor

The definition of the static structure factor is

SBA(q) ≡ SBA(q, t = 0) =

∫ ∞
−∞

dω

2π
SBA(q, ω) (8)

=

∫ ∞
−∞

dω

2π

2

1− e−βω
χ′′BA(q, ω).

Using the oddness property χ′′BA(−ω) = −χ′′BA(ω) yields

SBA(q) =
1

V
〈B̂qÂ−q〉 =

∫ ∞
0

dω

π
coth

(
βω

2

)
χ′′BA(q, ω).

(9)

B. The High Temperature Limit of the Quantum
FDT

At temperatures kBT � ~ω larger than any character-

istic frequencies of the system, coth
(
βω
2

)
→ 2/βω and

the static structure factor reduces to

SBA(q) =
2

β

∫ ∞
0

dω

π

χ′′BA(q, ω)

ω

= Tχ′BA(q, ω = 0) (10)

where we have used the Kramers-Krönig relation

χ′BA(q, ω) = P
∫∞
−∞

dω′

π
χ′′
BA(q,ω′)
ω′−ω to relate the real and

imaginary parts of the response function. Since χ′′ = 0
when ω = 0, we can replace χ′ by simply χ.

C. The Quantum FDT for Conserved Quantities

We use (i) the definition of the correlation function for
a conserved quantity, (ii) the quantum FDT, and (iii)
the Kramers-Krönig relation to finally derive χAA(q →
0, ω = 0) = βSAA(q → 0, t = 0).

A conserved quantity Â(q = 0) ≡ Â0 such as the to-

tal number of particles n̂(q = 0) =
∑

k â
†
kâk = N̂ , must

commute with the Hamiltonian
[
Â0, Ĥ

]
= 0. This im-

plies that the matrix element 〈Ψm |
[
Â0, Ĥ

]
| Ψn〉 = 0

or equivalently (εn − εm)(A0)mn = 0. If m 6= n, we must
have (A0)mn = 0 which results in

lim
ω→0

lim
q→0

χAA(q, ω) = lim
ω→0

2

V

∑
m,n

e−βεm

Z

[
εnm | (A0)mn |2

(ω + iη)2 − ε2nm

]
=0 (11)

using Eq. 2. Thus χAA(q = 0, ω → 0) = 0 if A0 is a
conserved quantity.

However, reversing the order of the limits generally
results in a finite result. For the case of a density pertur-
bation,

lim
q→0

lim
ω→0

χAA(q, ω) = lim
q→0

2

V

∑
m,n

e−βεm

Z

[
εnm | (Aq)mn |2

(ω + iη)2 − ε2nm

]
=n2κT . (12)

The last equality in Eq. 12 follows from the perturbation
Ĥ ′ = −

∫
drδn̂(r)δµ̂(r, t) = − 1

V

∑
q δn̂−qδµ̂q(t) which

produces the response

χnn(q→ 0, ω = 0) =
〈δn̂−q→0〉
δµ̂q→0

(ω = 0) (13)

=

(
∂n

∂µ

)
T,V

= n2κT (14)

where κT is the isothermal compressibility and n is the
average density.

Another way to understand the behavior of the quan-
tum FDT for a conserved quantity Â(q = 0, t) is to note

that both it and the correlation Â(q = 0, t)Â(−q = 0, t′)
are independent of t and t′ and hence its Fourier trans-
form must be a delta function in frequency. Thus from
Eq. 5

SAA(q = 0, ω) = 2πδ(ω)SAA(q = 0). (15)

From the quantum FDT Eq. 7 we obtain for a con-
served quantity with the correlation function Eq. 15,

χ′′AA(q = 0, ω) = (1− e−βω)πSAA(q = 0)δ(ω). (16)

By using the Kramers-Krönig relation we find

χAA(q = 0, ω → 0) = SAA(q = 0)

∫ ∞
−∞

dω
1− e−βω

ω
δ(ω)

= βSAA(q = 0) =
β

V
〈Â2

0〉 (17)
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and for particle number perturbations δN̂ = N̂ − 〈N̂〉

χδNδN (q = 0) =
β

V
〈δN̂2(q = 0)〉 = n2κT . (18)

We stress that while this result may look similar to the
high temperature limit of Eq. 10, because the particle
number is a conserved quantity it is valid even in the
quantum regime.

D. Probing Trapped Ultracold Atoms

The pioneering in situ local density measurements nar-
rows our focus to global number fluctuations δN2 =
〈N̂2〉− 〈N̂〉2 and local number fluctuations δn2

i = 〈n̂2
i 〉−

〈n̂i〉2 at site i. For global number fluctuations, the ω = 0
quantum FDT for commuting observables, with average
density n = 〈N̂〉/V and isothermal compressibility κT , is

n2κT =
∂n

∂µ
= β

δN2

V
· (19)

While Eq. 19 resembles the classical FDT, it is crucial to
note that it is valid at all temperatures.

There are two ways to probe the system locally. A
local perturbation of the chemical potential by δµi at site
i results in a local density variation δni. This procedure
leads to the single site form of the classical FDT κi L ≡
∂ni

∂µi
= β δn2

i , and is only valid at high temperatures since

the density on a given site is not conserved. Both this
local relation and the global FDT of Eq. 19 can be used
for thermometry [26, 28, 29], but their ability to reveal
other properties of the system is severely limited.

We propose that the LDF ratio R defined in Eq. 1 is
significantly more useful since it is sensitive to the na-
ture of the phase and to various energy scales. The es-
sential difference is that R involves κi = ∂ni/∂µ which
measures the local density change in response to a global
chemical potential µ variation, and as such is sensitive
to long range order and phase transitions, in contrast to
κi L which is the local response to a local perturbation.
Although we investigate R in a uniform system where
κi = n2κT , it is important to keep in mind its applicabil-
ity to inhomogeneous systems like trapped atomic gases.
Assuming the local density approximation, κi and R can
be extracted directly from the density profile n(µ(r)) [31]
of ultracold atoms in a trap and the phase diagram of
the homogeneous system, as a function of µ, can be con-
structed from R(T ).

E. The Ideal Gas

We describe the high temperature behavior of R(T ) by
deriving the compressibility and number fluctuations of
the ideal gas. From the equation of state PV = NkBT ,
we obtain

κT ≡ −
1

V

(
∂V

∂P

)
T,N

≡ 1

n2

∂n

∂µ
=
β

n
. (20)

For an ideal gas, the chemical potential is βµ =

− log
(

1
nλd

T

)
, where the thermal deBroglie wavelength

λT = h/
√

2πmkBT . For fixed µ, the high temperature
expansion of the density n(µ, T ) is

n =
eβµ

λdT
∼ T d/2

(
1 +

µ

kBT
+

1

2

(
µ

kBT

)2
)
, (21)

which implies that the temperature dependence of the
local compressibility is

n2κT =
∂n

∂µ
∼ T d/2−1

(
1 +

µ

kBT

)
. (22)

Using the FDT at high temperatures, we find

δn2 ≈ ∂n

∂µ
T ∼ T d/2

(
1 +

µ

kBT

)
. (23)

Thus, we find that in uniform 2D ideal gas the local
compressibility κi = n2κT is independent of temperature
and the number fluctuations δn2 scale linearly with T .
The ratio R = κi/δn

2 = n2κT /δn
2 is linear in T−1 as

dictated by the FDT and observed in Fig.2(a,b). Only
when quantum effects become important does R exhibit
non-trivial behavior.

III. R(T ) IN THE BOSE HUBBARD MODEL

In the following, we demonstrate the potential for R to
map out finite temperature phase diagrams by evaluating
R in the BHM. Bosons trapped in an optical lattice and
confined in a potential are described by

Ĥ =− t

z

∑
〈i,j〉

(â†i âj + âiâ
†
j)

+
U

2

∑
i

n̂i(n̂i − 1)−
∑
i

µin̂i. (24)

Here âi (â†i ) are boson annihilation (creation) operators,
〈. . .〉 indicates nearest neighbor sites, µi = µ0 − αr2

i is
the chemical potential on site i for a parabolic confining
potential, and t and U set the hopping and interaction
energy scales, respectively. We simulate the BHM at fi-
nite temperatures with worldline quantum Monte Carlo
(QMC) using the directed loop algorithm on up to 642

site lattices [13, 32]. We establish the essential ideas in
a uniform system (α = 0) for clarity, but the results are
easily extended to the nonuniform system by using the
local density approximation[33].

IV. QUANTUM PHASES

A. Classical Regime

At high temperatures, T � U � t, the system is in
a non-interacting classical regime. As in the ideal gas,
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FIG. 2. (Color online) Temperature Scales Encoded in R. Panels (a) and (b): High temperature behavior of compressibility
κi (circles) and number fluctuations δn2

i (squares) demonstrates that the LDF R = κi/δn
2
i is determined by δn2

i . The inset
in (b) replots the data as R(β) to exhibit the low temperature behavior. Panels (c) and (d): In the MI, κi is exponentially
suppressed as T → 0 while local quantum fluctuations maintain δn2

i at a finite value. The corresponding LDF R in the MI
shows a characteristic maximum near T∆ and decays exponentially at low T . Panels (e) and (f): In the SF, κi, δn

2
i and R all

approach a finite constant as T → 0. The peak in R occurs at βmax and agrees well with the inverse superfluid Tc (indicated by
the arrow) obtained from the superfluid density ρs (squares in (f)). In all panels, the inverse temperature β∗ indicates when R
deviates from the classical limit and is estimated from R(β∗)/β∗ = 0.95. The dashed black line indicates the high temperature
R ≈ β limit in (b,d,f) and horizontal bars indicate uncertainty in β∗ and βmax.

the inverse LDF ratio R−1 ≈ T behavior is governed by
the density fluctuations δn2

i , which increase linearly with
temperature (κi remains finite and independent of T ).
As T decreases to the regime U � T � t, the system
remains classical. Interaction effects cause both κi and
δn2

i to deviate from the high-T ideal gas limit but the
inverse LDF ratio remains approximately linear in T (see
Fig. 2(a,b)).

The quantity R(T ) can also be used to test for equili-
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bration of the system in different regions in a trap. For
bosons in optical lattices, the Mott-like center is some-
times observed to be at a significantly different temper-
ature from the superfluid or normal wings [18–21]. In
such situations, successive local measurements of R can
be useful to garner information about rate-limiting pro-
cesses for achieving equilibrium.
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extracted ∆ph (circles) and the results from T = 0 QMC
calculations by Capogrosso-Sansone, et al[34] (solid line).
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FIG. 5. (Color online) Determination of the Phase Diagram of a Quantum Hamiltonian using Local Observables: This figure
shows the density plot of LDF ratio R in the inverse temperature-chemical potential (βt − µ/U) plane at (a) t/U = 0.15 and
(b) t/U = 0.4. We determine the phase diagram from R(β) by marking two inverse temperature scales, β∗ = 1/T ∗ (solid black
squares) that indicates the onset of quantum effects, and βmax = 1/Tmax (solid grey circles) that delineate phase transitions or
crossovers. βmax agrees with the characteristic temperature scales in the superfluid 1/Tc (open red circles) and the MI phases
1/T∆ (open orange squares). These are calculated independently of R by examining ρs (ρs(Tc) = 0.1) and κi (κi(T∆)t = 0.05).
To highlight the peak at R(βmax), the density color scheme is normalized so that R(βmax) = 1 for each value of µ.

B. Onset of Quantum Effects T ∗

The deviation of R−1 from linear T behavior defines
the temperature T ∗ at which quantum effects first be-
come evident. In Ref. [35], such deviations have been ob-
served for a continuum system near the normal-superfluid
transition. The exact formula

R =
κi
δn2

i

= β

(
1 +

∑
i 6=j (〈n̂in̂j〉 − 〈n̂i〉〈n̂j〉)

V δn2
i

)
(25)

illustrates that any deviation of R from β is due to
inter-site density fluctuation correlations. At low density
n . 0.1 and small interactions U , the quantum statistics
of bosons leads to bunching (Fig. 3(a)), or positively cor-
related density fluctuations, and manifests as R > β. For
larger density and stronger interaction, the inter-boson
repulsion overwhelms the bosonic tendency to bunch and
density fluctuations between sites become anticorrelated,
causing R < β (Fig. 3(b)).

Understanding the behavior of κi and δn2
i , the observ-

ables composing the LDF ratio, is essential for under-
standing the signatures of the phases in R (see Fig. 2 for
typical MI and SF systems). The peak in R at a temper-
ature Tmax is a generic feature of the system entering an
ordered phase.

C. Mott Insulator T∆

The Mott gap suppresses the low energy excitations
contributing to the compressibility, causing κi to vanish
exponentially with the T = 0 energy gap to add a par-
ticle or a hole, whichever is smaller [8], as T → 0. The
energy gap extracted by fitting a decaying exponential
to κi or R agrees very well with QMC simulations [34]
deep in the MI (Fig. 4), but differ on approaching QCPs,
which we attribute mainly to finite temperature and size

effects. On the other hand, in spite of the Mott gap,
the local number fluctuations remain finite down to the
lowest temperatures due to local quantum fluctuations.

With increasing temperature, the MI crosses over into
the normal state with no transition and therefore shows
no specific signature in κi, so the peaks of R and κi do
not necessarily line up, as in Figs. 2(c,d). We identify
the temperature Tmax of the peak in R with the MI
crossover temperature T∆ as confirmed by QMC simu-
lations, where T∆ is somewhat arbitrarily defined by a
vanishingly small compressibility.

D. Superfluid Tc

The gapless collective excitations in the SF cause both
κi and δn2

i to approach a constant value as T → 0. As
the system condenses at Tc, critical fluctuations lead to
a peak or singularity in κi described by the BKT univer-
sality class for the normal-SF transition. Since the ap-
pearance of quasi-long-range phase coherence below Tc
does not affect the smoothly decreasing local δn2

i , the
peak in R mirrors the peak in κi near Tc and is shown
in Figs. 2(e,f). Comparison with the SF Tc calculated
by the vanishing the superfluid density, confirms that
Tmax ≈ Tc, illustrated in Fig. 2(f).

V. CRITICAL REGIME

The degeneracy temperature T ∗ depends on t/U and
µ/U and is independent of the underlying critical points.
This is illustrated for t/U = 0.15 and T = 0 in Fig. 5(a)
where the system progresses from vacuum to SF, then
hits the two QCPs bounding the n = 1 MI and returns
to SF as µ/U increases. In the temperature range be-
tween T ∗ and Tmax, the system is quantum critical and
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FIG. 6. (Color online) Finite Size Effects at the Superfluid-
Normal Transition at t/U = 0.08 and µ/U = 0.08. We ob-
serve significant finite size effects in R(T ) (a) and superfluid
density ρs (b). As the system size increases, the peak in R(T )
becomes more pronounced and the system becomes less su-
perfluid at a given temperature. The finite size effects are
smaller for a system further from the QCP at µ/U ' 0.084.

thermodynamic observables scale according to the uni-
versality class of the underlying QCP.

At the superfluid-normal finite temperature transition
far from QCPs, the narrowing quantum critical region re-
flects a shift to classical criticality. This is seen at large
µ in Fig. 5(a) and in Fig. 5(b) for t/U = 0.4, where the
proximity of the Mott lobe tipe at t/U ≈ 0.24 opens a
window of quantum critical fluctuations at intermediate
densities. The smaller region of quantum critical fluctu-
ations significantly shrinks the peak in κi and R at the
SF-normal phase transition and makes accurate identifi-
cation of Tmax difficult, as seen for both t/U values. We
use T ∗, T∆ and Tc to identify the quantum critical region
and propose that it is only appropriate to use tempera-
tures within this range for scaling analyses.

Furthermore, R distinguishes between the MF and 3D
XY QCPs in the BHM. Note that δn2

i is local and does
not exhibit any critical scaling while the compressibil-
ity scales like κi ∼ β1−d/z at the critical point, where
d is the spatial dimension and z is the dynamical expo-
nent [8]. At the 3D XY QCP, z = 1 and both κi and
R decay according to the power law κi ∼ β−1, shown in
Fig. 1(b). Since z = 2 at the MF QCP, κi is independent
of temperature in the critical regime. In sufficiently large
systems, the slow decay of δn2

i to its final value dictates
the behavior of R at the MF QCP, shown in Fig. 1(a).

VI. FINITE SIZE EFFECTS

Finite size effects are briefly studied in the vicinity of
and directly at MF quantum critical points. In both
cases, the observables that probe long range correlations
(κi, ρs and R) exhibit large finite size effects while the
local number fluctuations δn2

i are unaffected by the sys-
tem size L. The superfluid-normal finite temperature
transition (see Fig. 6(b)) is in the Berezinski-Kosterlitz-
Thouless universality class, so both κi and R are cusplike
rather than singular at the transition. This cusp or peak
becomes more pronounced in larger systems, as shown in
Fig. 6(a). Increasing L significantly suppresses both Tc
and ρs (see Fig. 6(b)), partly because of the nearby MF

quantum critical point.

The finite size effects change slightly at the MF quan-
tum critical point. As expected, ρs → 0 as L increases
while δn2

i is unchanged, shown in Fig. 7. For sufficiently
large systems, the compressibility κi converges to a con-
stant at small temperatures. At a MF QCP and for suffi-
ciently large L, the LDF ratio R(T ) is dominated by δn2

i

at low temperatures and monotonically increases to a fi-
nite value, in stark contrast to its behavior at the BKT
transition (Fig. 6(a)) or at the 3D XY QCP (Fig. 1(b)).

In conclusion, while both ∂N/∂µ = β δN2 and
∂ni/∂µi = β δn2

i FDT are exact relations useful for esti-
mating the temperature, we construct a LDF ratio R and
show that it is sensitive to far more than just the temper-
ature. With R, the SF and MI states can be identified
and the finite temperature phase diagram can be mapped
without the need for QMC simulations and with a sin-
gle, experimentally accessible quantity. A corollary is the
identification of the temperature scales (T ∗, Tc and T∆)
that bound the quantum critical region and the ability
to distinguish between the MF and 3D XY universality
classes using only R. It is possible to generalize R to
two-component systems as well as to disordered systems
and also probe spin susceptibility and corresponding spin
fluctuations for magnetic systems. Given the very funda-
mental basis on which the LDF ratio is constructed, we
expect it to be an ideal candidate for probing phases and
quantum criticality of general quantum Hamiltonians.
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FIG. 7. (Color online) Finite Size Effects at the Mean Field
Quantum Critical Point at t/U = 0.15 and µ/U = 0.172. The
local number fluctuations δn2

i (a) do not depend on the system
size. The long-range observables like the compressibility κi

(b), superfluid density ρs (c) and R (d) do vary with the
system size before converging for 482 and 642 site systems.
Due to simulation time limitations, the error for the 642 site
system is larger than for the other system sizes.
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