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Abstract The dynamic multipole polarizabilities and thus the second-order van der Waals 
coefficients kC2 of all orders are known exactly for the interaction between two classical 
spherical conducting shells, each of uniform electron density ρ  with outer radius R and 

thickness t . The result is k
kk RRtcC ])2[(4)/( 2

2 πρ−= . The kc  approach a limiting constant 
value, so the infinite series for the van der Waals interaction at separation d , 

...// 8
8

6
6 −−− dCdC , can be summed analytically, diverging only for Rd 2≤ .  This divergence 

can be removed without changing the asymptotic series. Real quasispherical objects like 
nanoclusters, fullerenes, and even atoms can be approximated by this spherical-shell model, with 
R fixed by the true static dipole polarizability. Once Rt / is fixed, all the higher coefficients are 
determined by just 6C  and 8C . Finally, we compare the exact kC2 to those from a pair interaction 
model, which works for solid spheres ( Rt = ) but not for fullerenes. 

PACS 34.20.Gj, 36.40.-c, 68.65.-k 

1.  Introduction to the van der Waals series 

           The second-order van der Waals interaction [1] is a long-range attraction between two 
non-overlapped electron densities, arising from Coulomb correlation between density 
fluctuations in each. For two spherical objects separated by distance d  between their centers, it 
has the non-retarded infinite asymptotic ( )∞→d  series 

          6
6 /)( dCdU −= 8

8 / dC− 10C− .../ 10 −d  .                                                                          (1) 

For real systems, the van der Waals coefficients are not easy to calculate accurately, especially 
when the systems are large. Typically, at most only a few leading coefficients are known, with 
uncertain accuracy. Thus it can be of interest to explore model systems in which these 
coefficients can be evaluated exactly to all orders, especially when the model systems can 
approximate real ones of interest. Recently we have examined classical solid-sphere [2, 3] and 
spherical-shell [4-6] models, which can accurately describe quasispherical nanoclusters, 
fullerenes, and even atoms, with typical errors of 8% in the known coefficients. Here we will 
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show that, when the two spherical shells are identical, the corresponding van der Waals 
interaction can be simply summed to all orders, with or without a singularity when the spheres 
touch. This study should contribute to our understanding of the van der Waals interaction, and 
perhaps improve the ways in which it is treated in physics, chemistry, and biology, where it 
provides a dominant mechanism to bind closed-shell systems. In particular, molecular crystals 
can be built up from fullerenes [7]. 

         The exact Casimir-Polder formula [8] for the van der Waals coefficients between two 
objects A and B, to second order in the electron-electron interaction, is 
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where 112 −−= lkl . Here )(
1

iuA
lα is the 12l -pole dynamic polarizability (multipole linear 

response to an applied uniform electric field) of system A, evaluated at imaginary frequency 
iu=ω : 1=l (dipole), 2=l (quadrupole), 3=l (octupole), etc. The infinite subseries of second-

order terms agrees with the full series through order 10−d  [9] and will be summed here. 

2. Spherical-shell model for the polarizabilities and van der Waals coefficients of all 
orders 

         Consider a classical conducting spherical shell with outer radius R , thickness t , and 
uniform density ρ in the region RrtR ≤≤− . We have recently found [4-6] that this is a useful 
model for quasispherical nanoclusters and atoms ( )Rt = and for single-walled fullerenes 

( )(2 nRRt −= , where nR is the radius of the nuclear framework). The radius 3/1
1 )0(α=R is found 

from a realistic value for the static dipole polarizability, which builds in the principal effects of 
non-metallicity and non-sphericity, and }])(){3/4/[( 33 tRRN −−= πρ where N is the number of 
valence electrons. Thus we evaluate Eq. (2) via a controlled interpolation between exact u=0 and 

∞→u limits. The mean absolute relative error of the model 6C  is about 8% for cases where 
accurate reference values are known (atom-atom pairs, Nan-Nan, Sin-Sin, Nan-C60, C60-C60) [5]. 
(Although the free atoms were treated as solid spheres, the exclusion of valence electrons from 
the core suggests that a hollow-sphere model might be more realistic for them, as it is for the 
fullerenes. Greater accuracy, around 3% error for atom pairs, can be achieved by formulas [2, 3, 
5] that make use of the more-realistic radially-varying electron density ).(rρ ) 

         The dynamic multipole polarizabilities for the classical conducting spherical shell are given 
exactly by Eq. (5) of Lucas et al. [10]. Setting 1== ei εε  and 22 /1 upωε += , where πρω 4=p  

is the plasma frequency, we find 
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Here  

                  )12/( += llpl ωω                                                                                               (6) 

is the natural frequency of the l -th normal mode or surface plasmon in a solid metal sphere, and  

                 )12/()1(~ ++= llpl ωω .                                                                                  (7) 

Note that the static polarizabilities are 

                 12)0( += l
l Rα )1/0( ≤< Rt                                                                                (8) 

which is remarkably (but correctly for the model) independent of t . This occurs for a good 
classical-physics reason: The equilibrium charge on a conductor is confined to the surface and 
creates an induced electric field that cancels the applied electric field inside the conductor.  The 

1=l  limit is the familiar  .)0( 3
1 R=α  The justification for neglecting the energy gap of the 

cluster (except insofar as it affects the static dipole polarizability) is given in Ref. [6].  

          Now the frequency integral in Eq. (2) can be performed, leading to the expressions [5] in 
Appendix A for the coefficients of all orders. While the model and its dynamic multipole 
polarizabilities are simple, the corresponding van der Waals coefficients are lengthy analytic 
expressions which simplify considerably in the solid-sphere limit 1/ →Rt  [3], as also shown in 
Appendix A. 

           Strictly, our classical model has no zero-point density fluctuation and thus no van der 
Waals interaction. But it does have exact multipole polarizabilities, which can be and are used in 
the Casimir-Polder formula of Eq. (2) to generate realistic van der Waals coefficients for 
quantum systems. This kind of “boot-strapping” also occurs within the adiabatic connection 
density-functional approach to the random phase approximation (RPA) [11], in which a Hartree 
density response function (without exchange or correlation) is used to generate an exact 
exchange energy and an RPA correlation energy. 
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3.  Summing the van der Waals series to all orders 

           If we set B=A, we obtain from the Appendix the simple but exact 

             k
kk RRtcC ])2[(4)/( 2

2 πρ= ,                                                                                      (9) 

in which all complexity is hidden in the reduced coefficients )/( Rtck .  The van der Waals series 
for the interaction energy (Eq. (1)) is then 

               k

k
k zRtcdU )/(4)(

3
∑

∞

=

−= πρ   ,                                                     (10) 

where 
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d
Rz   .                                                                                                   (11) 

Some coefficients )/( Rtck  for 80≤k  have been computed from the formulas in Appendix A 
and displayed in Table 1. They increase modestly from 3=k , and approach a limiting constant 

∞c (apparently independent of Rt / ) for large k , a behavior that is reminiscent of the geometric 
series 

                   1

1
)1( −

∞

=

−=∑ zz
k

k       )10( <≤ z .                                                                    (12) 

Thus we can approximately sum the series in a way that will exactly yield the first three terms of 
Eq. (1), while including the effect of ∞→ cck : 

     }])1{()/()/()/([4)(
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Eq. (13) interpolates between correct large-d and Rd 2→  limits. That ∞c is independent of Rt /
is suggested by the fact that Rt / enters via lθ , which vanishes as .∞→l  In Eq. (13), we have 

assumed that ∞c is indeed independent of Rt / ; in later equations, any dependence of the kc  on 

Rt /  will be implicit. Figures 1 and 2 compare )(dU  to
6

6 / dC− , 8
8

6
6 // dCdC −− , and 

10
10

8
8

6
6 /// dCdCdC −−−  for the interaction of two solid spheres (Na20-Na20) and for the 

interaction of two hollow spheres (C60 –C60), respectively. Eq. (13) should be most accurate 
when the kc  have the weakest dependence upon k , as they do for solid spheres with .1/ =Rt  
Eq. (13) is consistent with Ref. [12], which shows via inequalities that our Eq. (1) sums to a 
finite result  for  nonoverlapped spherical densities ( Rd 2> ). 
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        The formulas in this section are for the interaction between identical spheres. They are 
generalized to nonidentical spheres and improved in Eq. (21) below. 

 

4. Removing the singularity for touching spheres 

        Eq. (13) has an unphysical divergence at 1=z  ( Rd 2= , where the spheres just touch). The 
divergence is there when we sum up all the terms in Eq. (1), but it is not there in reality because 
Eq. (1) is only an asymptotic expansion, valid for d so large that the exponential density overlap 
between the two real quantum-mechanical objects may be neglected. We can remove this 
singularity, without changing the infinite series to any order in z , if we replace z  in Eq. (13) by 

2)'/2(' dRz =  where 'd  differs from d  by for example a decaying exponential: 

                   ]/)2(exp[' hRdgdd −−×+=                                                                         (14) 

with 0>g  and 0>h  chosen to keep .2' Rd >  Figure 3 shows the result for 10=g  and 2=h  
atomic units. This choice is arbitrary both in form and in parametrization, and better choices can 
be made for specific purposes. For example, one might want a long-range correction [13-16] to 
semilocal density functional approximations (which by themselves provide no long-range van 
der Waals interaction). Figs. 2 and 3 show that a physical summation is needed for applications. 

        Similar but stronger singularities at Rd 2=  seem to be accepted without challenge in the 
work of Hamaker [17] and Tadmor [18].  These differ from the 0→d  singularities of the 
leading terms in Eq. (1), which are conventionally removed via a damping factor [13]. 

5. Scaling behavior of the van der Waals coefficients 

       By Eq. (9), the van der Waals coefficients of all orders for a pair of identical spherical shells 
are fixed by the coefficients )}/({ Rtck and by two parameters, πρ4  and 2)2( R  or equivalently 

6C  and 8C .  This means that, if we know the ratio Rt / and the first two van der Waals 
coefficients for a real quasispherical system, we can estimate therefrom the van der Waals 
coefficients of all orders:  
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An example is a relationship that holds for all spherical shells: 
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The right-hand side of Eq. (16) is 0.9114 for solid spheres ( )1/ =rt and 0.9065 for hollow 
spheres with 3403.0/ =Rt  (as for C60). A similar relationship is known to hold for a simple 
harmonic oscillator model [19], with 0.9 replaced by 1.1. 

6. Van der Waals coefficients from Hamaker’s pair interaction picture 

 In 1937, Hamaker [17] attempted to sum the van der Waals series for the interaction between 
two solid spheres of uniform density ρ , within the pair interaction picture 

                     6
33

'
1')(
rr

rdrddU BA
−

−= ∫∫β .                                                                  (17) 

We shall fix the constant pre-factor β  by requiring that this formula reproduce the exact 6C  for 
a pair of identical solid spheres:  

                          62
3 2)

4
3(4)1(
π

πρβ c= .                                                                      (18) 

(More generally, for non-identical solid spheres, we can replace πρω 4=p  in Eq. (18) by 

)/(2 B
p

A
p

B
p

A
p ωωωω + ; see Eq. [S5] of Ref. [3].) Hamaker’s formula for spheres of equal size (his 

Eq. (14)) also diverges when (in our notation) Rd 2→ . Tadmor [18] used Hamaker’s formula to 
find a similar interaction between spherical shells. But we note that there is no reason to believe 
that Eq. (17) is exact.  In fact, in other work [6] we have found that an atom pair-potential picture 
closely related to Eq. (17) can fail badly for fullerenes (hollow spheres). In Appendix B we will  
extract the van der Waals coefficients 6C , 8C , and 10C  from the Hamaker and Tadmor (HT) 
formulas, for comparison with our exact values. 

        Eqs. (17) and (18) directly imply the simple result 

         2
6 VC HT β−=                                                                                                                     (19) 

for the interaction of two identical spherical shells of volume V. Since each has a volume 

])([
3

4 33 tRR −−π , we find 

          6
36 )2(4)/( RRtcC HTHT πρ−= ,     23

3 ])/1(1[006766.0)/( RtRtcHT −−= .                      (20) 

For solid spheres ( )1/ =Rt , the size dependence of HTC6 is 6R  or 2n , where n is the number of 

atoms in the cluster. Similarly, as shown in Appendix B,  3/88
8 ~~ nRC HT and 3/1010

10 ~~ nRC HT  
for solid spheres. 
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        Taylor expansion of the Hamaker interaction between identical solid spheres and of the 
Tadmor interaction between identical spherical shells for small 1−d  yields van der Waals 
coefficients of the form of Eq. (9) but with modified reduced coefficients )/( Rtck shown in 

parentheses in Table 1. The Hamaker )1/(3 =Rtc is exact by our choice of β , but the Tadmor 

)1/(3 <Rtc is seriously too small for single-walled fullerenes with 1/ <<Rt . This is consistent 
with our conclusion of Ref. [6] that the atom pair-potential picture can be correct for solid 
spheres but not for single-walled fullerenes. Finally, we note that, since the Hamaker van der 
Waals coefficients have the same kR 2)2(  dependence as our exact treatment, our exact treatment 
has an asymptotic size dependence [6] for the van der Waals coefficients between identical solid 
spheres and corresponding quasispherical nanoclusters that is consistent with the atom pair-
potential picture.  The fullerenes however have a different size-dependence that is inconsistent 
with this picture [6], because the Rt /  dependence of the Tadmor kc  is incorrect (Table 1). 

         The problem with the atom pair-potential picture for 6C  is easy to see: The number of 
atoms in an object is additive, but the exact dipole polarizability is not. For example, consider 
adding a spherical carbon cluster at the center of a large fullerene. The static dipole polarizability 
of the combined system is not the sum of those for the fullerene and for the cluster, but is just the 
static polarizability of the fullerene by itself, consistent with Eq. (8). A similar problem arises [6] 
for nonlocal correlation energy functionals of the kind used in Ref. [7]. This kind of radical 
nonlocality [6] is captured by the random phase approximation or variants thereof [20]. 

        Unlike the less accurate Hamaker-Tadmor )(dU HT , our )(dU  from Eq. (13) is restricted to 
the case of identical objects (B=A). We might expect the best of both worlds from 

 ]///)()[/(///)( 10
10

8
8

6
6

10
10

8
8

6
6 dCdCdCdUccdCdCdCdU HTHTHTHTHT ++++−−−= ∞∞ .  (21) 

7. Summary and conclusions 

         In summary, we have found that the van der Waals series of Eq. (1) can be summed as a 
geometric-like series (Eq. (13) or Eq. (21)). Unlike previous efforts to sum this series [17-19], 
ours is based on a realistic physical model for the coefficients of all orders, and on an 
examination (Table 1) of the crucial behavior of the higher-order reduced coefficients. Also 
unlike previous efforts, we have shown that the resulting unphysical singularity at small non-zero 
d can be removed without changing the asymptotic series in any order. The higher-order 
coefficients between identical objects can be estimated from 6C  and 8C . The pair interaction 
model [17,18] produces a series which is qualitatively similar to but quantitatively different from 
that of the more accurate spherical-shell model. The low-order van der Waals coefficients from 
the pair interaction model can be reasonably accurate for the interaction between solid spheres, 
but not between fullerenes.  
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Appendix A: Detailed expressions of Ref. [5] for the van der Waals coefficients from Eqs. 
(2) and (3) 
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These complicated formulas simplify considerably for identical (B=A) solid (t=R) spheres: 
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Appendix B: Van der Waals coefficients in the Hamaker -Tadmor pair-interaction picture 

         In the Hamaker pair-interaction picture of Eq. (17), the van der Waals interaction between 

two solid spheres of radii RA and RB, with separation d  between their  centers, is [17]     

2 2
2

2 2 2 2 2 2

2 2 ( )( , , ) ( / 6){ + +ln[ ]}
( ) ( ) ( )

H A B A B A B
A B

A B A B A B

R R R R d R RU R R d
d R R d R R d R R

π β − += −
− + − − − −         (B1)  

where β is defined below Eq. (18). The Taylor expansion of Eq. (B1) in powers of d-1 is 

                                                                   
3 3 3 3 2 2 7 3 5 5 3 72

6 8 10

32 32 ( ) 64(5 14 5 ) ...
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A B A B A B A B A B A BR R R R R R R R R R R R
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⎝ ⎠                                  (B2) 

For two identical spheres (A=B), Eq. (B2) becomes 
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32 64 1536 +...
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        Tadmor [18] started from Hamaker’s formula (B1), then imagined each sphere as the sum 

of a spherical shell and a solid-sphere core filling the interior of the shell, so that 
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Table 1 Reduced van der Waals coefficients of Eq. (9), for classical solid spheres ( )1/ =Rt  and 
hollow spheres ( 3403.0/ =Rt  as for C60, and 0.0531 as for C3840). In parentheses are values 
predicted by the pair interaction model of Eqs. (17) and (18), via our Taylor expansion of 
expressions by Hamaker [17] for 1/ =Rt  and by Tadmor [18] for .1/ <Rt  The Hamaker-
Tadmor value for ∞c is derived from Eq. (14a) of Ref. [17]. 

Coefficient                 1/ =Rt                     3403.0/ =Rt            0531.0/ =Rt  

3c                               0.006766                  0.005448                 0.002237 

                                 (0.006766)                (0.003437)              (0.000154) 

4c                               0.008842                  0.007547                 0.003221 

                                  (0.01015)                 (0.006328)              (0.000366)) 

5c                               0.009599                  0.008592                 0.003835 

                                  (0.01217)                 (0.008857)              (0.000649)  

6c                               0.009946                  0.009215                 0.004313 

10c                              0.010447                  0.010273                 0.005753 

20c                              0.010761                  0.010757                 0.007988 

40c                              0.010904                  0.010908                 0.009960 

80c                              0.010979                  0.010979                 0.010870 

∞c                               0.011                       0.011                      0.011 

                                 (0.020)                     (0.020)                    (0.020)        
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Figure 1: (Color online) Binding energy curves for the nanocluster pair Na20-Na20, with the 
multipole polarizabilities of each Na20 modeled as those of a classical conducting solid sphere 
with 57.12=R  bohr, Rt = , and N = 20. The curves show the leading contributions to Eq. (1), 
and also Eq. (13) which sums the asymptotic series of Eq. (1) to all orders. 
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Figure 2: (Color online) Binding energy curves for the fullerene pair C60-C60, with the multipole 
polarizabilities of C60 modeled as those of a classical conducting spherical shell with 11.8=R  
bohr, 76.2=t bohr, and N = 240. The curves show the leading contributions to Eq. (1), and also 
Eq. (13), which sums the asymptotic series of Eq. (1) to all orders. 
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Figure 3 (Color online) Binding energy curves for C60-C60. van der Waals interaction summed to 
all orders with and without a singularity at Rd 2= . The curves show Eq. (13), which sums the 
asymptotic series of Eq. (1) to all orders, and Eq. (14) (with 10=g  and 2=h ), which has the 
same asymptotic      ( ∞→d ) expansion without the singularity at Rd 2= .  (The equilibrium 
separation between the centers of neighboring buckyballs in the orientationally-disordered face-
centered-cubic molecular crystal is 18.9 bohr [21].) 


