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Analytic formulas describing high-order harmonic generation (HHG) by atoms in an intense laser
field with small ellipticity are obtained quantum mechanically in the tunneling limit. The results
show that factorization of the HHG yield in terms of an electron wavepacket and the photorecom-
bination cross section (PRCS) is valid only for s states of a bound atomic electron, whereas the
HHG yield for p states involves two different atomic parameters. For the latter case, elliptic HHG
spectroscopy enables one to retrieve both the energy and angular dependence of the PRCS of the
target atom, as we illustrate for the case of HHG by Xe in a mid-infrared laser field.
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I. INTRODUCTION

The ellipticity of a laser field provides an additional
control parameter for laser-atom interactions and intro-
duces some new features in nonlinear photoprocesses. For
high-order harmonic generation (HHG), these include the
intensity-dependent difference between the polarizations
of harmonics and the laser field [1–6], as well as more sub-
tle features, such as, e.g., elliptic dichroism [4] and the
offset angle between the major axis of polarization of a
harmonic and that of the laser field [7]. These latter two
effects originate from an unusual kind of interference [4],
i.e., that between the real and imaginary parts of the
HHG amplitude, which is very sensitive to the atomic
dynamics, thereby providing an effective tool for testing
the accuracy of different laser-atom interaction models.

Study of HHG in an elliptically polarized field began
in 1980 with a perturbative (in the laser intensity) anal-
ysis [1] that predicted a power decrease of the HHG yield
with increasing ellipticity that was confirmed experimen-
tally [8, 9] in the multiphoton regime, γ > 1, where γ is
the Keldysh parameter [10]. In the strong field (tunnel-
ing) regime, γ < 1, experiments [8, 11, 12] observed a
much steeper decrease, shown as Gaussian in a recent
experiment [13]. In this regime, HHG in an elliptically
polarized field has been treated theoretically using the
strong field approximation (SFA) [2, 3] to analyze the
HHG yield [5] and the harmonic polarizations [2, 3, 6].

At present there is growing interest in the dependence
of HHG on the driving laser ellipticity stimulated by the
development of new methods for producing attosecond
pulses (cf., e.g., Ref. [14]), as well as by applications to
HHG-based spectroscopy of atoms and molecules. The
ellipticity dependence of the HHG yield has been studied
in Refs. [13, 15–17]. A new technique for generation of
elliptically-polarized attosecond pulses was proposed in
Ref. [18] by means of HHG from atomic states having
nonzero angular momentum. The polarization parame-
ters of harmonics have been studied in Refs. [19, 20] by
employing a beyond-SFA analytical model [21] in com-
bination with numerical solution of the time-dependent
Schrödinger equation (TDSE). Measurements of the po-

larization vector of harmonics generated by Ar in an ellip-
tically polarized field have been performed in Ref. [22].
The ellipticity-induced broadening of the Cooper min-
imum in the photorecombination cross section (PRCS)
was observed in HHG spectra for Ar in Ref. [23].
HHG spectroscopy is based on the idea that the HHG

yield can be factorized in terms of laser [the electron
wave packet (EWP)] and atomic (the PRCS) parame-
ters, thus allowing one to retrieve the field-free PRCS
(or, equivalently, the photoionization cross section re-
lated to the PRCS according to the detailed balance prin-
ciple) from measured HHG spectra (cf., e.g., Ref. [24]).
For a linearly polarized field, this factorization was pro-
posed phenomenologically, based on numerical solutions
of the TDSE [25]. It has now been justified theoretically
for both a monochromatic field [26] and for short laser
pulses [27]. However, questions on the possibility of fac-
torization of the HHG yield for an elliptically polarized
field, as well as on the information on field-free atomic
dynamics that can be retrieved from measurements of
HHG in an elliptically polarized field, remain unexplored.
Concerning the latter question, we note that for linear
polarization HHG measurements allow retrieval of only
the energy dependence of the PRCS for zero angle be-
tween the polarization axis and the recombining electron
momentum, while the angular dependence of the PRCS
(described by the asymmetry parameter β [28]) remains
unknown.
In this paper we report an analytic description of HHG

by an intense laser field with small ellipticity that is valid
for the plateau cutoff region of the HHG spectrum. A
main goal is to show the strict difference between HHG
yields for atoms having valence electrons with zero or
non-zero orbital angular momentum, l. Our key result
(53) parametrizing the HHG amplitude shows that while
factorization of the HHG yield is possible for an s state, it
is impossible for p states since the yield involves two pa-
rameters describing the field-free atomic dynamics. As
we show, measurement of the HHG yield for a p state
allows one, in contrast to experiments with linear po-
larization, to retrieve both the energy and the angular
dependence of the PRCS.
The paper is organized as follows. In Sec. II we discuss
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briefly the extension of time-dependent effective range
(TDER) theory [29], used previously by us to describe
HHG in a linearly polarized field, to the case of HHG for a
nonzero driving laser ellipticity. In particular, we provide
a quasiclassical TDER result for the HHG amplitude for
the case of non-zero ellipticity in the low-frequency limit,
and discuss its relation to both SFA results and TDER
results for the case of linear polarization. In Sec. III
we utilize the results of Sec. II for the plateau cutoff
region of the HHG spectrum, discussing first the gen-
eral case of nonzero ellipticity (Sec. III.A) and providing
then analytic expressions for the case of a small elliptic-
ity (Sec. III.B). In Sec. III.C we present the key result
of this paper: the factorized matrix form of the HHG
amplitude. In Sec. IV.A we discuss the factorized HHG
rate for the case of an initial s state, while in Sec. IV.B
we consider the case of an initial p state. In the latter
case we show how the angular dependence of the PRCS
can be retrieved from HHG polarization measurements.
Finally, in Sec. V we present some conclusions.

II. QUASICLASSICAL TDER RESULTS FOR

THE HHG RATE IN AN ELLIPTICALLY

POLARIZED LASER FIELD

We consider the HHG process for a monochromatic,
elliptically polarized laser field with electric vector

F(t) = F(x̂ cosωt+ ŷη sinωt), F = F/
√

1 + η2, (1)

where F , ω, and η are the field amplitude, frequency,
and ellipticity. Our atomic model is that of an elec-
tron in a short-range potential U(r) supporting a single
bound state, ψκlm(r) = ϕκ l(r)Yl,m(r̂), with energy E0 =
−~

2κ2/(2m) and angular momentum l. [In this paper
we consider only cases of s (l = 0) and p (l = 1) states.]
This model permits an exact solution for the HHG prob-
lem within the framework of TDER theory [29], which
combines the quasistationary quasienergy state (QQES)
approach [30] (for an exact account of the electron’s in-
teraction with a strong laser field) with effective range
theory [31] (for a nonperturbative account of the elec-
tron’s interaction with a potential U(r) in terms of the
scattering phase in the l-wave channel, δl(E), which is
parametrized in terms of two fundamental parameters
of effective range theory: the scattering length, al, and
the effective range, rl [31]). This approach for describ-
ing HHG by a linearly polarized field has been presented
in detail in Ref. [32]. We extend it here to the case of
non-zero ellipticity.
Since the angular momentum projection m [where we

assume the quantization axis z is directed along the prop-
agation axis of the field F(t)] is not conserved in an ellip-
tically polarized field, degenerate field-free states ψκlm(r)
with different m are mixed by the field and evolve to
the (2l + 1) different QQESs Φǫqlq(r, t) with complex
quasienergies ǫq = E0 + ∆ǫq enumerated by the index
q (for a p state, q = −1, 0, 1) [29]. The exact TDER

rate, Rl(N ; e′), for coherent emission of the Nth har-
monic (with energy EΩ = N~ω and polarization vector
e′) from the initial state with angular momentum l is
given by [33]:

Rl(N ; e′) =
(Nω)3

2π~c3
1

2l + 1

l
∑

q=−l

|Al,q(N ; e′)|2 , (2)

where Al,q(N ; e′) is the HHG amplitude,

Al,q(N ; e′) = (e′
∗ · dl,q), (3)

and the dipole moment dl,q is the Nth Fourier-coefficient

of the time-dependent dual dipole moment d̃l,q(t) calcu-
lated with the QQES wave function Φǫqlq(r, t) (cf. Sec.
II.C of Ref. [33]). As in the case of linear polariza-
tion [32], the exact TDER amplitude Al,q(N ; e′) can be
presented as a sum of integrals involving Bessel functions.
An analytic treatment of HHG is simplified in the qua-

siclassical (low-frequency) approximation [which is valid
in the tunneling regime, γ = ~ωκ/(|e|F ) ≪ 1]. In this
approximation, we can approximate the quasienergy ǫq
by E0, while the QQES wave functions Φǫqlq(r, t) for
initial s (l = 0) or p (l = 1) states reduce to super-
positions of initially-degenerate bound states ψκlm(r) =
ϕκ l(r)Yl,m(r̂) that follow from the exact TDER wave
function in an elliptically polarized field [29] in the limit
that the field F(t) is turned off:

ϕκlq(r) = ϕκ l(r)fl,q(r̂), fl,0(r̂) = Yl,0(r̂),

f1,±1(r̂) = [Y1,1(r̂)± Y1,−1(r̂)]/
√
2, (4)

where ϕκ l(r) = −ilκ3/2Cκlh
(1)
l (iκr) is the radial wave

function within TDER theory, h
(1)
l (x) is the spherical

Hankel function of the first kind, and Cκl is the asymp-
totic coefficient. (Cκl and κ are parameters of the prob-
lem; they can be expressed in terms of al and rl [29].)
Note that the superpositions f1,q(r̂) define states oriented
along the three coordinate axes: x (q = −1), y (q = 1),
and z (q = 0).
In the quasiclassical approximation, the exact TDER

result for the dipole moment dl,q in Eq. (3) reduces to
a one-dimensional integral similar to that for a linearly
polarized field F(t) [34]:

dl,q = e
2Cκ,l

iT (κa)3/2

∫ T

T/2

fl,q(K̂i(t))

(

F(ti)

F0
· Ki(t)

~κ

)−1/2

×e
−i[S(t,ti)−Et+E0ti]/~

[vat(t− ti)]3/2
〈ϕκlq |r|ψK(t)〉dt, T =

2π

ω
, (5)

where in terms of the vector potential A(t) of F(t),

A(t) = −cF
ω

(x̂ sinωt− ŷη cosωt) , (6)

we have:

S(t, ti) =

∫ t

ti

K2(t′; t, ti)/(2m)dt′, (7)

K(t′; t, ti) =
|e|
c

(

A(t′)−
∫ t

ti
A(τ)dτ

t− ti

)

, (8)
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where E = EΩ − |E0|, a = ~
2/(me2), vat = e2/~,

F0 =
√

8m|E0|3/(|e|~) = (κa)3Fat, Fat = |e|/a2, EΩ

is the harmonic energy, and Ki(t) ≡ K(ti; t, ti), K(t) ≡
K(t; t, ti), where K(t′; t, ti) is the instantaneous (at time
t′) classical momentum of an electron that moves along
a closed trajectory starting at time ti and returning at
time t. The wave function ψK(t)(r) is a field-free scatter-
ing state of an electron with “momentum”K(t) in TDER
theory [35]. The integration in Eq. (5) extends over re-
turn times t of the electron over a half-cycle (T/2, T )
of the field F(t). For a given t, the corresponding time
ti = ti(t) is determined as that root of the energy conser-
vation equation applicable at the moment of ionization,

K2(ti; t, ti)/(2m) = −|E0|, (9)

which has a positive imaginary part and the smallest real
part. Equation (9) is similar to that for the ionization
time in the Keldysh theory of ionization [10]. It indi-
cates that an adiabatic transition from a bound state to
the continuum occurs at a complex moment of time, ti(t),
when the energy of an electron in a laser field coincides
with the energy E0 [31]. Unlike in the Keldysh theory,
in which the ionization time depends on the ionized elec-
tron’s energy [10], in our case this time depends on the
return time t, i.e., it is that time at which an electron
begins its motion along a particular closed trajectory af-
ter tunneling such that it returns back to the tunnel exit
point at the moment t [2].

Note that the vector K̂i(t) lies in the polarization plane

(θ = 90◦), so that the kinematic factor f1,0(K̂(t)) in
Eq. (5) is zero [cf. Eq. (4)] and HHG for the substate
ϕκ10(r), which is oriented perpendicular to the polar-
ization plane, is suppressed and vanishes in approxima-
tion (5). We emphasize also the significant difference be-
tween the dipole moment (5) and the SFA results [3, 5]:
the dipole moment dl,q involves the exact photorecombi-
nation matrix element 〈ϕκlq |r|ψK(t)〉 (within the TDER
model [29]; see also Ref. [36]), while the SFA treats the
corresponding matrix element in the plane wave (Born)
approximation.

To present explicitly the dependence of the recombi-
nation matrix element in Eq. (5) on the vector K(t), we
represent the wave function ψK(t)(r) by a partial wave
expansion [31]:

ψK(t)(r) =
∑

l,m

ψǫ(t),l(r)Y
∗

l,m(K̂(t))Yl,m(r̂), (10)

ψǫ(t),l(r) =
2π~

aK(t)
ileiδl[ǫ(t)]RK(t),l(r), (11)

where ǫ(t) = K2(t)/(2m), RK(t),l(r) is a continuum so-
lution of the radial Schrödinger equation, and δl is its
scattering phase. Carrying out the integration over the

angular variables, we obtain:

〈ϕκ,0,0|r|ψK(t)〉 =
1√
4π

K(t)

K(t)
D0,1, (12a)

〈ϕκ,1,+1|x|ψK(t)〉 = i

√

3

4π

Kx(t)Ky(t)

K2(t)
D1,2, (12b)

〈ϕκ,1,+1|y|ψK(t)〉 = i

√

3

4π

×
[

D1,0 −D1,2

3
+
K2

y(t)

K2(t)
D1,2

]

, (12c)

〈ϕκ,1,−1|x|ψK(t)〉 = −
√

3

4π

×
[

D1,0 −D1,2

3
+
K2

x(t)

K2(t)
D1,2

]

, (12d)

〈ϕκ,1,−1|y|ψK(t)〉 = −
√

3

4π

Kx(t)Ky(t)

K2(t)
D1,2, (12e)

where Dl,l′ = 〈ϕκl|r|ψǫ(t),l′ 〉. In the TDER model, these
radial matrix elements can be calculated explicitly using
the field-free effective range wave functions:

D0,1 = 8πiCκ0~
3√κ K(t)

[K2(t) + (~κ)2]2
, (13a)

D1,0 = 4πCκ1
~
2

√
κ

K2(t) + 3(~κ)2

[K2(t) + (~κ)2]2
, (13b)

D1,2 = −8πCκ1
~
2

√
κ

K2(t)

[K2(t) + (~κ)2]2
. (13c)

The HHG amplitude (3) with dl,q given by Eq. (5) gen-
eralizes the result for linear polarization [34] to the case of
an elliptically polarized field. For η → 0, only one dipole
moment for each initial state becomes nonzero: d0,0 for
an s state and d1,−1 for a p state, both of which are di-
rected along the polarization vector of the field F(t). By

using in Eq. (5) the explicit forms in Eq. (4) for fl,q(K̂(t))
as well as those in Eqs. (12) and (13) for the recombina-
tion matrix elements, it can be shown that the dipole
moments d0,0 and d1,−1 given by Eq. (5) for η = 0 coin-
cide with those given in Eq. (18) of Ref. [34]. Indeed, for
η = 0 Eq. (9) can be written in the simple form,

Ki,x(t) = −i~κ, (14)

and the exact result for K(t) [cf. Eq. (8) for t′ = t] can
then be approximated [using Eq. (14) and keeping only
terms of order γ−1] as follows:

Kx(t) = Ki,x(t)−
~κ

γ
(sinωt− sinωti)

≈ −~κ

γ
(sinωt− sinωti), Ky(t) = 0. (15)
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III. ANALYTIC EVALUATION OF THE

DIPOLE MOMENT dl,q IN THE PLATEAU

CUTOFF REGION

A. General considerations for an arbitrary

ellipticity η

To analyze the harmonic spectrum in the region near
the plateau cutoff, we represent the dipole moment (5)
in a more compact form:

dl,q =

∫ T

T/2

e−iΦ(t)
g(t)dt, T =

2π

ω
, (16)

g(t) = e
2Cκ,l

iT (κa)3/2
fl,q(K̂i(t))

×
[

F(ti)

F0
· Ki(t)

~κ

]−1/2 〈ϕκlq|r|ψK(t)〉
[vat(t− ti)]3/2

, (17)

Φ(t) = [S(t, ti)− Et+ E0ti] /~, (18)

In the quasiclassical limit (~ω ≪ |E0|), the phase e−iΦ(t)

in the integrand of Eq. (16) oscillates rapidly. Its main
contributions come from the vicinity of each of the saddle
points, t = tr, satisfying the equation:

dΦ(t)

dt

∣

∣

∣

∣

t=tr

= 0, (19)

which gives explicitly [cf. Eqs. (7) and (18)],

K2(tr)/(2m) = E. (20)

The system of coupled equations (9) and (20) deter-
mines a set of quasiclassical closed electron trajectories
(“electron orbits”) in each of which the active electron
is ionized at the moment ti [cf. Eq. (9)] and returns at
the moment tr. The trajectories in this set have differ-
ent travel times, but all of them correspond to the same
energy E at the moment of return. Moreover, the tra-
jectories can be grouped in pairs (“short” and “long”
orbits), with the trajectories of each pair merging into
a single (extreme) one when the energy E approaches
the value Es

max corresponding to a local (sth) extremum
of the function K2(t)/(2m). Analysis shows that the
largest of the local extrema, Emax = max(Es

max), is real-
ized for the extreme trajectory with the smallest travel

time, ∆t(0) = t
(0)
r −t(0)i . In what follows, we analyze only

the region of the HHG spectrum near the plateau cutoff.
Thus, we consider only those trajectories that are close

to the extreme one described by the times t
(0)
i and t

(0)
r

corresponding to Emax. These times satisfy Eq. (9) and
the following equation:

d2Φ(t)

d2t

∣

∣

∣

∣

t=t
(0)
r

=
K(t)

~m

d

dt
K(t)

∣

∣

∣

∣

t=t
(0)
r

= 0. (21)

To determine the times t
(0)
r and t

(0)
i , we analyze first

the extremum of the classical energy of an electron,

E(t, t′), moving along a closed trajectory (from time t′

until the return time t) as a function of the two indepen-
dent times, t′ and t:

E(t, t′) = K2(t; t, t′)

2m
=
K2

x(t; t, t
′) +K2

y(t; t, t
′)

2m
. (22)

Straightforward calculation of the partial derivatives of
E(t, t′) in t′ and t respectively leads to the following sys-
tem of equations for the classical times t′ = tcli and t = tclr :

krx

[

cos τr +
krx

τr − τi

]

+ kry

[

sin τr +
kry

τr − τi

]

= 0,(23a)

krxk
i
x + kryk

i
y = 0, (23b)

where we have introduced the dimensionless times, τi =
ωtcli and τr = ωtclr , and the dimensionless momenta, kr =
ω/(|e|F)K(tclr ; t

cl
r , t

cl
i ) and ki = ω/(|e|F)K(tcli ; t

cl
r , t

cl
i ):

krx = −
(

sin τr +
cos τr − cos τi

τr − τi

)

, (24)

kry = η

(

cos τr −
sin τr − sin τi

τr − τi

)

, (25)

kix = −
(

sin τi +
cos τr − cos τi

τr − τi

)

, (26)

kiy = η

(

cos τi −
sin τr − sin τi

τr − τi

)

. (27)

The system of equations (23) is equivalent to each of the
following two sets of equations:

{

kix = 0,
kry = 0,

(28a)

{

kiy = 0,
krx = 0.

(28b)

The set of equations (28a) has a transparent physical
meaning: kix = 0 means that the electron starts to move
along a closed trajectory with zero velocity along the
x-axis (while the y-component is not zero in general);
the second equation implies that the electron returns to
the starting point with zero momentum along the y-axis
(while its x-component is not zero at the return time).
The electron thus moves along an extreme trajectory,
making a petal-like loop. Note that Eqs. (28a) coincide
with similar ones for linear polarization [34] and have the
same solutions: τi = 0.313, τr = 4.399. The correspond-
ing maximum energy is

Emax = E0/(1 + η2),

E0 = 2(sin τr − sin τi)
2up ≈ 3.17up, (29)

where up = e2F 2/(4mω2). The extreme trajectory, as
well as the corresponding “short” and “long” trajecto-
ries, are shown in Fig. 1. The set of equations (28b) also
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FIG. 1. (Color online) Schematic sketch of short, long and
extreme trajectories, with the arrows indicating the direction
of propagation. The coordinates are scaled in units of x0 =
|e|F/(mω2) and y0 = ηx0.

describe a petal-like loop trajectory; however, this tra-
jectory contributes to the low-energy part of the HHG
spectrum (since the energy at the moment of return is
proportional to the parameter η2, which we will consider
later as a small parameter). Thus we do not consider the
solutions of this system in detail.

B. Approximate analysis for small η

The solutions of the classical Eqs. (28a) can be used
as zero-order approximations to the ionization and re-

combination times t
(0)
i and t

(0)
r corresponding to the

coalescence points of “short” and “long” trajectories:

ωt
(0)
i ≈ τi and ωt

(0)
r ≈ τr. To find the quantum cor-

rections to τi and τr, we rewrite Eq. (9) explicitly for

t = t
(0)
r and ti = t

(0)
i :

[

sinωt
(0)
i +

cosωt
(0)
r − cosωt

(0)
i

ω(t
(0)
r − t

(0)
i )

]2

= −γ2(1 + η2)

−η2
[

cosωt
(0)
i − sinωt

(0)
r − sinωt

(0)
i

ω(t
(0)
r − t

(0)
i )

]2

, (30)

where γ ≪ 1. Assuming also η2 ≪ 1 and neglecting the
term ∼ η2γ2, we consider the right hand side of Eq. (30)
as a perturbation. Thus Eq. (30) can be solved itera-
tively, in a way similar to that employed in Ref. [34]:

ωt
(0)
i ≈ τi + i∆i, ∆i = η̃

cos τi − cos τr
cos τi

, (31)

η̃ =
√

η2 + |E0|/E0. (32)

The lowest-order corrections to the recombination time
t
(0)
r = τr/ω (not shown) are of the order of η2 and γ2;
we thus omit these corrections in our calculations since
we find numerically that their contributions to the final
results are negligible. Taking into account the quantum
correction ∆i to the ionization time and approximating
the classical energy Emax by Emax ≈ E0(1− η2), the max-

imum energy, Emax, can be found as in Ref. [34]:

Emax = max
[

E(t(0)i , t(0)r )
]

≈ E0(1− η2) + 0.324|E0|α2
0, (33)

α0 = η̃
√

E0/|E0| =
√

1 + η2E0/|E0|. (34)

Returning to the evaluation of the integral in Eq. (16),
taking into account Eq. (21), we approximate the phase

Φ(t) in the vicinity of the point t = t
(0)
r ≈ τr/ω by a

cubic polynomial:

Φ(t) ≈ Φ(t(0)r ) +
(Emax − E)

~
(t− t(0)r )− δ̃

3
(t− t(0)r )3,

δ̃ = −1

2

d3Φ(t)

dt3

∣

∣

∣

∣

t=t
(0)
r

, (35)

where it can be shown that δ̃ > 0. For a small ellipticity,
δ̃ can be calculated as was done for the case of linear
polarization in Ref. [34]:

δ̃ = ω3
at

(

Iδ

2Iat

)

, (36)

δ = cos2 τr

[

sin τr
cos τr

(τr − τi) +
cos τr
cos τi

− 1

]

≈ 1.072,

where I = cF 2/(8π), Iat = cF 2
at/(8π), ωat = Eat/~, and

Eat = e2/a.
In the cubic approximation for Φ(t), Eq. (20) reduces

to a quadratic equation for the recombination times,
whose roots are given by:

t±r = t(0)r ± β, β =

√

Emax − E

~δ̃
, (37)

where β is a small parameter. The complex ionization
times, t±i , corresponding to the recombination times t±r ,
can be found as:

t±i = t
(0)
i +

∂ti
∂t

∣

∣

∣

∣

t=t
(0)
r

∂t±r
∂β

β. (38)

By taking into account the derivative ∂ti/∂t for t = t
(0)
r ,

which can be found by differentiating Eq. (9) in t, we
obtain that:

∂ti
∂t

∣

∣

∣

∣

t=t
(0)
r

≈ cos τr
cos τi

(1 + i∆i tan τi) , (39)

tan τi = −cos τr
cos τi

≈ 0.324, (40)

ωt±i = τi + i∆i ±
cos τr
cos τi

ωβ (1 + i∆i tan τi) . (41)

Finally, the evaluation of the integral in Eq. (16) can be
carried out using the saddle point method for two coalesc-
ing saddle points (which are t+r and t−r in our case) [37]:

∫ T

T/2

e−iΦ(t)
g(t)dt ≈ 2πδ̃−1/3e−iΦ(t(0)r )

[

g(t+r ) + g(t−r )

2
Ai (ζ)− i

g(t+r )− g(t−r )

2βδ̃1/3
Ai′ (ζ)

]

, (42)
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where Ai(ζ) and Ai′(ζ) are an Airy function and its
derivative,

ζ = −
{

3

4

[

Φ(t+r )− Φ(t−r )
]

}2/3

=
E − Emax

̺Eat
, (43)

̺ =

(

δI

2Iat

)1/3

≈
(

0.536
I

Iat

)1/3

, (44)

Φ(t(0)r ) = − 1

~

[

∫ t(0)r

t
(0)
i

K2(t′; t
(0)
r , t

(0)
i )

2m
dt′ − Et(0)r + E0t

(0)
i

]

≈ ReΦ(t(0)r )− i
F0α

3
0

3F cos τi
, (45)

where t
(0)
i is given by Eq. (31) and t

(0)
r = τr/ω. To eval-

uate accurately the vector function g(t±r ), we calculate
the vectors Ki(t

±
r ) ≡ (Kix,Kiy) and K(t±r ) ≡ (Kx,Ky)

including corrections up to the order of η, η̃, β, and βη̃:

Ki(t
±

r ) ≈
(

−i~κα0, η
√

2mE0
)

,

K(t±r ) ≈
√
2mE

(

1, η

√

2up
E

[

iκ0 ± κ1δ
1/2ωβ

]

)

,(46)

where

κ0 = ∆i sin τi ≈ 0.408η̃,

κ1 = δ−1/2

{

− sin(τr − τi)

cos τi
+ i∆i sin τi

×
[

tan τi
cos τr
cos τi

+
1

τr − τi

(

cos τr
cos τi

− 1

)]}

≈ 0.822− i0.169η̃. (47)

We also approximate t±r −t±i ≈ (τr−τi)/ω ≡ ∆t, (F(t±i ) ·
Ki(t

±
r )) ≈ −iF~κα0 cos τi. With these approximations,

we obtain:

g(t+r ) + g(t−r )

2
≈ Cl,q

(

1, iηκ0

√

2up
E

)

Ŝl,q, (48)

g(t+r )− g(t−r )

2ωβ
≈ Cl,q

(

0, ηκ1

√

2δup
E

)

Ŝl,q, (49)

where

Cl,q =
Cκlωat

4π2

√

κa

α0 cos τi
γ

√

F

F0

f̃l,q
(vat∆t)3/2

, (50)

f̃0,0 = 1, f̃1,−1 = α0, f̃1,1 = iη
√

E0/|E0| = i
√

α2
0 − 1,

and Ŝl,q is a 2×2 matrix:

Ŝ0,0 = D0,1

(

1 0
0 1

)

, Ŝ1,+1 =

(

0 D1,0 −D1,2

3D1,2 0

)

,

Ŝ1,−1 =

(

D1,0 + 2D1,2 0
0 3D1,2

)

. (51)

In Eqs. (48) and (49) we have neglected terms of order
∼ η2.

C. Analytic small-η result for dl,q

Taking into account Eqs. (42) - (51), we obtain ana-
lytic results for both components of the dipole moment

dl,q (i.e., d
(l,q)
x and d

(l,q)
y ) that are valid for small elliptic-

ity η, i.e., approximating Emax ≈ E0(1 − η2) and assum-
ing a characteristic parameter of the problem, given by
Eq. (32), is small:

η̃ ≡
√

η2 + |E0|/E0 ≪ 1. (52)

The result for the (two-dimensional) vector dl,q =

(d
(l,q)
x , d

(l,q)
y ) has scalar, vector, and matrix factors:

dl,q = eTl,qχŜl,q. (53)

The factor Tl,q is a scalar describing the tunneling of
the electron from the state ϕκlq(r) at the time t = tcli ≈
0.05T with “transverse” momentum pi = η

√
2mE0 ŷ:

Tl,q =
f̃l,q
πα2

0

γ̃

√

Γst(F̃ )

(2l+ 1)κvat
, (54)

Γst(F̃ ) =
|E0|
~

(2l+ 1)C2
κl

F̃

2F0
e−2F0/(3F̃ ), (55)

α0 =
√

1 + η2E0/|E0| = η̃
√

E0/|E0|,
F̃ ≡ F cos(ωtcli )/α

3
0 ≈ 0.95F/α3

0, γ̃ = ~ωκ/(|e|F̃ ),

where f̃0,0 = 1, f̃1,−1 = α0, f̃1,1 = iη
√

E0/|E0| =

i
√

α2
0 − 1, and Γst(F̃ ) is the detachment rate for a state

ϕκlm=0(r) in a static electric field of strength F̃ ẑ [38].
The factor χ in Eq. (53) is a vector, χ = (χx, χy),

independent of the symmetry of the state ϕκlq(r):

χx = DAi(ζ), ζ =
E − Emax

̺Eat
, (56)

χy = iηD
[

κ0

√

2up
E

Ai(ζ)− κ1

√

̺Eat

E
Ai′(ζ)

]

, (57)

Emax = E0(1− η2) + ∆, ∆ ≈ 0.324|E0|α2
0, (58)

κ0 ≈ 0.408η̃, κ1 ≈ 0.822− i0.169η̃,

D =
1

̺(vat∆t)3/2
e−iΦ0 , ̺ =

(

0.536
I

Iat

)1/3

,

∆t = tclr − tcli ≈ 0.65T, I = cF 2/(8π),

Φ0 =
[

S(tclr , t
cl
i ) + E0t

cl
i − Etclr

]

/~+ 3π/4,

where Eat = 27.21 eV and Iat = 3.51× 1016W/cm2. The
term ∆ in Eq. (58) generalizes the quantum correction to
the classical cutoff law for a linearly polarized field [39] to
the case of a small ellipticity η. The components χx and
χy are insensitive to the atomic dynamics and describe
propagation of an electron in the laser field over the time
interval ∆t from ionization to recombination. For η = 0,
we have χy = 0, and χx coincides with the propagation
amplitude for a linearly polarized field [34]. As for the



7

case η = 0, the Airy functions in Eqs. (56), (57) describe
the interference of short and long trajectories in the re-
gion below the plateau-cutoff, E < Emax (i.e., ζ < 0),
from which originate the typical oscillation patterns in
the HHG yield.
The last factor in the parametrization (53), Ŝl,q, is a

2×2 matrix (51) that describes the recombination step
of an HHG process. Its matrix elements do not depend
on laser parameters and involve only radial matrix ele-
ments Dl,l′ = 〈ϕκl|r|ψE,l′ 〉, where ψE,l′(r) is the radial
part of the l′-wave component (including the phase factor
exp[iδl′(E)]) of the scattering state ψp(r) [cf. Eq. (11)].
(Note that the matrix elements Dl,l′ become real in the
plane wave approximation.) For an initial s state, the

matrix Ŝl,q is diagonal, while for a p state this matrix has
different forms for q = ±1 [cf. Eq. (51)]. Matrix elements

of Ŝl,q are related to the PRCS, σ(E,α), for emission of a
photon with its linear polarization vector oriented at an
angle α to the momentum of the recombining electron.
For recombination to an s state:

σs(E,α) =
~Ω3

8π2apc3
|D0,1|2 cos2 α, p =

√
2mE, (59)

while for recombination to a p state we have:

σp(E, 0
◦) =

~Ω3

24π2apc3
|D1,0 + 2D1,2|2 , (60)

σp(E, 90
◦) =

~Ω3

24π2apc3
|D1,0 −D1,2|2 . (61)

IV. APPLICATION TO HHG RATES FOR

NEUTRAL ATOMS

Since each of the three factors in (53) has a clear
physical meaning in terms of the three-step HHG sce-
nario [40, 41] and since χ is insensitive to atomic dy-
namics, we extend the parametrization (53) to the case

of a neutral atom by replacing the tunneling rate Γst(F̃ )
and matrix elements Dl,l′ [or σ(E,α)] by their counter-
parts for a given atom (cf. Ref. [26]). In what follows, we
discuss HHG from bound s and p states separately.

A. HHG rates for initial s states

For an initial s state (l = 0), the harmonic rate,
Rs(EΩ), can be presented in a factorized form similar
to that in Ref. [26] for the case of linear polarization:

Rs(EΩ) = I(F̃ , ω)W(E)σs(E, 0
◦), (62)

where I(F̃ , ω) = 4π|T0,0|2 is the ionization factor and
W(E) = p(|χx|2 + |χy|2)/m is the propagation factor.
The factorization (62) provides a quantum-mechanical
justification for the Gaussian dependence of the HHG
yield on the ellipticity obtained semi-classically [13]. In-
deed, for small η, the factor W(E) in Eq. (62) is well

Harmonic number (N)

ξ s

109 119 129 139
-0.2
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0.2

(b)

R
s
(a

rb
.u

ni
ts

)

10-2

100

(a)

FIG. 2. (Color online) (a) The rate, Rs(EΩ), and (b) the
degree of circular polarization, ξs, of harmonics for an s state
with energy E0 = −15.76 eV in a laser field with intensity
I = 2.2×1014 W/cm2, wavelength λ = 1.3µm, and ellipticity
η = 0.1. Squares: TDSE results [19]; triangles: Eqs. (62)
and (63).

approximated by its value for η = 0, while the exponent
of Γst in Eq. (55) can be expanded in a series in the pa-
rameter η2. Taking into account the term ∼ η2 in this
expansion, we recover Eq. (6) of Ref. [13]. (Note that the
η2-expansion converges only for η2E0/|E0| < 1.)

For small η, the contribution of the component d
(0,0)
y

to the HHG yield is small. However, this component
governs the polarization of the harmonics. In particular,
the degree of circular polarization, ξs [which is related to
the ellipticity ηs according to ξs = 2ηs/(1 + η2s)], equals

ξs = 2Im(d(0,0)∗x d(0,0)y )/|d0,0|2. (63)

The general result (63) for an s state simplifies in the

plateau cutoff region, where both d
(0,0)
x and d

(0,0)
y involve

the same factors T0,0 and Ŝ0,0, which cancel in the ra-
tio (63), i.e., ξs may be obtained from Eq. (63) by sub-

stituting d
(0,0)
x → χx and d

(0,0)
y → χy. Thus, ξs is propor-

tional to η and does not depend on the atomic dynamics,
in agreement with numerical results for an s state [19].
In Fig. 2 we compare numerical results of TDSE calcu-

lations [19] with the analytic results (62) and (63). The
agreement is excellent in the plateau cutoff region, where
the factorization (62) is valid. The oscillation pattern in
the dependence of ξs on N [cf. Fig. 2(b)] originates from
interference of short and long trajectories and reflects the
interference oscillations of the rates that one observes in
Fig. 2(a).

B. HHG rates for initial p states

For an initial p state, two substates (with q = ±1)
contribute to the HHG rate and polarization parameters:

Rp = R+ +R−, ξp = (ξ+R+ + ξ−R−)/Rp, (64)

where R± ∝ |d1,±1|2 are partial HHG rates for substates
ϕκlq(r) with q = ±1, and ξ± are given by Eq. (63) with
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FIG. 3. (Color online) (a) The rate, Rp, and (b) the circular
polarization degree, ξp, of harmonics produced by a p state
with energy E0 = −12.13 eV for a laser intensity I = 2 ×
1014 W/cm2, wavelength λ = 1.8 µm, and ellipticity η =
0.1. Squares: exact TDER results; triangles: results obtained
using the parametrization (53) and Eq. (64).

the replacements d0,0 → d1,±1. In Fig. 3 we show the
excellent agreement between exact TDER results for Rp

and ξp and those calculated using Eq. (53). We em-
phasize a number of major differences between HHG
from s and p states: (i) the rate Rp cannot be factor-
ized as a product of laser and atomic parameters since
the matrix Ŝ1,q in Eq. (51) has different components for
q = ±1, which cannot be combined into a single atomic
factor in the rate Rp; (ii) for a p state, the emitted har-
monics are only partially polarized due to an incoherent
contribution of two degenerate substates with q = ±1
[cf. Eq. (64)] [42]; and (iii) the circular polarization de-
gree ξp becomes dependent on the atomic structure even
for a small ellipticity.
The results in Eq. (53) are valid for small η and γ, while

the ratio r = (η/γ)2 may be arbitrary. This ratio governs
the relative contributions of the ionization factors T1,±1

to the dipole moments d1,±1:

∣

∣T1,+1

∣

∣/T1,−1 =
√

α2
0 − 1/α0 ≈

√

1.6r/(1 + 1.6r). (65)

Note that χy contributes negligibly to the partial rates
R± owing to the smallness of the ratio |χy/χx| ∝ η.
Thus, after neglecting the component χy of the vector χ,
the rate (2) summed over polarizations of the harmonic
photon can be expressed as a sum of two terms:

Rp ≈ Rx+Ry =W (−1)σ(E, 0◦)+W (+1)σ(E, 90◦), (66)

where the EWPs W (±1) are defined by:

W (±1) = 4πp|T1,±1χx|2/m. (67)

For the case η ≪ γ, W (+1) ≪ W (−1) [cf. Eq. (65)], so
that only a single state, ϕκlq=−1(r) (i.e., the component

d
(1,−1)
x of d1,−1), contributes to the rate (66):

Rp ≈ Rx =W (−1)σ(E, 0◦). (68)

Thus, the rate Rp has a factorized form with EWP

W (−1), while the parameter ξp ≈ ξ−, so that the har-
monics are completely polarized.
For the case η . γ, which can be realized for intense

mid-infrared lasers [43, 44], both dipoles, d1,−1 and d1,+1
(

i.e., d
(1,−1)
x and d

(1,+1)
y

)

, contribute to the rate (66).

Moreover, the components d
(1,−1)
x and d

(1,+1)
y determine

the yield of harmonics linearly-polarized in orthogonal
directions: x̂ (with rate Rx) and ŷ (with rate Ry). This
selectivity allows one to obtain from HHG spectra com-
plete information on the PRCS, i.e., the angle-integrated
PRCS, σ0, and the asymmetry parameter, β [28]:

σ(E,α) =
σ0
4π

(

1 + β
3 cos2 α− 1

2

)

. (69)

Indeed, measuring the ratio of intensities for harmon-
ics linearly polarized in ŷ and x̂ directions, i.e., Ry/Rx,
we calculate the ratio, ℘ ≡ σ(E, 90◦)/σ(E, 0◦) as
[cf. Eqs. (65), (67)]:

℘ =
W (−1)

W (+1)

Ry

Rx
=

α2
0

α2
0 − 1

Ry

Rx
. (70)

From Eq. (69), β can be determined from ℘,

β = (1− ℘)/(℘+ 1/2), (71)

and σ0 [= 4πσ(E, 0◦)/(1+β)] can then be obtained using
the measured value of Rx:

σ0 = 4πRx/[(1 + β)W (−1)]. (72)

To illustrate the above algorithm, we consider HHG
for Xe in a mid-infrared (λ = 1.8 µm) laser field with el-
lipticity η = 0.1. To obtain the photorecombination data
for Xe, we use theoretical photoionization data [45] and
the principle of detailed balance. In Figs. 4(a) and (b),
we present theoretical results for Rx and Ry obtained
using Eq. (64) for a laser intensity I = 2× 1014 W/cm2.
In order to smooth the oscillatory pattern of the rates
Rx,y, we also present in Figs. 4(a) and (b) focal aver-
aged rates, obtained similarly to the procedure used in
Ref. [48], assuming a Gaussian distribution of laser in-
tensity with a peak value I0 = 2.1× 1014 W/cm2. After
focal averaging, we used the algorithm described above
to retrieve β and σ0 [cf. Eqs. (71) and (72)]. As shown in
Figs. 4(c),(d), the retrieved values of β and σ0 agree very
well with those extracted from Ref. [45]. This thus indi-
cates that focal averaging does not prevent the retrieval
of PRCS data from HHG spectra produced in a focused
laser beam.

V. DISCUSSION AND CONCLUSIONS

Besides providing a new means to retrieve field-free dy-
namical information on target atoms or molecules, such
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FIG. 4. (Color online) (a) The rates Rx and (b) Ry vs. the
recombining electron energy E (= EΩ − |E0|) for HHG of Xe
in a laser field with λ = 1.8 µm and η = 0.1. Black squares:
results for a laser intensity I = 2×1014 W/cm2 obtained using
Eq. (64); solid (red) lines: focal-averaged results (see text) for
a peak intensity I0 = 2.1× 1014 W/cm2. (c) The total PRCS
σ0(E) and (d) the asymmetry parameter β(E) for Xe. Dashed
lines: theoretical results extracted from Ref. [45]; solid lines:
results extracted from the focal-averaged HHG spectra in (a)
and (b) using Eqs. (70), (71), and (72).

as the PRCS (which, of course, can also be obtained us-
ing more traditional techniques), HHG spectroscopy has
a fundamental interest since it provides important in-
formation for a better understanding of the physics of
strong field processes. In particular, HHG-spectroscopy
experiments have shown that HHG spectra are clearly
sensitive to details of field-free atomic dynamics, such as
the Cooper minimum in the photoionization cross sec-
tion [46, 47]. Moreover, based on the theoretical factor-
ization of the HHG yield in the high-energy region of the

HHG spectrum, the importance of essentially multielec-
tron atomic dynamics in strong field processes (such as
the giant dipole resonance in the photoionization cross
section of Xe) was predicted [26] and measured [24]. As
we have shown in this paper, the capability of existing
methods of “linear” HHG spectroscopy (i.e., using lin-
early polarized fields) can be significantly extended by
“elliptic” HHG spectroscopy (i.e., using a laser field with
non-zero ellipticity). Our results show that the principal
feature of HHG in a laser field with non-zero elliptic-
ity is its sensitive dependence on the spatial symmetry
of the bound electron wave function: the electron den-
sity in s states is spherically symmetric, while that for
states with l > 0 breaks the spherical symmetry. Conse-
quently, we have shown theoretically that the HHG yield
for s states can be factorized in terms of an EWP and
the PRCS σs(E, 0

◦), from which one can obtain σs(E,α)
using Eq. (59). For p states factorization is generally im-
possible since both σp(E, 0

◦) and σp(E, 90
◦) contribute

to the HHG yield. Nevertheless, polarization measure-
ments within elliptic HHG spectroscopy permit one to
retrieve both the energy and angular dependence of the
PRCS σp(E,α).
Finally, we note that the analysis of HHG presented in

this paper for a nonzero driving laser ellipticity is valid
for atomic systems. Owing to the spherical symmetry
of the atom, the polarization of harmonics generated by
atoms remains linear for a linearly polarized laser field.
For molecules, which in general do not have spherical
symmetry, harmonics can be elliptically polarized even
for a linearly polarized pump field. It is thus an inter-
esting question what additional information on field-free
molecular dynamics can be obtained by using an ellipti-
cally polarized driving laser field. However, the answer
to this question requires a separate analysis.
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