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In a typical quantum circuit, nonlocal quantum gates are applied to nonproximal qubits. If the
underlying physical interactions are short-range (e.g., exchange interactions between spins), interme-
diate SWAP operations must be introduced, thus increasing the circuit depth. Here we develop a new
class of “mediated” gates for spin qubits, which act on nonproximal spins via intermediate ancilla
qubits. At the end of the operation, the ancillae return to their initial states. We show how these
mediated gates can be used to (1) generate arbitrary quantum states and (2) construct arbitrary
quantum gates. We provide some explicit examples of circuits that generate common states [e.g.,
Bell, Greenberger-Horne-Zeilinger (GHZ), W, and cluster states] and gates (e.g., v/SWAP, SWAP,
CNOT, B and TOFOLLI gates). We show that the depths of these circuits are often shorter than con-
ventional SWAP-based circuits. We also provide an explicit experimental proposal for implementing

a mediated gate in a triple-quantum-dot system.

I. INTRODUCTION

Quantum dot spin qubits are promising candidates for
quantum computing because of their long decoherence
times and their potential to leverage existing semicon-
ductor technologies [1, 2]. The exchange coupling is a
desirable tool for mediating interactions between spin
qubits, because it can be controlled electrostatically and
it is typically very fast [3]. In combination with arbitrary
single qubit operations, the exchange coupling enables
universal quantum computation [4]. When logical qubits
consist of two [5] or three [6] physical qubits in a deco-
herence free subsystem, the exchange coupling alone is
universal for quantum computation. On the other hand,
the intrinsic short-range nature of the exchange coupling
(typically tens of nanometers) imposes strong constraints
on the physical architecture of the spin qubits. These
constraints present a significant challenge for scalability
during quantum error correction, particularly for linear
qubit architectures, which are typical for quantum dot
spin qubits [7]. Indeed, large-scale quantum computing
is challenging in any qubit implementation, and the com-
plexity of a given quantum circuit could, to a large extent,
determine its success.

In a number of qubit systems, such as nuclear mag-
netic resonance (NMR), the physical interactions may be
constant or “always-on.” This is not necessarily a disad-
vantage. For example, it has been shown that simultane-
ous, multi-qubit couplings can be used to enable quan-
tum state transfer [8, 9], and other rudimentary quan-
tum gates [10]. Similar considerations apply to quantum
dot spin systems with Heisenberg couplings [11]. Quan-
tum dots provide unique opportunities for controlling the
nature of the interactions. For example, simultaneous,
multi-qubit couplings could provide a potential route for
enhancing the effective range of the coupling, in anal-
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ogy with the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction [12]. When these couplings are arranged into
nontrivial topologies, such as rings, a rich spectrum of
quantum gates emerges [13—-15]. However even simple
topologies, like those considered here, can produce en-
tangling gates that differ from existing two-qubit gates
in spin qubits [16-18].

In this paper, we show how to control such simultane-
ous, multi-qubit couplings. The result is a new class of
“mediated” quantum gates. We focus primarily on the
three-qubit geometry shown in Fig. 1, due to recent ex-
perimental progress on triple-quantum-dots [19-21]. In
this arrangement, the mediated gate acts on the nonprox-
imal qubits 1 and 2, leaving the ancilla or central qubit
¢ unaffected, at the end of the operation. We character-
ize this well defined gate operation, Us, and show how
arbitrary two-qubit states and gates can be generated
using Uy as the sole entangling resource. We also com-
pare the circuit depth of these mediated-gate protocols
to more conventional SWAP-based protocols. Finally, we
explain how long-range mediated gates can be attained
by replacing qubit ¢ with a spin bus.
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FIG. 1. (Color online) A linear triple-quantum-dot geometry
with three electrons. Mediated gates can be achieved between
qubits 1 and 2 by applying simultaneous exchange couplings,
with J; = J2. At the end of the operation, the ancilla qubit
c is restored to its initial state.




II. TWO-QUBIT MEDIATED GATE, U,
A. Mediated gate, U,

We begin by characterizing the mediated gate Uy. The
effective spin Hamiltonian for the quantum dot geometry
of Fig. 1 derives from the exchange interaction, and takes
the form of nearest-neighbor Heisenberg couplings [4],
given by

H = Jisy-sc+ Jasa - s, (1)

where s; are spin operators. In typical experiments, the
coupling constants J; and Jy are controlled by detuning
the local electrostatic potentials in a given dot [3]. J;
and Jo can usually be varied independently as a function
of time [19, 20]. For mediated gates, however, we assume
that both couplings are turned on and off simultaneously.

The Hamiltonian H induces three-spin dynamics ac-
cording to the time evolution operator U(t) = e~ *H!,
where we set i = 1. However, the mediated gate we
seek has the special form U = Uy ® I, where Uy acts
on qubits 1 and 2, and the identity operator I acts
on the ancilla qubit ¢. In Appendix A, we prove that
only one nontrivial mediated gate exists for the geom-
etry of Fig. 1, corresponding to the unique parameter
combination J; = Jo = J and the special evolution pe-
riod T, = 4n/3J (with periodic recurrences [22]). The
gate is robust against control errors, as similar to con-
ventional two-qubit exchange gates. For example, if
Ja = Ji(1 + 0) results in the gate U(J), where U(0)
is the desired gate, and if the fidelity is defined as [23]
F = |Tx[U(§)TU(0)]|/Tr[U(0)TU(0)], then we obtain a
quadratic error in the fidelity: 1 — F ~ 0.976° when
0 <0.4.

Any unitary two-qubit operator Uy € SU(4), including
Us, can be expressed in the form of a Cartan decompo-
sition, given by [24, 25]

U e%(Clarc@a-ac+C20y®0y+c302®02)) (2)

U,

where 0, 0,,0, are the Pauli matrices, and s = /2 in

spinor notation. Here, the relation 2 heans “equal, up
to local unitary gates,” where the latter may be applied
before and/or after the nonlocal operator. The decom-
position is unique when the parameters (c1,co,c3) are
restricted to the tetrahedron @ —co > ¢1 > ¢co > ¢c3 > 0,
known as the Weyl chamber. (Note that special con-
siderations apply to the base of the tetrahedron [24].)
There is a one-to-one mapping between the Weyl cham-
ber and the Makhlin invariants [26], which provides an
alternative representation of the nonlocal properties of
Us € SU(4) (except on the bottom surface of the cham-
ber). The Cartan decomposition for our two-qubit me-
diated gate is given by (c1,ca,¢3) = (2,1,1)(7/3) and it

Weyl Chamber

FIG. 2. (Color online) A geometric representation of two-
qubit SU(4) gate operations, with axes c1, ¢z, and cs defined
in Eq. (2). The Weyl chamber corresponds to the tetrahe-
dron 0-A;-As-Ags, while the gates known as perfect entanglers
lie inside the shaded region [24]. The coordinates for other
special gates are given by B = (§, §,0), cNoT = (F,0,0),
SWAP = (5,3, %), and /SWAP = (4,5, 7).

has the explicit form (see Appendix A for details)

(1 +1iV3) 0 0 0

U, — — 0 1(-1+iv3) 1(3+iv3) 0

2= 0 13+4v3) L(-1+iv3) 0
0 0 0 $(1+1iv3)

The position of Uy in the Weyl chamber is shown in
Fig. 2, along with several other common two-qubit gates.

The gating capabilities of Us € SU(4) derive from its
entangling properties, which can be characterized in part
by its position in the Weyl chamber. The operators
known as “perfect entanglers” lie inside a polyhedron,
which fills half of the chamber [24], as shown in Fig. 2.
Combined with local unitaries, a perfect entangler can
generate a maximally entangled state from a separable
state. For example, if we quantify two-qubit entangle-
ment in terms of the “concurrence” measure C' [27, 28],
then a separable state exhibits no entanglement, with
C = 0, while a highly nonlocal state like the singlet Bell
state |U7) = %(|01> — ]10)) exhibits maximal entan-
glement, with C' = 1. Thus, for some initial two-qubit
state with C = 0, one application of a perfect entan-
gler produces a state with C' = 1. The standard cNOT
gate is known to be a perfect entangler [24], as indicated
in Fig. 2. However, CNOT does not arise naturally from
the exchange interaction between spin qubits; it must be
constructed from more basic gates [4]. In contrast, the
mediated gate Uy does arise naturally in many-body spin
systems as we have shown; however, its location in the
Weyl chamber indicates that it is not a perfect entan-
gler. Using the methods of [25], we find that Uy achieves
a maximum concurrence of Ciuax = v/3/2 < 1, when act-
ing upon a separable state.

A universal quantum processor must be able to gen-
erate arbitrary entangled states or implement arbitrary
quantum circuits. For example, CNOT gates combined
with single-qubit unitaries are known to be universal [29—



31]. Any two-qubit entangling gate Us can replace CNOT
in this scheme [32], although the entangling capabilities
of the gate will affect the overall circuit depth. In the
remainder of this section, we explore methods for gen-
erating arbitrary entangled states and entangling gates
using the mediated gate Uy, and we determine the cir-
cuit depth of such protocols.

B. Generation of arbitrary states

Our goal here is to construct arbitrary, two-qubit, en-
tangled pure states between qubits 1 and 2 in the geome-
try of Fig. 1, using the mediated gate U, as our nonlocal
entangling resource. Allowing for local operations and
classical communication (LOCC), it is possible to trans-
form maximally entangled states, such as Bell states, into
arbitrary pure states [33]. We therefore focus on using
Us to generate Bell states. For simplicity, we will ignore
global phase factors throughout this paper.

The strategy we adopt is to apply Us repeatedly, as-
sisted by single-qubit unitary rotations U;, as needed:

[v) = (Uy @ Up)[U2(Uy @ Up)]"™[00). (4)

Note that each application of U; here represents an arbi-
trary rotation, and that in general, the rotations can all
be different.

We would like to be able to compare the speed or effi-
ciency of disparate gating protocols, particularly between
mediated and conventional gates. The most convenient
measure of this efficiency is the “circuit depth,” which we
define here as the total number of exchange gates. For
example, in Eq. (4), the circuit depth is equal to n. For
conventional quantum dot circuits, there may be cases
where it is possible to implement gates between different
pairs of qubits simultaneously, due to physical separa-
tion. We define the circuit depth of such parallel gates
to be 1, since they occur simultaneously. On the other
hand, conventional circuits typically require intermediate
SWAP gates to be applied sequentially when the qubits
are nonproximal, causing the circuit depth to increase
by 1 with each sSwWAP application. This notion of circuit
depth plays an important role in the gate times and fi-
delities of quantum circuits, and we will speak of circuit
depth throughout the following discussion. To conclude,
we note that since Uy is not a perfect entangler, the value
of n in Eq. (4) must be greater than 1 when we generate
a Bell state.

We have solved Eq. (4) numerically, obtaining several
two-qubit states of interest. Our procedure involves max-
imizing the state fidelity, f = |({des|Vactual)|?, Where
Yactual) 18 the outcome of Eq. (4), and |1)qes) is the de-
sired outcome. The two-qubit mediated gate used in the
simulations is given by Eq. (3), and the individual single-
qubit rotations Uy are determined using global optimiza-
tion methods, as described in Appendix B. In principle,
we could also allow the circuit depth n to vary. However,
we find that maximally entangled Bell states can already
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FIG. 3. (Color online) (a) A quantum circuit for generating
the singlet Bell state |¥7) = %(\Ol) —110)) (up to a global
phase), using the mediated gate Uz, given in Eq. (3). Here,
the single qubit rotations are defined as Ro(#) = e~ 27«
where @ = z,y,z. The rotation angles are given by 6; =
—arccos(3), #2 = —im—arctan %, (b) An efficient Bell
state protocol between nonproximal qubits, based on nearest-
neighbor, pairwise gates. Here, H is the Hadamard gate and
X is the Pauli gate o, corresponding to a 7 rotation about
the z-axis of the Bloch sphere (up to a global phase). In
this figure, and several other figures below, we note that the
central ancilla spin ¢ mediates the multi-qubit gates. The
initial state of the ancilla |y) is arbitrary, and it returns to
its initial state at the end of the operation. For completeness,
we include c in these circuit diagrams and use black dots to
indicate the qubits being acted upon.

be obtained when n = 2. The resulting circuit for the
singlet Bell state |T—) = %(|01> — |10)) is shown in
Fig. 3(a). Other Bell states can be generated in a similar
fashion.

We can compare our mediated-gate protocol to the
conventional Bell state protocol based on nearest-
neighbor gates, as shown in Fig. 3(b). In the latter case,
CNOT is used to generate the Bell state, while the sSwap
gates are used to make the qubits proximal. The min-
imal circuit depth needed to construct CNOT is two [4].
Comparing Figs. 3(a) and 3(b), we obtain an exchange
gate circuit depth of n = 2 for the mediated-gate protocol
and n = 4 for the swapP-based protocol. The mediated
gate therefore offers distinct advantages for generating
arbitrary states.

C. Experimental Proposal for a Triple Quantum
Dot

Triple quantum dots have been investigated in several
laboratories [20, 21]. Here, we suggest a specific protocol
for generating a Bell state in a triple quantum dot, using
the mediated-gate protocol of Fig. 3(a). Our proposal in-
cludes the supporting initialization and verification steps,
and it is based on existing experimental methods. We
note that Bell states can also be produced via standard,
conventional (i.e., nonmediated) techniques [3]. The
purpose of this section is simply to outline a proof-of-
principle experiment that employs mediated gates.

To generate a Bell state using mediated gates, we
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FIG. 4. (Color online) A comparison of circuits used to construct some common quantum gates. Each case presents two results:
a mediated gate construction, obtained using global optimization methods (as described in Appendix B), and a “conventional”
circuit, based on nearest-neighbor, pairwise gates. The pairwise gates require extra SWAP operations when the qubits being
acted upon are not proximal. In the cases shown here, the qubits (1 and 2) are separated by one ancilla (¢). (a), (b) cNOT
gates. For the mediated gate circuit, we have b = — arccos(—1/3). The pairwise gate circuit is given in [4]. (c), (d) v/SWAP
gates. For the mediated gate circuit, we have 6; = 0.5247, 62 = 0.5497, 03 = 1.0157, 04 = 0.1007, 05 = 0.3927, 05 = —0.3057,
07 = —0.4377, 0 = 0.6267, 9 = —0.9067, and 010 = —0.1747. (These parameters can be obtained up to machine precision.
Here, and elsewhere throughout the paper, we halt the optimization procedure when the objective function is smaller than
10714.) For the pairwise gate circuit, we note that SWAP and /SWAP are “natural” gates for spin qubits, whose interactions
are of the isotropic Heisenberg type. As a result, the pairwise gate circuits for SWAP and \/SWAP are very simple. (e), (f)
SWAP gates. For the mediated gate circuit, we have 51 = —0.7377, B2 = —0.4657, B3 = —0.5437, B4 = 0.7007, B5 = 0.807,
Bs = 0.0097, B7 = —0.2787, Bs = 0.3697, By = 0.274m, and B0 = —0.3257. (g), (h) B gates. For the mediated gate circuit,
we have (1 = 0.2977, (2 = 0.7887, {3 = 0.6607w, (4 = —1.0927, and (5 = 0.5797. For the pairwise gate circuit, the circuit
was constructed by first solving for the B gate in terms of \/SWAP gates, using the global optimization methods described in
Appendix B. sWAP gates were then applied, to make the qubit states proximal.

must first initialize the triple dot into the separable state formed into the spin ground state of a double quantum
[0Y1]x)c]|0)2, as shown on the left-hand-side of Fig. 3(a).  dot (]0)1|0).) by adiabatically detuning the double-dot

There are two common procedures for initializing quan- in a moderate magnetic field [3]. Both of these methods
tum dot spin qubits: the preferential loading of single- require a magnetic field, and we have confirmed that the
electron spin ground states (]0); and [0)2) in a large  protocol shown in Fig. 3(a) is unaffected by a uniform
magnetic field [34], or the preferential loading of a two- field, up to an overall phase factor. For the singlet load-

electron singlet state (]S)1) [3]. The latter can be trans-  ing method, the desired initial state is achieved, finally,



by performing a SWAP operation between the qubits ¢
and 2. Once the triple dot has been initialized, the medi-
ated gate protocol is implemented as shown in Fig. 3(a),
giving the result |¥~)12|x)e-

The verification step is performed most conveniently
via spin-to-charge conversion, using a singlet projection
procedure [3]. We first perform a SWAP operation be-
tween the qubits ¢ and 2, so the two spins in the singlet
state become proximal: [P )12]x)e = U7 )1c]x)2. Dots
1 and c¢ are then detuned, so that the electron in dot ¢
tunnels to dot 1 only if the two electrons form a singlet,
due to the large singlet-triplet energy splitting in a single
quantum dot. This projection technique requires a mod-
erate (not-too-large) magnetic field, so that the singlet
remains the ground state of the two-electron dot.

D. Construction of arbitrary gates

We now consider protocols for generating arbitrary
two-qubit gates, using the mediated gate Us as an entan-
gling resource, in combination with arbitrary single-qubit
gates U;. We adopt a strategy analogous to Eq. (4), given
by

Uy, = (U1 X Ul)[UQ(Ul & Ul)]n- (5)

As before, we solve this equation using global optimiza-
tion techniques, as described in Appendix B. The results
for some familiar gates are shown in Figs. 4(a), (¢), (e)
and (g). These results appear to have the smallest pos-
sible circuit depth, based on exhaustive searches. None
of the gates requires more than five applications of Us.

Our result for ¢NOT is indicated in Fig. 4(a). This
mediated gate circuit employs four U, gates. The cor-
responding circuit for conventional, pairwise gate oper-
ations employs two /SWAP gates when the qubits are
proximal [4]. When the qubits are nonproximal, addi-
tional SWAP gates are needed, as indicated in Fig. 4(b).
Thus, for the second-nearest neighbor geometry shown
in Fig. 1, the mediated and conventional CNOT circuits
have equal circuit depths, with n = 4.

Figure 4 also shows mediated gate results for several
other types of gates, as well as the corresponding conven-
tional, pairwise gate circuits. For the examples shown
here, the mediate-gate method has equal or larger circuit
depths compared to the pairwise-gate method. The ex-
amples where the pairwise-gate method is more efficient
fall into the SWAP family, which is the “natural” gate for
spin qubits, since it is generated by the isotropic Heisen-
berg interaction. There are other, less familiar gates for
which the mediated gate circuit is more efficient; the gate
Us is an obvious example. Generally, we expect that
the mediated-gate method should be more likely to im-
prove the circuit depth of larger-size gates (e.g., TOFFOLI)
when multi-qubit entangling gates like Ug are available,
or when the central spin can be replaced by a spin bus.
We discuss both of these examples below.

There are several well-known techniques for construct-
ing arbitrary two-qubit gates, which can be adapted for
mediated gates. One of the most efficient methods re-
quires no more than two applications of the so-called B
gate [35], to implement a gate whose Cartan decompo-
sition is known. Fig. 4(g) shows our globally optimized
circuit for a B gate, which employs five Us gates. This re-
sult (together with [35]), constitutes a formal proof that
n < 10 for a mediated gate with optimal circuit depth, as
described in Eq. (5). It also forms a constructive proto-
col for generating an arbitrary two-qubit gate using ten
U, gates. However, we note that the bound n < 10 does
not appear to be tight, since none of the gates we have
solved requires more than five applications of Us,.

To conclude this section, we consider the scaling prop-
erties of the two-qubit mediated gate scheme for a spin
bus geometry [22]. Specifically, we consider an odd-size
spin chain of length N, and two external qubits. When
the bus is constrained to its ground-state energy man-
ifold, it can be treated as a spin-1/2 pseudo-spin [22].
The effective interaction between the qubits and the bus
pseudo-spin has a Heisenberg form [9, 36], with an ef-
fective coupling constant J* o< J/v/N [22]. We can im-
mediately apply all our three-qubit protocols, simply by
replacing the central qubit in Fig. 1 with a bus, and re-
placing J with J* when we calculate the gate period 7.
The resulting bus gate U, is identical to the two-qubit
mediated gate, and the protocols proceed as before, ex-
cept that the qubits can now be far apart. The exchange
gate circuit depth for the bus protocol is the same as for
mediated gates. Specifically, it is independent of N. The
gate period Ty scales as VN however, since Ty o< 1/J*.
In contrast, the circuit depth of a conventional gate pro-
tocol, based on pairwise SWAP gates, is proportional to
N, while T} is independent of N for a given pairwise op-
eration. Thus, the spin bus architecture has much better
scaling properties than the conventional gate protocol, in
terms of both total gate time [O(v/N) vs. O(N)] and cir-
cuit depth [O(1) vs. O(N)], with immediate consequences
for quantum error correction [7].

III. THREE-QUBIT MEDIATED GATE, U;
A. Mediated gate, Us

We now consider the mediated gate geometry shown
in Fig. 5(a), with three qubits coupled through a single
mediating spin, c. The system Hamiltonian is given by

H = Jies1 - Sc + JacS2 - Sc + J3c83 - Se, (6)
and the time evolution operator is given by U (t) = e~ *Ht.
If qubits 1-3 are arranged in a linear geometry rather
than the “star” geometry of Fig. 5, then an effective star
geometry can still be achieved by introducing a spin bus
architecture [22], where ¢ is an odd-size bus.

For larger geometries, the group theoretical methods
described in Appendix A become cumbersome. However,



for the special case of equal couplings, J = Ji. = Jor =
Jsc, we can still obtain mediated gates analytically. We
do this by computing U(t) in the angular momentum
basis, where it is diagonal [22]. We then transform it
to the computational basis and identify the gate periods
t = T, for which the special decomposition U = U3 ® [ is
satisfied. Here, Us is the mediated gate acting on qubits
1-3, while I is the single-qubit identity operator acting on
spin ¢. This procedure produces four different mediated
gates [22]. The first gate is the trivial identity operator,
obtained at the gate periods T, = (8m)n/J (m is an
integer). The second gate occurs at the gate periods T, =
(8m + 2)w/J, and takes the form

1 0 0 0 0 0 0 0
0-1/3 2/3 0 2/3 0 0 0
0 2/3 -1/3 0 2/3 0 0 0
Uei| 0 0 0 —1/3 0 2/3 2/3 0
3=' 0 2/3 2/3 0 -1/3 0 0 0
0 0 0 2/3 0 -1/3 2/3 0
0 0 0 2/3 0 2/3 —1/30
o0 o0 0 0 0 0 1

(7)
The third gate occurs at the gate periods T, = (8m +
4)m/J, and is given by U3 = —I. The fourth gate occurs
at the gate periods Ty = (8m + 6)n/J, and is given by
U3 = —Us.

B. Generation of arbitrary states

The methods used to generate two-qubit states and
gates can also be extended to three-qubit problems. How-
ever, three-qubit protocols are slightly more complicated
because they can involve two-qubit gates, three-qubit
gates, or both. The most general scheme for generating
a three-qubit state is shown in Fig. 6(a). We note that
higher-order gates such as the three-qubit mediated gate
Us can potentially achieve shorter circuit depths, because
they are more parallel than two-qubit gates. The global
optimization techniques used to solve Eq. (4) can also be
applied to Fig. 6(a).

There are known to be two nonfungible forms of en-
tanglement for three qubits [37]: the W state family,
characterized by the symmetric form

1
V3

and the Greenberger-Horne-Zeilinger (GHZ) state fam-
ily [38], characterized by the symmetric form

[Ws) = —=(|001) + |010) + [100)), (8)

1
V2

The GHZ state is understood to be maximally entangled
for three qubits.

We have applied global optimization methods to ob-
tain |GHZ3) and |W3), obtaining the results shown in

IGHZ3) = ——(|000) + [111)). (9)

FIG. 5. (Color online) Multi-qubit “star” geometries for im-
plementing mediated gates. Here, the qubits are labelled by
numbers and the ancilla spins labelled ¢ mediate the gates. (a)
The U3 gate acts on qubits 1-3 when the three qubit couplings
J are equal. (b) To generate the four-qubit cluster state |C4),
we implement three-qubit mediated gates Us by turning on
the couplings to three of the qubits at a time. (c) To generate
a Wy state, we consider N qubits connected simultaneously
to the ancilla spin ¢, with equal couplings J. In each of these
geometries, the ancilla spin can be replaced by an odd-size
spin bus. In this case, ¢ represents the pseudo-spin of the bus
ground state [22].

Figs. 6(b)-(d). For |W3), we provide two different strate-
gies. One uses a combination of Uy and Us, the other
uses Us only. They both have the same circuit depth,
n = 2. Remarkably, we find that the GHZ state can be
attained using Us as the only entangling resource with
just a single application:

|GHZ3) = (U, ® Uy @ Up)Us(U; @ Uy @ U;)[000). (10)

The circuit is optimal (n = 1), indicating that Us is
a perfect entangler for the three-qubit GHZ state fam-
ily [37]. We can compare this result to the conventional,
pairwise gating circuit for |GHZ3), which uses two cNOT
gates [39]. In a quantum dot quantum computer, this
would require at least four exchange gate operations,
or n = 4. It is interesting to note that Us is locally
equivalent to the time evolution operator describing the
three-qubit triangular geometry (evaluated at a special
time) [40]. The latter gate is also capable of generating
|GHZs) in a single time step.

Although Ujz acts on just three qubits at a time, it is
interesting to note that it can also be used as an entan-
gling resource for larger systems. For example, we can
consider cluster states, which represent an important en-
tanglement family used for one-way quantum comput-
ing [41, 42]. The four-qubit cluster state |Cy4) is defined
as

1Cy) ' %(|0000> +10011) 4+ ]1100) — |1111)).  (11)

We have solved |Cy) numerically, for the geometry
shown in Fig. 5(b). Here, the ancilla spin ¢ can be con-
nected to each of the four qubits. However, we assume
that only three of the couplings are turned on at a time.
For example, Usz(1,2,3) indicates that the couplings be-
tween ¢ and qubits 1-3 are turned on, thus implementing
the gate Us between those three qubits. Hence, we obtain
a numerical solution for |Cy) of the form



|Cy) = UP*Us(1,2,3)UP*U3(1, 2, 4)UP*U3(1, 2, 3)UP*U3(2, 3, 4)U*|0000). (12)
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FIG. 6. (Color online) (a) A general circuit for generating an
arbitrary three-qubit state, using U, and/or Us gates. Note
that Uz can act on different pairs of qubits. (b) A circuit for
generating a |GHZ3) state, using the three-qubit mediated
gate Us. (c) A circuit for generating a |W3) state, using both
U2 and Us gates, with 6; = —0.2627, 02 = 0.730w, 03 =
—1.356m, 64 = 0.3497, 05 = 1.1937, O = 0.2707, and ¢ =
1.2997. (d) An alternative circuit for generating a |WW3) state,
using only Us gates, with 01 = 0.5297, 02 = 0.7257, 03 =
—0.6087, and 04 = —0.137.

Here, U 4 represents arbitrary single-qubit rotations act-
ing on each of the four qubits. According to our definition
of circuit depth, this protocol corresponds to n = 4.

We can compare our mediated-gate solution to a con-
ventional sequence for generating |Cy), based on nearest-
neighbor pairwise gates. The conventional scheme in-
volves three sequential applications of the phase gate
diag(1,1,1, —1), in addition to single-qubit rotations [41,
42]. Since the phase gate is locally equivalent to CNOT, it
can be decomposed into two exchange gates plus single-
qubit rotations. The resulting circuit depth for the con-
ventional protocol is therefore n = 6. Thus again, we
find that mediated gates offer considerable improvement
in terms of circuit depth.

C. Construction of arbitrary gates

We now turn to the construction of three-qubit quan-
tum gates using Us. As an example, we determine an
explicit gate sequence for generating the TOFFOLI gate,
defined as

TOFFOLI = (13)

DO OO OO
OO OO OOoOOoO
—H O OO oo
OR OO0 OOoOOoO

OO OO OO
OO oo oo+ O
OO OO O+ OOo
[N elNoNel oo N

Our strategy is analogous to the state-generating circuit
in Fig. 6(a), where we interspersed Uy or Uz gates with
arbitrary single-qubit rotations. Our best result for con-
structing the TOFFOLI gate by this method is a gate se-
quence containing five U, gates and seven Us gates, giv-
ing a total exchange-gate circuit depth of n = 12.

We can compare our mediated-gate solution to a con-
ventional TOFFOLI gate construction. A TOFFOLI cir-
cuit using CNOT gates as the entangling resource has
been presented in [30, 43]; it consists of six sequential
CONOT gates. We can decompose this into a sequence of
nearest-neighbor exchange gates, including intermediate
SWAP gates when necessary. After identifying the ex-
change gates that can be performed in parallel, this pro-
cedure gives a circuit depth of n = 16. Alternatively,
if we allow other two-qubit gates in this procedure, in
addition to CNOT, it can be shown that five sequential
two-qubit gates are necessary and sufficient for imple-
menting a TOFFOLI gate [44]. However, some of these
gates are decomposed into exchange gate sequences with
n > 2. Based on such considerations, it appears that
the mediated-gate circuit with circuit depth of n = 12
for constructing a TOFFOLI gate is always more efficient
than a conventional gate circuit.

IV. MEDIATED GATES, Uani1 (N > 1)

The previous approach to state generation and gate
construction using mediated gates can be extended to
systems with more than three qubits. There are many
qubit architectures of interest. Here, we consider the
“star” geometry shown in Fig. 5(c). In cases where it is
experimentally challenging to fabricate a star geometry,
due to physical constraints, it may be convenient to re-
place the central spin ¢ with an odd-size spin bus [22]. In
this case, nontrivial mediated gates can be obtained when
an odd number of qubits are simultaneously coupled to
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FIG. 7. (Color online) A mediated gate circuit for gener-
ating |W3) using a Bell state as input. Here, 6; = —0; =
arccos(1/4).

the bus. These multi-qubit mediated gates, Uan 1, are
highly parallel, and potentially very efficient.

Here, we demonstrate that multi-qubit W states can be
generated using mediated gates, with very small circuit
depths. The N-qubit W state is defined as

1
\/—N(|oo...01>+\00...10>+...+\10...00>).
(14)

In Figs. 6(c) and (d) we indicated two methods for gen-
erating |[Ws). An alternative method is shown in Fig. 7.
This circuit requires a maximally-entangled Bell state,
|¥~), as input. The total circuit depth for this solution
(n = 3) is larger than Figs. 6(c) and (d) because the
circuit depth for generating |¥~) is n = 2. However,
the scheme has the advantage that it may be scalable for
odd-size W states.

For the cases N = 1-3, we have numerically verified
the result that

W) =

[Wan 1) = (U1 @ Up)Uan 41 (Ur ® U1)|\I’_>|0>®(2N_(1)7)
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which includes the result in Fig. 7 for the case N = 1.
For all cases, we note that the single-qubit rotations are
applied only to qubits 1 and 2. For the cases of N = 2,3,
the generating circuits are similar to Fig. 7, but with
different angles 6, and 6;. For each of these cases, the
circuit depth is given by n = 3.

A related, probabilistic scheme can be used to generate
the even-size W states. We first generate the odd-size W
state, as described above. This state can be expressed as

1 ®2N 2N
Wan1) = ml@ 1) 44/ IN T 1|W2N>|0>'
(16)
Hence, if one of the qubits is measured in the z-basis,
with outcome 0, then the state of the remaining qubits
will collapse to [Wan). When N is large, this protocol is
successful with high probability, P = 2N/(2N + 1).

V. SUMMARY AND CONCLUSIONS

In this paper, we developed the concept of a mediated
gate between nonproximal qubits. This gate is imple-
mented by coupling the qubits simultaneously through a
central, ancilla qubit, which is restored to its initial state
at the end of the operation. We have focused on two and

TABLE I. Comparison of the exchange gate circuit depths (n)
for generating some common quantum states and gates, using
two different gating protocols. The schemes we consider here
are based on (i) mediated gates (as described in this paper), or
(ii) conventional pairwise gates. The pairwise gating method
requires extra SWAP gates when the qubits being acted upon
are not proximal. (A useful reference for the scaling of |Wx)
state using pairwise gates is [45].)

State or gate Mediated gates
=) 2
[Ws)
W)
|GHZ3)
|C4)
CNOT
v/ SWAP
SWAP
B
TOFFOLI

Pairwise gates

13, TS, B NN NGRS )
—_
S5 UTwW L O e

—
[\]

three-qubit gates, although higher-dimensional gates can
be obtained in similar fashion. We investigated protocols,
based on global optimization techniques, for generating
arbitrary states and gates, using mediated gates as the
sole entangling resource.

Several promising results were obtained using medi-
ated gates, as summarized in Table I. We showed that a
maximally-entangled Bell state can be achieved with just
two applications of a mediated gate Us, and we proposed
an experimental protocol for implementing this proce-
dure in a triple quantum dot. We showed that several
important two-qubit quantum gates can be obtained us-
ing five or fewer mediated gates, and we proved that ten
exchange gates is the maximum needed for generating
an arbitrary two-qubit gate. We showed how the central
ancilla qubit can be replaced by a spin bus, leading to
significant improvements in scaling properties, for both
the total gate time and the circuit depth. We also consid-
ered the mediated gates Uy with N > 3, and showed how
mediated gate methods might be generalized to higher
dimensions.

We find that mediated gates compare favorably with
conventional, pairwise gating schemes, which make use
of SWAP gates when qubits are not proximal. For each
of the results reported in Table I, we compare the cir-
cuit depths based on mediated gates to those involving
conventional pairwise gates.
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fense. The views and conclusions contained in this doc-
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terpreted as representing the official policies, either ex-
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Appendix A: Existence Proof for Us

Here, we prove that the gate Ug, presented in Eq. (3)
of the main text (and its family), represent the only so-
lutions to the mediated-gate problem for two qubits. For
convenience, we adopt slightly different notation than the
main text, as indicated in Fig. 8. Spins 1 and 3 are the
two nonproximal qubits, while spin 2 is the central ancilla
qubit.

8—a—o

FIG. 8. (Color online) Two-qubit mediated-gate geometry.
Here, the ancilla qubit 2 mediates the gate Uz, which acts on
qubits 1 and 3.

We consider the following Hamiltonian for a linear
three-qubit array:
H=J,81 -85+ Jyso - s3, (A1)
where s; is the spin operator for qubit j. In principle, J,
and J, may take any value. However, we limit our search
to the case where the couplings are turned on and off si-
multaneously. J, and J, are therefore constant through-
out the gate operation. The goal of this appendix is to
identify specific relations between J, and J, that lead to
mediated gates.
We will make use of the identity [46, 47]
4s;-s; =2p7 — 1, (A2)
where p¥ is the SWAP (i.e., transposition) operator be-
tween spins ¢ and j, and [ is the two-qubit identity op-
erator. Hamiltonian (A1) can then be rewritten as

1 a1
H = —(Jop™ + Jpp*) — =

(A3)

The time evolution operator is given by

U(t) = e *H?
— i(JatTy)t/4,—iQJyt /2
o . n
_ i(Jat+Jdp)t/4 (=idut/2)"
= /(e 7;7”! Q" (A4)

where i = 1 and we have defined
Q=p"+Jp", (A5)

with J = J,/Jp. Since p?* and p'? are generators of the
symmetric group S3, we may expand Q™ in terms of the
S3 group elements:

Qn — anp231+bnp312+Cnp12+dnp13+enp23+fnl‘ (AG)

TABLE II. (Color online) Cayley table for the symmetric
group Sgz.

l H T ‘ p12 ‘ p13 ‘ p23 ‘ p231 p312
T T 12 p13 p23 p231 p312
p12 p12 T p231 p312 p13 p23
p13 p13 p312 T p231 p23 p12
p23 p23 p231 p312 T p12 p13
p231 p231 p23 12 p13 p312 T
p312 p312 p13 p23 p12 T p231

Here, p* is the tripartite, cyclic permutation operator.
The full set of S3 group operations is given in Table. II.
We then deduce the recursion relations for Q"' = QQ™:

€nt1 = fn+ Jby, (A]-l
fnr1=en+ Jcp.

Qpy1 = Cp + Jdy, (A7)
b1 = dp + Jen, (A8)
Cnt1 = ap + J fr, (AQ)
dp+1 =bn + Jan, (A10)
)
)

These relations can be expressed compactly as

Vi1 = Tn, (A13)
where
Vn:[fn Cn €n Qn bn dn]Ta (A14)
and
0J 1000
J 00100
1000 JO0
T=1o01000J (A15)
00J0O0T1
000J1O0

We now solve the recursion problem analytically. The
n = 0 term of the summation in Eq. (A4) corresponds to
the initial condition vo = [1 0 0 0 0 0]7. Equation (A13)
then leads to

an:%[(l—&-J)"—(l—J—i—ﬂ)g}, (A16)
bnzé[(1+J)"—(1—J+J2)g}, (A17)
fn = é[(1+J)”+2(1—J+J2)L5], (A18)
¢, =d, =€, =0, (A19)
when n is even, and
cn:%[(1+J)”+(2J71)(1—J+J2)n771], (A20)
d, = %[(1+J)"7(1+J)(1—J+J2)"51], (A21)
en = %[(1+J)”+(2—J)(1 T+ (A22)



when n is odd. Performing the sum over n, the time

J

eiJpt(1+7)/4

3

) [cos(Jbta £ 0)/2) + 2 cos(Jytn/1 — J + J2/2)] —ip'?

1+J .
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evolution operator can finally be written as

{p231 [cos(Jbtu +J)/2) — cos(Juty/1— J + J2/2)] +p*12 [cos(Jbta 1+ J)/2) — cos(Juty/T — J + J2/2)]

{sin(]bt(l )2 + \/% sin(Joty/T— T + J2/2)}

—ip"® {sin(Jbt(l +J)/2) - ————=sin(Jytv/1 - J + J2/2)]

V1—J+ J?

—ip |:Sin(Jbt(1 +J)/2) + Vi—JtJ?

The mediated gates we search for can be decomposed
as
U=U;®1, (A25)
where Uy acts on qubits 1 and 3, while [ is the single-
qubit identity operator acting on spin 2. Condition (A25)
is satisfied when the coefficients of p?3!, p3'2, p'2, and p?3
in Eq. (A24) all vanish. The solution is given by

Ja

J = I 1, (A26)

with
cos(Jpt/2) = cos(Jpt), (A27)
sin(Jpt/2) = — sin(Jpt). (A28)

We then solve Eqgs. (A27) and (A28) to obtain the medi-
ated gate periods, t = T}:

A 8
BT, =0, — % am, ..

= (A29)

The time evolution operator obtained from Eqs. (A26)-
(A28) is given by
U(T,) = e /2T cos(Jyt) — ip"® sin(JyTy)].  (A30)
Equation (A29) then leads to three distinct types of gate
operations. When JyT, = (4m)m, with m an integer,

we obtain the trivial gate, U(T,) = I. When J,T, =
(4m + $)m, we obtain the nontrivial result

a1 3
UTy) =e*3(z1— igpl’?’

: ). (A31)

The decomposition of Eq. (A25) leads to the identifica-
tion of the mediated gate U, given in Eq. (3). When
JyTy = (4m + $)m, we obtain the complementary gate
U(T,) = U3 ® I. Finally, we note that U3 = I. Thus,
Uy, U2 = U2_1, and I comprise the full set of two-qubit
mediated gates.

2-J sin(Jyt\/1 — J + J2/2)] }

(A24)

(

Appendix B: Global Optimization Techniques for
Constructing Quantum States and Gates

In this Appendix, we outline the global optimization
methods used to solve Egs. (4) and (5), which act on
two qubits. Identical methods can also be used to gener-
ate states and construct gates involving more than two
qubits.

Equations (4) and (5) can be summarized as follows.
An arbitrary two-qubit quantum circuit is formed of units
comprised of one entangling gate, Us, sandwiched be-
tween single-qubit unitary rotations. Omne or more of
these units can be combined, sequentially, to form a cir-
cuit. The single-qubit rotations in this protocol are arbi-
trary. However, the entangling gate Us is fixed, with the
form shown in Eq. (3).

Three scalar parameters are required, to fully specify
an arbitrary single-qubit rotation, up to a global phase

factor (e.g., the Euler angle construction). Here, we
adopt the ZYZ decomposition [30]:
Ul(a,ﬁ,’)/) _ efiaaz/2efiﬂoy/267iyaz/2. (Bl)

In the most general case, the rotations will be applied
to both qubits, before and after each exchange gate.
The construction can be further simplified by noting that
terms such as (U; ® Uy)(U; ® Uy) are redundant and can
be collapsed into the form U; ® Uy. Thus, up to 6(n+1)
rotation angles are required, to specify an arbitrary gate
sequence of circuit depth n.

Here, we employ global optimization techniques, to
search through this large parameter space. We have
found that multi-start clustering algorithms [48, 49] are
particularly effective for solving this problem. We first
define an appropriate objective function to be minimized.
For generating arbitrary states, as in Eq. (4), we use the
infidelity (1 — f) of the desired final state |tges) as the
objective function, where

f = ‘<wdes‘wactual> |2 <B2)
= [(aes| (U1 © U1)[U2(Ur @ Un)]"[00) .



For generating arbitrary gates, as in Eq. (5), we use the
operator error norm € as the objective function, where

€ = HUQ,des - U2,actua1||' (B3)

The global optimization is performed in two steps. In
the first step, we use the multi-start algorithm to iden-
tify potential candidate solutions. Then, we use these
solutions as a first guess in a local Nelder-Mead downhill
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simplex search [50]. The final outcome generally provides
results with very low or very high accuracy. The latter
are accepted as valid solutions. We begin our searches
using the minimal exchange gate sequence (n = 1). If no
valid solutions are obtained for a given sequence length,
we increment n by 1 and repeat the procedure. Once
an optimal, numerical solution has been obtained, it is
sometimes possible to work backwards, to determine the
exact rotation angles, as in Figs. 3, 4, and 6. These iden-
tifications can then be confirmed analytically.
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